1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-run-state.h" 32 #include "qemu/bitmap.h" 33 #include "qemu/rcu_queue.h" 34 #include "qemu/queue.h" 35 #include "qemu/thread.h" 36 #include "qom/object.h" 37 38 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 39 void *opaque); 40 41 /** 42 * SECTION:cpu 43 * @section_id: QEMU-cpu 44 * @title: CPU Class 45 * @short_description: Base class for all CPUs 46 */ 47 48 #define TYPE_CPU "cpu" 49 50 /* Since this macro is used a lot in hot code paths and in conjunction with 51 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 52 * an unchecked cast. 53 */ 54 #define CPU(obj) ((CPUState *)(obj)) 55 56 /* 57 * The class checkers bring in CPU_GET_CLASS() which is potentially 58 * expensive given the eventual call to 59 * object_class_dynamic_cast_assert(). Because of this the CPUState 60 * has a cached value for the class in cs->cc which is set up in 61 * cpu_exec_realizefn() for use in hot code paths. 62 */ 63 typedef struct CPUClass CPUClass; 64 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 65 TYPE_CPU) 66 67 /** 68 * OBJECT_DECLARE_CPU_TYPE: 69 * @CpuInstanceType: instance struct name 70 * @CpuClassType: class struct name 71 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 72 * 73 * This macro is typically used in "cpu-qom.h" header file, and will: 74 * 75 * - create the typedefs for the CPU object and class structs 76 * - register the type for use with g_autoptr 77 * - provide three standard type cast functions 78 * 79 * The object struct and class struct need to be declared manually. 80 */ 81 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 82 typedef struct ArchCPU CpuInstanceType; \ 83 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 84 85 typedef struct CPUWatchpoint CPUWatchpoint; 86 87 /* see accel-cpu.h */ 88 struct AccelCPUClass; 89 90 /* see sysemu-cpu-ops.h */ 91 struct SysemuCPUOps; 92 93 /** 94 * CPUClass: 95 * @class_by_name: Callback to map -cpu command line model name to an 96 * instantiatable CPU type. 97 * @parse_features: Callback to parse command line arguments. 98 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 99 * @has_work: Callback for checking if there is work to do. 100 * @mmu_index: Callback for choosing softmmu mmu index; 101 * may be used internally by memory_rw_debug without TCG. 102 * @memory_rw_debug: Callback for GDB memory access. 103 * @dump_state: Callback for dumping state. 104 * @query_cpu_fast: 105 * Fill in target specific information for the "query-cpus-fast" 106 * QAPI call. 107 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 108 * @set_pc: Callback for setting the Program Counter register. This 109 * should have the semantics used by the target architecture when 110 * setting the PC from a source such as an ELF file entry point; 111 * for example on Arm it will also set the Thumb mode bit based 112 * on the least significant bit of the new PC value. 113 * If the target behaviour here is anything other than "set 114 * the PC register to the value passed in" then the target must 115 * also implement the synchronize_from_tb hook. 116 * @get_pc: Callback for getting the Program Counter register. 117 * As above, with the semantics of the target architecture. 118 * @gdb_read_register: Callback for letting GDB read a register. 119 * @gdb_write_register: Callback for letting GDB write a register. 120 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 121 * breakpoint. Used by AVR to handle a gdb mis-feature with 122 * its Harvard architecture split code and data. 123 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 124 * from @gdb_core_xml_file. 125 * @gdb_core_xml_file: File name for core registers GDB XML description. 126 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 127 * before the insn which triggers a watchpoint rather than after it. 128 * @gdb_arch_name: Optional callback that returns the architecture name known 129 * to GDB. The caller must free the returned string with g_free. 130 * @disas_set_info: Setup architecture specific components of disassembly info 131 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 132 * address before attempting to match it against watchpoints. 133 * @deprecation_note: If this CPUClass is deprecated, this field provides 134 * related information. 135 * 136 * Represents a CPU family or model. 137 */ 138 struct CPUClass { 139 /*< private >*/ 140 DeviceClass parent_class; 141 /*< public >*/ 142 143 ObjectClass *(*class_by_name)(const char *cpu_model); 144 void (*parse_features)(const char *typename, char *str, Error **errp); 145 146 bool (*has_work)(CPUState *cpu); 147 int (*mmu_index)(CPUState *cpu, bool ifetch); 148 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 149 uint8_t *buf, int len, bool is_write); 150 void (*dump_state)(CPUState *cpu, FILE *, int flags); 151 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 152 int64_t (*get_arch_id)(CPUState *cpu); 153 void (*set_pc)(CPUState *cpu, vaddr value); 154 vaddr (*get_pc)(CPUState *cpu); 155 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 156 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 157 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 158 159 const char *gdb_core_xml_file; 160 const gchar * (*gdb_arch_name)(CPUState *cpu); 161 162 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 163 164 const char *deprecation_note; 165 struct AccelCPUClass *accel_cpu; 166 167 /* when system emulation is not available, this pointer is NULL */ 168 const struct SysemuCPUOps *sysemu_ops; 169 170 /* when TCG is not available, this pointer is NULL */ 171 const TCGCPUOps *tcg_ops; 172 173 /* 174 * if not NULL, this is called in order for the CPUClass to initialize 175 * class data that depends on the accelerator, see accel/accel-common.c. 176 */ 177 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 178 179 /* 180 * Keep non-pointer data at the end to minimize holes. 181 */ 182 int reset_dump_flags; 183 int gdb_num_core_regs; 184 bool gdb_stop_before_watchpoint; 185 }; 186 187 /* 188 * Fix the number of mmu modes to 16, which is also the maximum 189 * supported by the softmmu tlb api. 190 */ 191 #define NB_MMU_MODES 16 192 193 /* Use a fully associative victim tlb of 8 entries. */ 194 #define CPU_VTLB_SIZE 8 195 196 /* 197 * The full TLB entry, which is not accessed by generated TCG code, 198 * so the layout is not as critical as that of CPUTLBEntry. This is 199 * also why we don't want to combine the two structs. 200 */ 201 typedef struct CPUTLBEntryFull { 202 /* 203 * @xlat_section contains: 204 * - in the lower TARGET_PAGE_BITS, a physical section number 205 * - with the lower TARGET_PAGE_BITS masked off, an offset which 206 * must be added to the virtual address to obtain: 207 * + the ram_addr_t of the target RAM (if the physical section 208 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 209 * + the offset within the target MemoryRegion (otherwise) 210 */ 211 hwaddr xlat_section; 212 213 /* 214 * @phys_addr contains the physical address in the address space 215 * given by cpu_asidx_from_attrs(cpu, @attrs). 216 */ 217 hwaddr phys_addr; 218 219 /* @attrs contains the memory transaction attributes for the page. */ 220 MemTxAttrs attrs; 221 222 /* @prot contains the complete protections for the page. */ 223 uint8_t prot; 224 225 /* @lg_page_size contains the log2 of the page size. */ 226 uint8_t lg_page_size; 227 228 /* Additional tlb flags requested by tlb_fill. */ 229 uint8_t tlb_fill_flags; 230 231 /* 232 * Additional tlb flags for use by the slow path. If non-zero, 233 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 234 */ 235 uint8_t slow_flags[MMU_ACCESS_COUNT]; 236 237 /* 238 * Allow target-specific additions to this structure. 239 * This may be used to cache items from the guest cpu 240 * page tables for later use by the implementation. 241 */ 242 union { 243 /* 244 * Cache the attrs and shareability fields from the page table entry. 245 * 246 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 247 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 248 * For shareability and guarded, as in the SH and GP fields respectively 249 * of the VMSAv8-64 PTEs. 250 */ 251 struct { 252 uint8_t pte_attrs; 253 uint8_t shareability; 254 bool guarded; 255 } arm; 256 } extra; 257 } CPUTLBEntryFull; 258 259 /* 260 * Data elements that are per MMU mode, minus the bits accessed by 261 * the TCG fast path. 262 */ 263 typedef struct CPUTLBDesc { 264 /* 265 * Describe a region covering all of the large pages allocated 266 * into the tlb. When any page within this region is flushed, 267 * we must flush the entire tlb. The region is matched if 268 * (addr & large_page_mask) == large_page_addr. 269 */ 270 vaddr large_page_addr; 271 vaddr large_page_mask; 272 /* host time (in ns) at the beginning of the time window */ 273 int64_t window_begin_ns; 274 /* maximum number of entries observed in the window */ 275 size_t window_max_entries; 276 size_t n_used_entries; 277 /* The next index to use in the tlb victim table. */ 278 size_t vindex; 279 /* The tlb victim table, in two parts. */ 280 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 281 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 282 CPUTLBEntryFull *fulltlb; 283 } CPUTLBDesc; 284 285 /* 286 * Data elements that are shared between all MMU modes. 287 */ 288 typedef struct CPUTLBCommon { 289 /* Serialize updates to f.table and d.vtable, and others as noted. */ 290 QemuSpin lock; 291 /* 292 * Within dirty, for each bit N, modifications have been made to 293 * mmu_idx N since the last time that mmu_idx was flushed. 294 * Protected by tlb_c.lock. 295 */ 296 uint16_t dirty; 297 /* 298 * Statistics. These are not lock protected, but are read and 299 * written atomically. This allows the monitor to print a snapshot 300 * of the stats without interfering with the cpu. 301 */ 302 size_t full_flush_count; 303 size_t part_flush_count; 304 size_t elide_flush_count; 305 } CPUTLBCommon; 306 307 /* 308 * The entire softmmu tlb, for all MMU modes. 309 * The meaning of each of the MMU modes is defined in the target code. 310 * Since this is placed within CPUNegativeOffsetState, the smallest 311 * negative offsets are at the end of the struct. 312 */ 313 typedef struct CPUTLB { 314 #ifdef CONFIG_TCG 315 CPUTLBCommon c; 316 CPUTLBDesc d[NB_MMU_MODES]; 317 CPUTLBDescFast f[NB_MMU_MODES]; 318 #endif 319 } CPUTLB; 320 321 /* 322 * Low 16 bits: number of cycles left, used only in icount mode. 323 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 324 * for this CPU and return to its top level loop (even in non-icount mode). 325 * This allows a single read-compare-cbranch-write sequence to test 326 * for both decrementer underflow and exceptions. 327 */ 328 typedef union IcountDecr { 329 uint32_t u32; 330 struct { 331 #if HOST_BIG_ENDIAN 332 uint16_t high; 333 uint16_t low; 334 #else 335 uint16_t low; 336 uint16_t high; 337 #endif 338 } u16; 339 } IcountDecr; 340 341 /* 342 * Elements of CPUState most efficiently accessed from CPUArchState, 343 * via small negative offsets. 344 */ 345 typedef struct CPUNegativeOffsetState { 346 CPUTLB tlb; 347 IcountDecr icount_decr; 348 bool can_do_io; 349 } CPUNegativeOffsetState; 350 351 struct KVMState; 352 struct kvm_run; 353 354 /* work queue */ 355 356 /* The union type allows passing of 64 bit target pointers on 32 bit 357 * hosts in a single parameter 358 */ 359 typedef union { 360 int host_int; 361 unsigned long host_ulong; 362 void *host_ptr; 363 vaddr target_ptr; 364 } run_on_cpu_data; 365 366 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 367 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 368 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 369 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 370 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 371 372 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 373 374 struct qemu_work_item; 375 376 #define CPU_UNSET_NUMA_NODE_ID -1 377 378 /** 379 * CPUState: 380 * @cpu_index: CPU index (informative). 381 * @cluster_index: Identifies which cluster this CPU is in. 382 * For boards which don't define clusters or for "loose" CPUs not assigned 383 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 384 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 385 * QOM parent. 386 * Under TCG this value is propagated to @tcg_cflags. 387 * See TranslationBlock::TCG CF_CLUSTER_MASK. 388 * @tcg_cflags: Pre-computed cflags for this cpu. 389 * @nr_cores: Number of cores within this CPU package. 390 * @nr_threads: Number of threads within this CPU core. 391 * @running: #true if CPU is currently running (lockless). 392 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 393 * valid under cpu_list_lock. 394 * @created: Indicates whether the CPU thread has been successfully created. 395 * @interrupt_request: Indicates a pending interrupt request. 396 * @halted: Nonzero if the CPU is in suspended state. 397 * @stop: Indicates a pending stop request. 398 * @stopped: Indicates the CPU has been artificially stopped. 399 * @unplug: Indicates a pending CPU unplug request. 400 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 401 * @singlestep_enabled: Flags for single-stepping. 402 * @icount_extra: Instructions until next timer event. 403 * @neg.can_do_io: True if memory-mapped IO is allowed. 404 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 405 * AddressSpaces this CPU has) 406 * @num_ases: number of CPUAddressSpaces in @cpu_ases 407 * @as: Pointer to the first AddressSpace, for the convenience of targets which 408 * only have a single AddressSpace 409 * @gdb_regs: Additional GDB registers. 410 * @gdb_num_regs: Number of total registers accessible to GDB. 411 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 412 * @node: QTAILQ of CPUs sharing TB cache. 413 * @opaque: User data. 414 * @mem_io_pc: Host Program Counter at which the memory was accessed. 415 * @accel: Pointer to accelerator specific state. 416 * @kvm_fd: vCPU file descriptor for KVM. 417 * @work_mutex: Lock to prevent multiple access to @work_list. 418 * @work_list: List of pending asynchronous work. 419 * @plugin_mem_cbs: active plugin memory callbacks 420 * @plugin_state: per-CPU plugin state 421 * @ignore_memory_transaction_failures: Cached copy of the MachineState 422 * flag of the same name: allows the board to suppress calling of the 423 * CPU do_transaction_failed hook function. 424 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 425 * ring is enabled. 426 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 427 * dirty ring structure. 428 * 429 * State of one CPU core or thread. 430 * 431 * Align, in order to match possible alignment required by CPUArchState, 432 * and eliminate a hole between CPUState and CPUArchState within ArchCPU. 433 */ 434 struct CPUState { 435 /*< private >*/ 436 DeviceState parent_obj; 437 /* cache to avoid expensive CPU_GET_CLASS */ 438 CPUClass *cc; 439 /*< public >*/ 440 441 int nr_cores; 442 int nr_threads; 443 444 struct QemuThread *thread; 445 #ifdef _WIN32 446 QemuSemaphore sem; 447 #endif 448 int thread_id; 449 bool running, has_waiter; 450 struct QemuCond *halt_cond; 451 bool thread_kicked; 452 bool created; 453 bool stop; 454 bool stopped; 455 456 /* Should CPU start in powered-off state? */ 457 bool start_powered_off; 458 459 bool unplug; 460 bool crash_occurred; 461 bool exit_request; 462 int exclusive_context_count; 463 uint32_t cflags_next_tb; 464 /* updates protected by BQL */ 465 uint32_t interrupt_request; 466 int singlestep_enabled; 467 int64_t icount_budget; 468 int64_t icount_extra; 469 uint64_t random_seed; 470 sigjmp_buf jmp_env; 471 472 QemuMutex work_mutex; 473 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 474 475 CPUAddressSpace *cpu_ases; 476 int num_ases; 477 AddressSpace *as; 478 MemoryRegion *memory; 479 480 CPUJumpCache *tb_jmp_cache; 481 482 GArray *gdb_regs; 483 int gdb_num_regs; 484 int gdb_num_g_regs; 485 QTAILQ_ENTRY(CPUState) node; 486 487 /* ice debug support */ 488 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 489 490 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 491 CPUWatchpoint *watchpoint_hit; 492 493 void *opaque; 494 495 /* In order to avoid passing too many arguments to the MMIO helpers, 496 * we store some rarely used information in the CPU context. 497 */ 498 uintptr_t mem_io_pc; 499 500 /* Only used in KVM */ 501 int kvm_fd; 502 struct KVMState *kvm_state; 503 struct kvm_run *kvm_run; 504 struct kvm_dirty_gfn *kvm_dirty_gfns; 505 uint32_t kvm_fetch_index; 506 uint64_t dirty_pages; 507 int kvm_vcpu_stats_fd; 508 bool vcpu_dirty; 509 510 /* Use by accel-block: CPU is executing an ioctl() */ 511 QemuLockCnt in_ioctl_lock; 512 513 #ifdef CONFIG_PLUGIN 514 /* 515 * The callback pointer stays in the main CPUState as it is 516 * accessed via TCG (see gen_empty_mem_helper). 517 */ 518 GArray *plugin_mem_cbs; 519 CPUPluginState *plugin_state; 520 #endif 521 522 /* TODO Move common fields from CPUArchState here. */ 523 int cpu_index; 524 int cluster_index; 525 uint32_t tcg_cflags; 526 uint32_t halted; 527 int32_t exception_index; 528 529 AccelCPUState *accel; 530 531 /* Used to keep track of an outstanding cpu throttle thread for migration 532 * autoconverge 533 */ 534 bool throttle_thread_scheduled; 535 536 /* 537 * Sleep throttle_us_per_full microseconds once dirty ring is full 538 * if dirty page rate limit is enabled. 539 */ 540 int64_t throttle_us_per_full; 541 542 bool ignore_memory_transaction_failures; 543 544 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 545 bool prctl_unalign_sigbus; 546 547 /* track IOMMUs whose translations we've cached in the TCG TLB */ 548 GArray *iommu_notifiers; 549 550 /* 551 * MUST BE LAST in order to minimize the displacement to CPUArchState. 552 */ 553 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 554 CPUNegativeOffsetState neg; 555 }; 556 557 /* Validate placement of CPUNegativeOffsetState. */ 558 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 559 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 560 561 static inline CPUArchState *cpu_env(CPUState *cpu) 562 { 563 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 564 return (CPUArchState *)(cpu + 1); 565 } 566 567 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 568 extern CPUTailQ cpus_queue; 569 570 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 571 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 572 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 573 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 574 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 575 576 extern __thread CPUState *current_cpu; 577 578 /** 579 * qemu_tcg_mttcg_enabled: 580 * Check whether we are running MultiThread TCG or not. 581 * 582 * Returns: %true if we are in MTTCG mode %false otherwise. 583 */ 584 extern bool mttcg_enabled; 585 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 586 587 /** 588 * cpu_paging_enabled: 589 * @cpu: The CPU whose state is to be inspected. 590 * 591 * Returns: %true if paging is enabled, %false otherwise. 592 */ 593 bool cpu_paging_enabled(const CPUState *cpu); 594 595 /** 596 * cpu_get_memory_mapping: 597 * @cpu: The CPU whose memory mappings are to be obtained. 598 * @list: Where to write the memory mappings to. 599 * @errp: Pointer for reporting an #Error. 600 * 601 * Returns: %true on success, %false otherwise. 602 */ 603 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 604 Error **errp); 605 606 #if !defined(CONFIG_USER_ONLY) 607 608 /** 609 * cpu_write_elf64_note: 610 * @f: pointer to a function that writes memory to a file 611 * @cpu: The CPU whose memory is to be dumped 612 * @cpuid: ID number of the CPU 613 * @opaque: pointer to the CPUState struct 614 */ 615 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 616 int cpuid, void *opaque); 617 618 /** 619 * cpu_write_elf64_qemunote: 620 * @f: pointer to a function that writes memory to a file 621 * @cpu: The CPU whose memory is to be dumped 622 * @cpuid: ID number of the CPU 623 * @opaque: pointer to the CPUState struct 624 */ 625 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 626 void *opaque); 627 628 /** 629 * cpu_write_elf32_note: 630 * @f: pointer to a function that writes memory to a file 631 * @cpu: The CPU whose memory is to be dumped 632 * @cpuid: ID number of the CPU 633 * @opaque: pointer to the CPUState struct 634 */ 635 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 636 int cpuid, void *opaque); 637 638 /** 639 * cpu_write_elf32_qemunote: 640 * @f: pointer to a function that writes memory to a file 641 * @cpu: The CPU whose memory is to be dumped 642 * @cpuid: ID number of the CPU 643 * @opaque: pointer to the CPUState struct 644 */ 645 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 646 void *opaque); 647 648 /** 649 * cpu_get_crash_info: 650 * @cpu: The CPU to get crash information for 651 * 652 * Gets the previously saved crash information. 653 * Caller is responsible for freeing the data. 654 */ 655 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 656 657 #endif /* !CONFIG_USER_ONLY */ 658 659 /** 660 * CPUDumpFlags: 661 * @CPU_DUMP_CODE: 662 * @CPU_DUMP_FPU: dump FPU register state, not just integer 663 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 664 * @CPU_DUMP_VPU: dump VPU registers 665 */ 666 enum CPUDumpFlags { 667 CPU_DUMP_CODE = 0x00010000, 668 CPU_DUMP_FPU = 0x00020000, 669 CPU_DUMP_CCOP = 0x00040000, 670 CPU_DUMP_VPU = 0x00080000, 671 }; 672 673 /** 674 * cpu_dump_state: 675 * @cpu: The CPU whose state is to be dumped. 676 * @f: If non-null, dump to this stream, else to current print sink. 677 * 678 * Dumps CPU state. 679 */ 680 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 681 682 #ifndef CONFIG_USER_ONLY 683 /** 684 * cpu_get_phys_page_attrs_debug: 685 * @cpu: The CPU to obtain the physical page address for. 686 * @addr: The virtual address. 687 * @attrs: Updated on return with the memory transaction attributes to use 688 * for this access. 689 * 690 * Obtains the physical page corresponding to a virtual one, together 691 * with the corresponding memory transaction attributes to use for the access. 692 * Use it only for debugging because no protection checks are done. 693 * 694 * Returns: Corresponding physical page address or -1 if no page found. 695 */ 696 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 697 MemTxAttrs *attrs); 698 699 /** 700 * cpu_get_phys_page_debug: 701 * @cpu: The CPU to obtain the physical page address for. 702 * @addr: The virtual address. 703 * 704 * Obtains the physical page corresponding to a virtual one. 705 * Use it only for debugging because no protection checks are done. 706 * 707 * Returns: Corresponding physical page address or -1 if no page found. 708 */ 709 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 710 711 /** cpu_asidx_from_attrs: 712 * @cpu: CPU 713 * @attrs: memory transaction attributes 714 * 715 * Returns the address space index specifying the CPU AddressSpace 716 * to use for a memory access with the given transaction attributes. 717 */ 718 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 719 720 /** 721 * cpu_virtio_is_big_endian: 722 * @cpu: CPU 723 724 * Returns %true if a CPU which supports runtime configurable endianness 725 * is currently big-endian. 726 */ 727 bool cpu_virtio_is_big_endian(CPUState *cpu); 728 729 #endif /* CONFIG_USER_ONLY */ 730 731 /** 732 * cpu_list_add: 733 * @cpu: The CPU to be added to the list of CPUs. 734 */ 735 void cpu_list_add(CPUState *cpu); 736 737 /** 738 * cpu_list_remove: 739 * @cpu: The CPU to be removed from the list of CPUs. 740 */ 741 void cpu_list_remove(CPUState *cpu); 742 743 /** 744 * cpu_reset: 745 * @cpu: The CPU whose state is to be reset. 746 */ 747 void cpu_reset(CPUState *cpu); 748 749 /** 750 * cpu_class_by_name: 751 * @typename: The CPU base type. 752 * @cpu_model: The model string without any parameters. 753 * 754 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 755 * 756 * Returns: A concrete #CPUClass or %NULL if no matching class is found 757 * or if the matching class is abstract. 758 */ 759 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 760 761 /** 762 * cpu_model_from_type: 763 * @typename: The CPU type name 764 * 765 * Extract the CPU model name from the CPU type name. The 766 * CPU type name is either the combination of the CPU model 767 * name and suffix, or same to the CPU model name. 768 * 769 * Returns: CPU model name or NULL if the CPU class doesn't exist 770 * The user should g_free() the string once no longer needed. 771 */ 772 char *cpu_model_from_type(const char *typename); 773 774 /** 775 * cpu_create: 776 * @typename: The CPU type. 777 * 778 * Instantiates a CPU and realizes the CPU. 779 * 780 * Returns: A #CPUState or %NULL if an error occurred. 781 */ 782 CPUState *cpu_create(const char *typename); 783 784 /** 785 * parse_cpu_option: 786 * @cpu_option: The -cpu option including optional parameters. 787 * 788 * processes optional parameters and registers them as global properties 789 * 790 * Returns: type of CPU to create or prints error and terminates process 791 * if an error occurred. 792 */ 793 const char *parse_cpu_option(const char *cpu_option); 794 795 /** 796 * cpu_has_work: 797 * @cpu: The vCPU to check. 798 * 799 * Checks whether the CPU has work to do. 800 * 801 * Returns: %true if the CPU has work, %false otherwise. 802 */ 803 static inline bool cpu_has_work(CPUState *cpu) 804 { 805 CPUClass *cc = CPU_GET_CLASS(cpu); 806 807 g_assert(cc->has_work); 808 return cc->has_work(cpu); 809 } 810 811 /** 812 * qemu_cpu_is_self: 813 * @cpu: The vCPU to check against. 814 * 815 * Checks whether the caller is executing on the vCPU thread. 816 * 817 * Returns: %true if called from @cpu's thread, %false otherwise. 818 */ 819 bool qemu_cpu_is_self(CPUState *cpu); 820 821 /** 822 * qemu_cpu_kick: 823 * @cpu: The vCPU to kick. 824 * 825 * Kicks @cpu's thread. 826 */ 827 void qemu_cpu_kick(CPUState *cpu); 828 829 /** 830 * cpu_is_stopped: 831 * @cpu: The CPU to check. 832 * 833 * Checks whether the CPU is stopped. 834 * 835 * Returns: %true if run state is not running or if artificially stopped; 836 * %false otherwise. 837 */ 838 bool cpu_is_stopped(CPUState *cpu); 839 840 /** 841 * do_run_on_cpu: 842 * @cpu: The vCPU to run on. 843 * @func: The function to be executed. 844 * @data: Data to pass to the function. 845 * @mutex: Mutex to release while waiting for @func to run. 846 * 847 * Used internally in the implementation of run_on_cpu. 848 */ 849 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 850 QemuMutex *mutex); 851 852 /** 853 * run_on_cpu: 854 * @cpu: The vCPU to run on. 855 * @func: The function to be executed. 856 * @data: Data to pass to the function. 857 * 858 * Schedules the function @func for execution on the vCPU @cpu. 859 */ 860 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 861 862 /** 863 * async_run_on_cpu: 864 * @cpu: The vCPU to run on. 865 * @func: The function to be executed. 866 * @data: Data to pass to the function. 867 * 868 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 869 */ 870 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 871 872 /** 873 * async_safe_run_on_cpu: 874 * @cpu: The vCPU to run on. 875 * @func: The function to be executed. 876 * @data: Data to pass to the function. 877 * 878 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 879 * while all other vCPUs are sleeping. 880 * 881 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 882 * BQL. 883 */ 884 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 885 886 /** 887 * cpu_in_exclusive_context() 888 * @cpu: The vCPU to check 889 * 890 * Returns true if @cpu is an exclusive context, for example running 891 * something which has previously been queued via async_safe_run_on_cpu(). 892 */ 893 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 894 { 895 return cpu->exclusive_context_count; 896 } 897 898 /** 899 * qemu_get_cpu: 900 * @index: The CPUState@cpu_index value of the CPU to obtain. 901 * 902 * Gets a CPU matching @index. 903 * 904 * Returns: The CPU or %NULL if there is no matching CPU. 905 */ 906 CPUState *qemu_get_cpu(int index); 907 908 /** 909 * cpu_exists: 910 * @id: Guest-exposed CPU ID to lookup. 911 * 912 * Search for CPU with specified ID. 913 * 914 * Returns: %true - CPU is found, %false - CPU isn't found. 915 */ 916 bool cpu_exists(int64_t id); 917 918 /** 919 * cpu_by_arch_id: 920 * @id: Guest-exposed CPU ID of the CPU to obtain. 921 * 922 * Get a CPU with matching @id. 923 * 924 * Returns: The CPU or %NULL if there is no matching CPU. 925 */ 926 CPUState *cpu_by_arch_id(int64_t id); 927 928 /** 929 * cpu_interrupt: 930 * @cpu: The CPU to set an interrupt on. 931 * @mask: The interrupts to set. 932 * 933 * Invokes the interrupt handler. 934 */ 935 936 void cpu_interrupt(CPUState *cpu, int mask); 937 938 /** 939 * cpu_set_pc: 940 * @cpu: The CPU to set the program counter for. 941 * @addr: Program counter value. 942 * 943 * Sets the program counter for a CPU. 944 */ 945 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 946 { 947 CPUClass *cc = CPU_GET_CLASS(cpu); 948 949 cc->set_pc(cpu, addr); 950 } 951 952 /** 953 * cpu_reset_interrupt: 954 * @cpu: The CPU to clear the interrupt on. 955 * @mask: The interrupt mask to clear. 956 * 957 * Resets interrupts on the vCPU @cpu. 958 */ 959 void cpu_reset_interrupt(CPUState *cpu, int mask); 960 961 /** 962 * cpu_exit: 963 * @cpu: The CPU to exit. 964 * 965 * Requests the CPU @cpu to exit execution. 966 */ 967 void cpu_exit(CPUState *cpu); 968 969 /** 970 * cpu_resume: 971 * @cpu: The CPU to resume. 972 * 973 * Resumes CPU, i.e. puts CPU into runnable state. 974 */ 975 void cpu_resume(CPUState *cpu); 976 977 /** 978 * cpu_remove_sync: 979 * @cpu: The CPU to remove. 980 * 981 * Requests the CPU to be removed and waits till it is removed. 982 */ 983 void cpu_remove_sync(CPUState *cpu); 984 985 /** 986 * process_queued_cpu_work() - process all items on CPU work queue 987 * @cpu: The CPU which work queue to process. 988 */ 989 void process_queued_cpu_work(CPUState *cpu); 990 991 /** 992 * cpu_exec_start: 993 * @cpu: The CPU for the current thread. 994 * 995 * Record that a CPU has started execution and can be interrupted with 996 * cpu_exit. 997 */ 998 void cpu_exec_start(CPUState *cpu); 999 1000 /** 1001 * cpu_exec_end: 1002 * @cpu: The CPU for the current thread. 1003 * 1004 * Record that a CPU has stopped execution and exclusive sections 1005 * can be executed without interrupting it. 1006 */ 1007 void cpu_exec_end(CPUState *cpu); 1008 1009 /** 1010 * start_exclusive: 1011 * 1012 * Wait for a concurrent exclusive section to end, and then start 1013 * a section of work that is run while other CPUs are not running 1014 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1015 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1016 * during the exclusive section go to sleep until this CPU calls 1017 * end_exclusive. 1018 */ 1019 void start_exclusive(void); 1020 1021 /** 1022 * end_exclusive: 1023 * 1024 * Concludes an exclusive execution section started by start_exclusive. 1025 */ 1026 void end_exclusive(void); 1027 1028 /** 1029 * qemu_init_vcpu: 1030 * @cpu: The vCPU to initialize. 1031 * 1032 * Initializes a vCPU. 1033 */ 1034 void qemu_init_vcpu(CPUState *cpu); 1035 1036 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1037 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1038 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1039 1040 /** 1041 * cpu_single_step: 1042 * @cpu: CPU to the flags for. 1043 * @enabled: Flags to enable. 1044 * 1045 * Enables or disables single-stepping for @cpu. 1046 */ 1047 void cpu_single_step(CPUState *cpu, int enabled); 1048 1049 /* Breakpoint/watchpoint flags */ 1050 #define BP_MEM_READ 0x01 1051 #define BP_MEM_WRITE 0x02 1052 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1053 #define BP_STOP_BEFORE_ACCESS 0x04 1054 /* 0x08 currently unused */ 1055 #define BP_GDB 0x10 1056 #define BP_CPU 0x20 1057 #define BP_ANY (BP_GDB | BP_CPU) 1058 #define BP_HIT_SHIFT 6 1059 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1060 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1061 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1062 1063 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1064 CPUBreakpoint **breakpoint); 1065 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1066 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1067 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1068 1069 /* Return true if PC matches an installed breakpoint. */ 1070 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1071 { 1072 CPUBreakpoint *bp; 1073 1074 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1075 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1076 if (bp->pc == pc && (bp->flags & mask)) { 1077 return true; 1078 } 1079 } 1080 } 1081 return false; 1082 } 1083 1084 #if defined(CONFIG_USER_ONLY) 1085 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1086 int flags, CPUWatchpoint **watchpoint) 1087 { 1088 return -ENOSYS; 1089 } 1090 1091 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1092 vaddr len, int flags) 1093 { 1094 return -ENOSYS; 1095 } 1096 1097 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1098 CPUWatchpoint *wp) 1099 { 1100 } 1101 1102 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1103 { 1104 } 1105 #else 1106 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1107 int flags, CPUWatchpoint **watchpoint); 1108 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1109 vaddr len, int flags); 1110 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1111 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1112 #endif 1113 1114 /** 1115 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled? 1116 * @cs: CPUState pointer 1117 * 1118 * The memory callbacks are installed if a plugin has instrumented an 1119 * instruction for memory. This can be useful to know if you want to 1120 * force a slow path for a series of memory accesses. 1121 */ 1122 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu) 1123 { 1124 #ifdef CONFIG_PLUGIN 1125 return !!cpu->plugin_mem_cbs; 1126 #else 1127 return false; 1128 #endif 1129 } 1130 1131 /** 1132 * cpu_get_address_space: 1133 * @cpu: CPU to get address space from 1134 * @asidx: index identifying which address space to get 1135 * 1136 * Return the requested address space of this CPU. @asidx 1137 * specifies which address space to read. 1138 */ 1139 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1140 1141 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1142 G_GNUC_PRINTF(2, 3); 1143 1144 /* $(top_srcdir)/cpu.c */ 1145 void cpu_class_init_props(DeviceClass *dc); 1146 void cpu_exec_initfn(CPUState *cpu); 1147 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1148 void cpu_exec_unrealizefn(CPUState *cpu); 1149 void cpu_exec_reset_hold(CPUState *cpu); 1150 1151 const char *target_name(void); 1152 1153 #ifdef COMPILING_PER_TARGET 1154 1155 #ifndef CONFIG_USER_ONLY 1156 1157 extern const VMStateDescription vmstate_cpu_common; 1158 1159 #define VMSTATE_CPU() { \ 1160 .name = "parent_obj", \ 1161 .size = sizeof(CPUState), \ 1162 .vmsd = &vmstate_cpu_common, \ 1163 .flags = VMS_STRUCT, \ 1164 .offset = 0, \ 1165 } 1166 #endif /* !CONFIG_USER_ONLY */ 1167 1168 #endif /* COMPILING_PER_TARGET */ 1169 1170 #define UNASSIGNED_CPU_INDEX -1 1171 #define UNASSIGNED_CLUSTER_INDEX -1 1172 1173 #endif 1174