1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/cpu-common.h" 26 #include "exec/hwaddr.h" 27 #include "exec/memattrs.h" 28 #include "qapi/qapi-types-run-state.h" 29 #include "qemu/bitmap.h" 30 #include "qemu/rcu_queue.h" 31 #include "qemu/queue.h" 32 #include "qemu/thread.h" 33 #include "qemu/plugin-event.h" 34 #include "qom/object.h" 35 36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 37 void *opaque); 38 39 /** 40 * SECTION:cpu 41 * @section_id: QEMU-cpu 42 * @title: CPU Class 43 * @short_description: Base class for all CPUs 44 */ 45 46 #define TYPE_CPU "cpu" 47 48 /* Since this macro is used a lot in hot code paths and in conjunction with 49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 50 * an unchecked cast. 51 */ 52 #define CPU(obj) ((CPUState *)(obj)) 53 54 /* 55 * The class checkers bring in CPU_GET_CLASS() which is potentially 56 * expensive given the eventual call to 57 * object_class_dynamic_cast_assert(). Because of this the CPUState 58 * has a cached value for the class in cs->cc which is set up in 59 * cpu_exec_realizefn() for use in hot code paths. 60 */ 61 typedef struct CPUClass CPUClass; 62 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 63 TYPE_CPU) 64 65 /** 66 * OBJECT_DECLARE_CPU_TYPE: 67 * @CpuInstanceType: instance struct name 68 * @CpuClassType: class struct name 69 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 70 * 71 * This macro is typically used in "cpu-qom.h" header file, and will: 72 * 73 * - create the typedefs for the CPU object and class structs 74 * - register the type for use with g_autoptr 75 * - provide three standard type cast functions 76 * 77 * The object struct and class struct need to be declared manually. 78 */ 79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 80 typedef struct ArchCPU CpuInstanceType; \ 81 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 82 83 typedef enum MMUAccessType { 84 MMU_DATA_LOAD = 0, 85 MMU_DATA_STORE = 1, 86 MMU_INST_FETCH = 2 87 #define MMU_ACCESS_COUNT 3 88 } MMUAccessType; 89 90 typedef struct CPUWatchpoint CPUWatchpoint; 91 92 /* see tcg-cpu-ops.h */ 93 struct TCGCPUOps; 94 95 /* see accel-cpu.h */ 96 struct AccelCPUClass; 97 98 /* see sysemu-cpu-ops.h */ 99 struct SysemuCPUOps; 100 101 /** 102 * CPUClass: 103 * @class_by_name: Callback to map -cpu command line model name to an 104 * instantiatable CPU type. 105 * @parse_features: Callback to parse command line arguments. 106 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 107 * @has_work: Callback for checking if there is work to do. 108 * @memory_rw_debug: Callback for GDB memory access. 109 * @dump_state: Callback for dumping state. 110 * @query_cpu_fast: 111 * Fill in target specific information for the "query-cpus-fast" 112 * QAPI call. 113 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 114 * @set_pc: Callback for setting the Program Counter register. This 115 * should have the semantics used by the target architecture when 116 * setting the PC from a source such as an ELF file entry point; 117 * for example on Arm it will also set the Thumb mode bit based 118 * on the least significant bit of the new PC value. 119 * If the target behaviour here is anything other than "set 120 * the PC register to the value passed in" then the target must 121 * also implement the synchronize_from_tb hook. 122 * @get_pc: Callback for getting the Program Counter register. 123 * As above, with the semantics of the target architecture. 124 * @gdb_read_register: Callback for letting GDB read a register. 125 * @gdb_write_register: Callback for letting GDB write a register. 126 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 127 * breakpoint. Used by AVR to handle a gdb mis-feature with 128 * its Harvard architecture split code and data. 129 * @gdb_num_core_regs: Number of core registers accessible to GDB. 130 * @gdb_core_xml_file: File name for core registers GDB XML description. 131 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 132 * before the insn which triggers a watchpoint rather than after it. 133 * @gdb_arch_name: Optional callback that returns the architecture name known 134 * to GDB. The caller must free the returned string with g_free. 135 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 136 * gdb stub. Returns a pointer to the XML contents for the specified XML file 137 * or NULL if the CPU doesn't have a dynamically generated content for it. 138 * @disas_set_info: Setup architecture specific components of disassembly info 139 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 140 * address before attempting to match it against watchpoints. 141 * @deprecation_note: If this CPUClass is deprecated, this field provides 142 * related information. 143 * 144 * Represents a CPU family or model. 145 */ 146 struct CPUClass { 147 /*< private >*/ 148 DeviceClass parent_class; 149 /*< public >*/ 150 151 ObjectClass *(*class_by_name)(const char *cpu_model); 152 void (*parse_features)(const char *typename, char *str, Error **errp); 153 154 bool (*has_work)(CPUState *cpu); 155 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 156 uint8_t *buf, int len, bool is_write); 157 void (*dump_state)(CPUState *cpu, FILE *, int flags); 158 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 159 int64_t (*get_arch_id)(CPUState *cpu); 160 void (*set_pc)(CPUState *cpu, vaddr value); 161 vaddr (*get_pc)(CPUState *cpu); 162 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 163 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 164 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 165 166 const char *gdb_core_xml_file; 167 gchar * (*gdb_arch_name)(CPUState *cpu); 168 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 169 170 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 171 172 const char *deprecation_note; 173 struct AccelCPUClass *accel_cpu; 174 175 /* when system emulation is not available, this pointer is NULL */ 176 const struct SysemuCPUOps *sysemu_ops; 177 178 /* when TCG is not available, this pointer is NULL */ 179 const struct TCGCPUOps *tcg_ops; 180 181 /* 182 * if not NULL, this is called in order for the CPUClass to initialize 183 * class data that depends on the accelerator, see accel/accel-common.c. 184 */ 185 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 186 187 /* 188 * Keep non-pointer data at the end to minimize holes. 189 */ 190 int reset_dump_flags; 191 int gdb_num_core_regs; 192 bool gdb_stop_before_watchpoint; 193 }; 194 195 /* 196 * Low 16 bits: number of cycles left, used only in icount mode. 197 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 198 * for this CPU and return to its top level loop (even in non-icount mode). 199 * This allows a single read-compare-cbranch-write sequence to test 200 * for both decrementer underflow and exceptions. 201 */ 202 typedef union IcountDecr { 203 uint32_t u32; 204 struct { 205 #if HOST_BIG_ENDIAN 206 uint16_t high; 207 uint16_t low; 208 #else 209 uint16_t low; 210 uint16_t high; 211 #endif 212 } u16; 213 } IcountDecr; 214 215 typedef struct CPUBreakpoint { 216 vaddr pc; 217 int flags; /* BP_* */ 218 QTAILQ_ENTRY(CPUBreakpoint) entry; 219 } CPUBreakpoint; 220 221 struct CPUWatchpoint { 222 vaddr vaddr; 223 vaddr len; 224 vaddr hitaddr; 225 MemTxAttrs hitattrs; 226 int flags; /* BP_* */ 227 QTAILQ_ENTRY(CPUWatchpoint) entry; 228 }; 229 230 struct KVMState; 231 struct kvm_run; 232 233 /* work queue */ 234 235 /* The union type allows passing of 64 bit target pointers on 32 bit 236 * hosts in a single parameter 237 */ 238 typedef union { 239 int host_int; 240 unsigned long host_ulong; 241 void *host_ptr; 242 vaddr target_ptr; 243 } run_on_cpu_data; 244 245 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 246 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 247 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 248 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 249 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 250 251 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 252 253 struct qemu_work_item; 254 255 #define CPU_UNSET_NUMA_NODE_ID -1 256 257 /** 258 * CPUState: 259 * @cpu_index: CPU index (informative). 260 * @cluster_index: Identifies which cluster this CPU is in. 261 * For boards which don't define clusters or for "loose" CPUs not assigned 262 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 263 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 264 * QOM parent. 265 * Under TCG this value is propagated to @tcg_cflags. 266 * See TranslationBlock::TCG CF_CLUSTER_MASK. 267 * @tcg_cflags: Pre-computed cflags for this cpu. 268 * @nr_cores: Number of cores within this CPU package. 269 * @nr_threads: Number of threads within this CPU. 270 * @running: #true if CPU is currently running (lockless). 271 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 272 * valid under cpu_list_lock. 273 * @created: Indicates whether the CPU thread has been successfully created. 274 * @interrupt_request: Indicates a pending interrupt request. 275 * @halted: Nonzero if the CPU is in suspended state. 276 * @stop: Indicates a pending stop request. 277 * @stopped: Indicates the CPU has been artificially stopped. 278 * @unplug: Indicates a pending CPU unplug request. 279 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 280 * @singlestep_enabled: Flags for single-stepping. 281 * @icount_extra: Instructions until next timer event. 282 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 283 * requires that IO only be performed on the last instruction of a TB 284 * so that interrupts take effect immediately. 285 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 286 * AddressSpaces this CPU has) 287 * @num_ases: number of CPUAddressSpaces in @cpu_ases 288 * @as: Pointer to the first AddressSpace, for the convenience of targets which 289 * only have a single AddressSpace 290 * @env_ptr: Pointer to subclass-specific CPUArchState field. 291 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 292 * @gdb_regs: Additional GDB registers. 293 * @gdb_num_regs: Number of total registers accessible to GDB. 294 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 295 * @next_cpu: Next CPU sharing TB cache. 296 * @opaque: User data. 297 * @mem_io_pc: Host Program Counter at which the memory was accessed. 298 * @accel: Pointer to accelerator specific state. 299 * @kvm_fd: vCPU file descriptor for KVM. 300 * @work_mutex: Lock to prevent multiple access to @work_list. 301 * @work_list: List of pending asynchronous work. 302 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 303 * to @trace_dstate). 304 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 305 * @plugin_mask: Plugin event bitmap. Modified only via async work. 306 * @ignore_memory_transaction_failures: Cached copy of the MachineState 307 * flag of the same name: allows the board to suppress calling of the 308 * CPU do_transaction_failed hook function. 309 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 310 * ring is enabled. 311 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 312 * dirty ring structure. 313 * 314 * State of one CPU core or thread. 315 */ 316 struct CPUState { 317 /*< private >*/ 318 DeviceState parent_obj; 319 /* cache to avoid expensive CPU_GET_CLASS */ 320 CPUClass *cc; 321 /*< public >*/ 322 323 int nr_cores; 324 int nr_threads; 325 326 struct QemuThread *thread; 327 #ifdef _WIN32 328 QemuSemaphore sem; 329 #endif 330 int thread_id; 331 bool running, has_waiter; 332 struct QemuCond *halt_cond; 333 bool thread_kicked; 334 bool created; 335 bool stop; 336 bool stopped; 337 338 /* Should CPU start in powered-off state? */ 339 bool start_powered_off; 340 341 bool unplug; 342 bool crash_occurred; 343 bool exit_request; 344 int exclusive_context_count; 345 uint32_t cflags_next_tb; 346 /* updates protected by BQL */ 347 uint32_t interrupt_request; 348 int singlestep_enabled; 349 int64_t icount_budget; 350 int64_t icount_extra; 351 uint64_t random_seed; 352 sigjmp_buf jmp_env; 353 354 QemuMutex work_mutex; 355 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 356 357 CPUAddressSpace *cpu_ases; 358 int num_ases; 359 AddressSpace *as; 360 MemoryRegion *memory; 361 362 CPUArchState *env_ptr; 363 IcountDecr *icount_decr_ptr; 364 365 CPUJumpCache *tb_jmp_cache; 366 367 struct GDBRegisterState *gdb_regs; 368 int gdb_num_regs; 369 int gdb_num_g_regs; 370 QTAILQ_ENTRY(CPUState) node; 371 372 /* ice debug support */ 373 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 374 375 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 376 CPUWatchpoint *watchpoint_hit; 377 378 void *opaque; 379 380 /* In order to avoid passing too many arguments to the MMIO helpers, 381 * we store some rarely used information in the CPU context. 382 */ 383 uintptr_t mem_io_pc; 384 385 /* Only used in KVM */ 386 int kvm_fd; 387 struct KVMState *kvm_state; 388 struct kvm_run *kvm_run; 389 struct kvm_dirty_gfn *kvm_dirty_gfns; 390 uint32_t kvm_fetch_index; 391 uint64_t dirty_pages; 392 int kvm_vcpu_stats_fd; 393 394 /* Use by accel-block: CPU is executing an ioctl() */ 395 QemuLockCnt in_ioctl_lock; 396 397 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 398 399 #ifdef CONFIG_PLUGIN 400 GArray *plugin_mem_cbs; 401 #endif 402 403 /* TODO Move common fields from CPUArchState here. */ 404 int cpu_index; 405 int cluster_index; 406 uint32_t tcg_cflags; 407 uint32_t halted; 408 uint32_t can_do_io; 409 int32_t exception_index; 410 411 AccelCPUState *accel; 412 /* shared by kvm and hvf */ 413 bool vcpu_dirty; 414 415 /* Used to keep track of an outstanding cpu throttle thread for migration 416 * autoconverge 417 */ 418 bool throttle_thread_scheduled; 419 420 /* 421 * Sleep throttle_us_per_full microseconds once dirty ring is full 422 * if dirty page rate limit is enabled. 423 */ 424 int64_t throttle_us_per_full; 425 426 bool ignore_memory_transaction_failures; 427 428 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 429 bool prctl_unalign_sigbus; 430 431 /* track IOMMUs whose translations we've cached in the TCG TLB */ 432 GArray *iommu_notifiers; 433 }; 434 435 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 436 extern CPUTailQ cpus; 437 438 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 439 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 440 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 441 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 442 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 443 444 extern __thread CPUState *current_cpu; 445 446 /** 447 * qemu_tcg_mttcg_enabled: 448 * Check whether we are running MultiThread TCG or not. 449 * 450 * Returns: %true if we are in MTTCG mode %false otherwise. 451 */ 452 extern bool mttcg_enabled; 453 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 454 455 /** 456 * cpu_paging_enabled: 457 * @cpu: The CPU whose state is to be inspected. 458 * 459 * Returns: %true if paging is enabled, %false otherwise. 460 */ 461 bool cpu_paging_enabled(const CPUState *cpu); 462 463 /** 464 * cpu_get_memory_mapping: 465 * @cpu: The CPU whose memory mappings are to be obtained. 466 * @list: Where to write the memory mappings to. 467 * @errp: Pointer for reporting an #Error. 468 */ 469 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 470 Error **errp); 471 472 #if !defined(CONFIG_USER_ONLY) 473 474 /** 475 * cpu_write_elf64_note: 476 * @f: pointer to a function that writes memory to a file 477 * @cpu: The CPU whose memory is to be dumped 478 * @cpuid: ID number of the CPU 479 * @opaque: pointer to the CPUState struct 480 */ 481 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 482 int cpuid, void *opaque); 483 484 /** 485 * cpu_write_elf64_qemunote: 486 * @f: pointer to a function that writes memory to a file 487 * @cpu: The CPU whose memory is to be dumped 488 * @cpuid: ID number of the CPU 489 * @opaque: pointer to the CPUState struct 490 */ 491 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 492 void *opaque); 493 494 /** 495 * cpu_write_elf32_note: 496 * @f: pointer to a function that writes memory to a file 497 * @cpu: The CPU whose memory is to be dumped 498 * @cpuid: ID number of the CPU 499 * @opaque: pointer to the CPUState struct 500 */ 501 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 502 int cpuid, void *opaque); 503 504 /** 505 * cpu_write_elf32_qemunote: 506 * @f: pointer to a function that writes memory to a file 507 * @cpu: The CPU whose memory is to be dumped 508 * @cpuid: ID number of the CPU 509 * @opaque: pointer to the CPUState struct 510 */ 511 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 512 void *opaque); 513 514 /** 515 * cpu_get_crash_info: 516 * @cpu: The CPU to get crash information for 517 * 518 * Gets the previously saved crash information. 519 * Caller is responsible for freeing the data. 520 */ 521 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 522 523 #endif /* !CONFIG_USER_ONLY */ 524 525 /** 526 * CPUDumpFlags: 527 * @CPU_DUMP_CODE: 528 * @CPU_DUMP_FPU: dump FPU register state, not just integer 529 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 530 * @CPU_DUMP_VPU: dump VPU registers 531 */ 532 enum CPUDumpFlags { 533 CPU_DUMP_CODE = 0x00010000, 534 CPU_DUMP_FPU = 0x00020000, 535 CPU_DUMP_CCOP = 0x00040000, 536 CPU_DUMP_VPU = 0x00080000, 537 }; 538 539 /** 540 * cpu_dump_state: 541 * @cpu: The CPU whose state is to be dumped. 542 * @f: If non-null, dump to this stream, else to current print sink. 543 * 544 * Dumps CPU state. 545 */ 546 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 547 548 #ifndef CONFIG_USER_ONLY 549 /** 550 * cpu_get_phys_page_attrs_debug: 551 * @cpu: The CPU to obtain the physical page address for. 552 * @addr: The virtual address. 553 * @attrs: Updated on return with the memory transaction attributes to use 554 * for this access. 555 * 556 * Obtains the physical page corresponding to a virtual one, together 557 * with the corresponding memory transaction attributes to use for the access. 558 * Use it only for debugging because no protection checks are done. 559 * 560 * Returns: Corresponding physical page address or -1 if no page found. 561 */ 562 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 563 MemTxAttrs *attrs); 564 565 /** 566 * cpu_get_phys_page_debug: 567 * @cpu: The CPU to obtain the physical page address for. 568 * @addr: The virtual address. 569 * 570 * Obtains the physical page corresponding to a virtual one. 571 * Use it only for debugging because no protection checks are done. 572 * 573 * Returns: Corresponding physical page address or -1 if no page found. 574 */ 575 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 576 577 /** cpu_asidx_from_attrs: 578 * @cpu: CPU 579 * @attrs: memory transaction attributes 580 * 581 * Returns the address space index specifying the CPU AddressSpace 582 * to use for a memory access with the given transaction attributes. 583 */ 584 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 585 586 /** 587 * cpu_virtio_is_big_endian: 588 * @cpu: CPU 589 590 * Returns %true if a CPU which supports runtime configurable endianness 591 * is currently big-endian. 592 */ 593 bool cpu_virtio_is_big_endian(CPUState *cpu); 594 595 #endif /* CONFIG_USER_ONLY */ 596 597 /** 598 * cpu_list_add: 599 * @cpu: The CPU to be added to the list of CPUs. 600 */ 601 void cpu_list_add(CPUState *cpu); 602 603 /** 604 * cpu_list_remove: 605 * @cpu: The CPU to be removed from the list of CPUs. 606 */ 607 void cpu_list_remove(CPUState *cpu); 608 609 /** 610 * cpu_reset: 611 * @cpu: The CPU whose state is to be reset. 612 */ 613 void cpu_reset(CPUState *cpu); 614 615 /** 616 * cpu_class_by_name: 617 * @typename: The CPU base type. 618 * @cpu_model: The model string without any parameters. 619 * 620 * Looks up a CPU #ObjectClass matching name @cpu_model. 621 * 622 * Returns: A #CPUClass or %NULL if not matching class is found. 623 */ 624 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 625 626 /** 627 * cpu_create: 628 * @typename: The CPU type. 629 * 630 * Instantiates a CPU and realizes the CPU. 631 * 632 * Returns: A #CPUState or %NULL if an error occurred. 633 */ 634 CPUState *cpu_create(const char *typename); 635 636 /** 637 * parse_cpu_option: 638 * @cpu_option: The -cpu option including optional parameters. 639 * 640 * processes optional parameters and registers them as global properties 641 * 642 * Returns: type of CPU to create or prints error and terminates process 643 * if an error occurred. 644 */ 645 const char *parse_cpu_option(const char *cpu_option); 646 647 /** 648 * cpu_has_work: 649 * @cpu: The vCPU to check. 650 * 651 * Checks whether the CPU has work to do. 652 * 653 * Returns: %true if the CPU has work, %false otherwise. 654 */ 655 static inline bool cpu_has_work(CPUState *cpu) 656 { 657 CPUClass *cc = CPU_GET_CLASS(cpu); 658 659 g_assert(cc->has_work); 660 return cc->has_work(cpu); 661 } 662 663 /** 664 * qemu_cpu_is_self: 665 * @cpu: The vCPU to check against. 666 * 667 * Checks whether the caller is executing on the vCPU thread. 668 * 669 * Returns: %true if called from @cpu's thread, %false otherwise. 670 */ 671 bool qemu_cpu_is_self(CPUState *cpu); 672 673 /** 674 * qemu_cpu_kick: 675 * @cpu: The vCPU to kick. 676 * 677 * Kicks @cpu's thread. 678 */ 679 void qemu_cpu_kick(CPUState *cpu); 680 681 /** 682 * cpu_is_stopped: 683 * @cpu: The CPU to check. 684 * 685 * Checks whether the CPU is stopped. 686 * 687 * Returns: %true if run state is not running or if artificially stopped; 688 * %false otherwise. 689 */ 690 bool cpu_is_stopped(CPUState *cpu); 691 692 /** 693 * do_run_on_cpu: 694 * @cpu: The vCPU to run on. 695 * @func: The function to be executed. 696 * @data: Data to pass to the function. 697 * @mutex: Mutex to release while waiting for @func to run. 698 * 699 * Used internally in the implementation of run_on_cpu. 700 */ 701 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 702 QemuMutex *mutex); 703 704 /** 705 * run_on_cpu: 706 * @cpu: The vCPU to run on. 707 * @func: The function to be executed. 708 * @data: Data to pass to the function. 709 * 710 * Schedules the function @func for execution on the vCPU @cpu. 711 */ 712 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 713 714 /** 715 * async_run_on_cpu: 716 * @cpu: The vCPU to run on. 717 * @func: The function to be executed. 718 * @data: Data to pass to the function. 719 * 720 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 721 */ 722 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 723 724 /** 725 * async_safe_run_on_cpu: 726 * @cpu: The vCPU to run on. 727 * @func: The function to be executed. 728 * @data: Data to pass to the function. 729 * 730 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 731 * while all other vCPUs are sleeping. 732 * 733 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 734 * BQL. 735 */ 736 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 737 738 /** 739 * cpu_in_exclusive_context() 740 * @cpu: The vCPU to check 741 * 742 * Returns true if @cpu is an exclusive context, for example running 743 * something which has previously been queued via async_safe_run_on_cpu(). 744 */ 745 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 746 { 747 return cpu->exclusive_context_count; 748 } 749 750 /** 751 * qemu_get_cpu: 752 * @index: The CPUState@cpu_index value of the CPU to obtain. 753 * 754 * Gets a CPU matching @index. 755 * 756 * Returns: The CPU or %NULL if there is no matching CPU. 757 */ 758 CPUState *qemu_get_cpu(int index); 759 760 /** 761 * cpu_exists: 762 * @id: Guest-exposed CPU ID to lookup. 763 * 764 * Search for CPU with specified ID. 765 * 766 * Returns: %true - CPU is found, %false - CPU isn't found. 767 */ 768 bool cpu_exists(int64_t id); 769 770 /** 771 * cpu_by_arch_id: 772 * @id: Guest-exposed CPU ID of the CPU to obtain. 773 * 774 * Get a CPU with matching @id. 775 * 776 * Returns: The CPU or %NULL if there is no matching CPU. 777 */ 778 CPUState *cpu_by_arch_id(int64_t id); 779 780 /** 781 * cpu_interrupt: 782 * @cpu: The CPU to set an interrupt on. 783 * @mask: The interrupts to set. 784 * 785 * Invokes the interrupt handler. 786 */ 787 788 void cpu_interrupt(CPUState *cpu, int mask); 789 790 /** 791 * cpu_set_pc: 792 * @cpu: The CPU to set the program counter for. 793 * @addr: Program counter value. 794 * 795 * Sets the program counter for a CPU. 796 */ 797 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 798 { 799 CPUClass *cc = CPU_GET_CLASS(cpu); 800 801 cc->set_pc(cpu, addr); 802 } 803 804 /** 805 * cpu_reset_interrupt: 806 * @cpu: The CPU to clear the interrupt on. 807 * @mask: The interrupt mask to clear. 808 * 809 * Resets interrupts on the vCPU @cpu. 810 */ 811 void cpu_reset_interrupt(CPUState *cpu, int mask); 812 813 /** 814 * cpu_exit: 815 * @cpu: The CPU to exit. 816 * 817 * Requests the CPU @cpu to exit execution. 818 */ 819 void cpu_exit(CPUState *cpu); 820 821 /** 822 * cpu_resume: 823 * @cpu: The CPU to resume. 824 * 825 * Resumes CPU, i.e. puts CPU into runnable state. 826 */ 827 void cpu_resume(CPUState *cpu); 828 829 /** 830 * cpu_remove_sync: 831 * @cpu: The CPU to remove. 832 * 833 * Requests the CPU to be removed and waits till it is removed. 834 */ 835 void cpu_remove_sync(CPUState *cpu); 836 837 /** 838 * process_queued_cpu_work() - process all items on CPU work queue 839 * @cpu: The CPU which work queue to process. 840 */ 841 void process_queued_cpu_work(CPUState *cpu); 842 843 /** 844 * cpu_exec_start: 845 * @cpu: The CPU for the current thread. 846 * 847 * Record that a CPU has started execution and can be interrupted with 848 * cpu_exit. 849 */ 850 void cpu_exec_start(CPUState *cpu); 851 852 /** 853 * cpu_exec_end: 854 * @cpu: The CPU for the current thread. 855 * 856 * Record that a CPU has stopped execution and exclusive sections 857 * can be executed without interrupting it. 858 */ 859 void cpu_exec_end(CPUState *cpu); 860 861 /** 862 * start_exclusive: 863 * 864 * Wait for a concurrent exclusive section to end, and then start 865 * a section of work that is run while other CPUs are not running 866 * between cpu_exec_start and cpu_exec_end. CPUs that are running 867 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 868 * during the exclusive section go to sleep until this CPU calls 869 * end_exclusive. 870 */ 871 void start_exclusive(void); 872 873 /** 874 * end_exclusive: 875 * 876 * Concludes an exclusive execution section started by start_exclusive. 877 */ 878 void end_exclusive(void); 879 880 /** 881 * qemu_init_vcpu: 882 * @cpu: The vCPU to initialize. 883 * 884 * Initializes a vCPU. 885 */ 886 void qemu_init_vcpu(CPUState *cpu); 887 888 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 889 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 890 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 891 892 /** 893 * cpu_single_step: 894 * @cpu: CPU to the flags for. 895 * @enabled: Flags to enable. 896 * 897 * Enables or disables single-stepping for @cpu. 898 */ 899 void cpu_single_step(CPUState *cpu, int enabled); 900 901 /* Breakpoint/watchpoint flags */ 902 #define BP_MEM_READ 0x01 903 #define BP_MEM_WRITE 0x02 904 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 905 #define BP_STOP_BEFORE_ACCESS 0x04 906 /* 0x08 currently unused */ 907 #define BP_GDB 0x10 908 #define BP_CPU 0x20 909 #define BP_ANY (BP_GDB | BP_CPU) 910 #define BP_HIT_SHIFT 6 911 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 912 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 913 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 914 915 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 916 CPUBreakpoint **breakpoint); 917 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 918 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 919 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 920 921 /* Return true if PC matches an installed breakpoint. */ 922 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 923 { 924 CPUBreakpoint *bp; 925 926 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 927 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 928 if (bp->pc == pc && (bp->flags & mask)) { 929 return true; 930 } 931 } 932 } 933 return false; 934 } 935 936 #if defined(CONFIG_USER_ONLY) 937 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 938 int flags, CPUWatchpoint **watchpoint) 939 { 940 return -ENOSYS; 941 } 942 943 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 944 vaddr len, int flags) 945 { 946 return -ENOSYS; 947 } 948 949 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 950 CPUWatchpoint *wp) 951 { 952 } 953 954 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 955 { 956 } 957 #else 958 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 959 int flags, CPUWatchpoint **watchpoint); 960 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 961 vaddr len, int flags); 962 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 963 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 964 #endif 965 966 /** 967 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled? 968 * @cs: CPUState pointer 969 * 970 * The memory callbacks are installed if a plugin has instrumented an 971 * instruction for memory. This can be useful to know if you want to 972 * force a slow path for a series of memory accesses. 973 */ 974 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu) 975 { 976 #ifdef CONFIG_PLUGIN 977 return !!cpu->plugin_mem_cbs; 978 #else 979 return false; 980 #endif 981 } 982 983 /** 984 * cpu_get_address_space: 985 * @cpu: CPU to get address space from 986 * @asidx: index identifying which address space to get 987 * 988 * Return the requested address space of this CPU. @asidx 989 * specifies which address space to read. 990 */ 991 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 992 993 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 994 G_GNUC_PRINTF(2, 3); 995 996 /* $(top_srcdir)/cpu.c */ 997 void cpu_class_init_props(DeviceClass *dc); 998 void cpu_exec_initfn(CPUState *cpu); 999 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1000 void cpu_exec_unrealizefn(CPUState *cpu); 1001 1002 /** 1003 * target_words_bigendian: 1004 * Returns true if the (default) endianness of the target is big endian, 1005 * false otherwise. Note that in target-specific code, you can use 1006 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1007 * code should normally never need to know about the endianness of the 1008 * target, so please do *not* use this function unless you know very well 1009 * what you are doing! 1010 */ 1011 bool target_words_bigendian(void); 1012 1013 const char *target_name(void); 1014 1015 void page_size_init(void); 1016 1017 #ifdef NEED_CPU_H 1018 1019 #ifndef CONFIG_USER_ONLY 1020 1021 extern const VMStateDescription vmstate_cpu_common; 1022 1023 #define VMSTATE_CPU() { \ 1024 .name = "parent_obj", \ 1025 .size = sizeof(CPUState), \ 1026 .vmsd = &vmstate_cpu_common, \ 1027 .flags = VMS_STRUCT, \ 1028 .offset = 0, \ 1029 } 1030 #endif /* !CONFIG_USER_ONLY */ 1031 1032 #endif /* NEED_CPU_H */ 1033 1034 #define UNASSIGNED_CPU_INDEX -1 1035 #define UNASSIGNED_CLUSTER_INDEX -1 1036 1037 #endif 1038