xref: /openbmc/qemu/include/hw/core/cpu.h (revision 9ea9087bb4a86893e4ac6ff643837937dc9e5849)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 #include "qom/object.h"
34 
35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
36                                      void *opaque);
37 
38 /**
39  * vaddr:
40  * Type wide enough to contain any #target_ulong virtual address.
41  */
42 typedef uint64_t vaddr;
43 #define VADDR_PRId PRId64
44 #define VADDR_PRIu PRIu64
45 #define VADDR_PRIo PRIo64
46 #define VADDR_PRIx PRIx64
47 #define VADDR_PRIX PRIX64
48 #define VADDR_MAX UINT64_MAX
49 
50 /**
51  * SECTION:cpu
52  * @section_id: QEMU-cpu
53  * @title: CPU Class
54  * @short_description: Base class for all CPUs
55  */
56 
57 #define TYPE_CPU "cpu"
58 
59 /* Since this macro is used a lot in hot code paths and in conjunction with
60  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
61  * an unchecked cast.
62  */
63 #define CPU(obj) ((CPUState *)(obj))
64 
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 typedef enum MMUAccessType {
70     MMU_DATA_LOAD  = 0,
71     MMU_DATA_STORE = 1,
72     MMU_INST_FETCH = 2
73 } MMUAccessType;
74 
75 typedef struct CPUWatchpoint CPUWatchpoint;
76 
77 struct TranslationBlock;
78 
79 /**
80  * struct TcgCpuOperations: TCG operations specific to a CPU class
81  */
82 typedef struct TcgCpuOperations {
83     /**
84      * @initialize: Initalize TCG state
85      *
86      * Called when the first CPU is realized.
87      */
88     void (*initialize)(void);
89     /**
90      * @synchronize_from_tb: Synchronize state from a TCG #TranslationBlock
91      *
92      * This is called when we abandon execution of a TB before starting it,
93      * and must set all parts of the CPU state which the previous TB in the
94      * chain may not have updated.
95      * By default, when this is NULL, a call is made to @set_pc(tb->pc).
96      *
97      * If more state needs to be restored, the target must implement a
98      * function to restore all the state, and register it here.
99      */
100     void (*synchronize_from_tb)(CPUState *cpu,
101                                 const struct TranslationBlock *tb);
102     /** @cpu_exec_enter: Callback for cpu_exec preparation */
103     void (*cpu_exec_enter)(CPUState *cpu);
104     /** @cpu_exec_exit: Callback for cpu_exec cleanup */
105     void (*cpu_exec_exit)(CPUState *cpu);
106     /** @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec */
107     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
108     /** @do_interrupt: Callback for interrupt handling. */
109     void (*do_interrupt)(CPUState *cpu);
110     /**
111      * @tlb_fill: Handle a softmmu tlb miss or user-only address fault
112      *
113      * For system mode, if the access is valid, call tlb_set_page
114      * and return true; if the access is invalid, and probe is
115      * true, return false; otherwise raise an exception and do
116      * not return.  For user-only mode, always raise an exception
117      * and do not return.
118      */
119     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
120                      MMUAccessType access_type, int mmu_idx,
121                      bool probe, uintptr_t retaddr);
122     /** @debug_excp_handler: Callback for handling debug exceptions */
123     void (*debug_excp_handler)(CPUState *cpu);
124 
125     /**
126      * @do_transaction_failed: Callback for handling failed memory transactions
127      * (ie bus faults or external aborts; not MMU faults)
128      */
129     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
130                                   unsigned size, MMUAccessType access_type,
131                                   int mmu_idx, MemTxAttrs attrs,
132                                   MemTxResult response, uintptr_t retaddr);
133     /**
134      * @do_unaligned_access: Callback for unaligned access handling
135      */
136     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
137                                 MMUAccessType access_type,
138                                 int mmu_idx, uintptr_t retaddr);
139     /**
140      * @adjust_watchpoint_address: hack for cpu_check_watchpoint used by ARM
141      */
142     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
143 
144 } TcgCpuOperations;
145 
146 /**
147  * CPUClass:
148  * @class_by_name: Callback to map -cpu command line model name to an
149  * instantiatable CPU type.
150  * @parse_features: Callback to parse command line arguments.
151  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
152  * @has_work: Callback for checking if there is work to do.
153  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
154  * runtime configurable endianness is currently big-endian. Non-configurable
155  * CPUs can use the default implementation of this method. This method should
156  * not be used by any callers other than the pre-1.0 virtio devices.
157  * @memory_rw_debug: Callback for GDB memory access.
158  * @dump_state: Callback for dumping state.
159  * @dump_statistics: Callback for dumping statistics.
160  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
161  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
162  * @get_memory_mapping: Callback for obtaining the memory mappings.
163  * @set_pc: Callback for setting the Program Counter register. This
164  *       should have the semantics used by the target architecture when
165  *       setting the PC from a source such as an ELF file entry point;
166  *       for example on Arm it will also set the Thumb mode bit based
167  *       on the least significant bit of the new PC value.
168  *       If the target behaviour here is anything other than "set
169  *       the PC register to the value passed in" then the target must
170  *       also implement the synchronize_from_tb hook.
171  * @get_phys_page_debug: Callback for obtaining a physical address.
172  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
173  *       associated memory transaction attributes to use for the access.
174  *       CPUs which use memory transaction attributes should implement this
175  *       instead of get_phys_page_debug.
176  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
177  *       a memory access with the specified memory transaction attributes.
178  * @gdb_read_register: Callback for letting GDB read a register.
179  * @gdb_write_register: Callback for letting GDB write a register.
180  * @debug_check_watchpoint: Callback: return true if the architectural
181  *       watchpoint whose address has matched should really fire.
182  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
183  * 64-bit VM coredump.
184  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
185  * note to a 32-bit VM coredump.
186  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
187  * 32-bit VM coredump.
188  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
189  * note to a 32-bit VM coredump.
190  * @vmsd: State description for migration.
191  * @gdb_num_core_regs: Number of core registers accessible to GDB.
192  * @gdb_core_xml_file: File name for core registers GDB XML description.
193  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
194  *           before the insn which triggers a watchpoint rather than after it.
195  * @gdb_arch_name: Optional callback that returns the architecture name known
196  * to GDB. The caller must free the returned string with g_free.
197  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
198  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
199  *   or NULL if the CPU doesn't have a dynamically generated content for it.
200  * @disas_set_info: Setup architecture specific components of disassembly info
201  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
202  * address before attempting to match it against watchpoints.
203  * @deprecation_note: If this CPUClass is deprecated, this field provides
204  *                    related information.
205  *
206  * Represents a CPU family or model.
207  */
208 struct CPUClass {
209     /*< private >*/
210     DeviceClass parent_class;
211     /*< public >*/
212 
213     ObjectClass *(*class_by_name)(const char *cpu_model);
214     void (*parse_features)(const char *typename, char *str, Error **errp);
215 
216     int reset_dump_flags;
217     bool (*has_work)(CPUState *cpu);
218     bool (*virtio_is_big_endian)(CPUState *cpu);
219     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
220                            uint8_t *buf, int len, bool is_write);
221     void (*dump_state)(CPUState *cpu, FILE *, int flags);
222     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
223     void (*dump_statistics)(CPUState *cpu, int flags);
224     int64_t (*get_arch_id)(CPUState *cpu);
225     bool (*get_paging_enabled)(const CPUState *cpu);
226     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
227                                Error **errp);
228     void (*set_pc)(CPUState *cpu, vaddr value);
229     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
230     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
231                                         MemTxAttrs *attrs);
232     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
233     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
234     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
235     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
236 
237     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
238                             int cpuid, void *opaque);
239     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
240                                 void *opaque);
241     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
242                             int cpuid, void *opaque);
243     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
244                                 void *opaque);
245 
246     const VMStateDescription *vmsd;
247     const char *gdb_core_xml_file;
248     gchar * (*gdb_arch_name)(CPUState *cpu);
249     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
250 
251     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
252 
253     const char *deprecation_note;
254     /* Keep non-pointer data at the end to minimize holes.  */
255     int gdb_num_core_regs;
256     bool gdb_stop_before_watchpoint;
257 
258     TcgCpuOperations tcg_ops;
259 };
260 
261 /*
262  * Low 16 bits: number of cycles left, used only in icount mode.
263  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
264  * for this CPU and return to its top level loop (even in non-icount mode).
265  * This allows a single read-compare-cbranch-write sequence to test
266  * for both decrementer underflow and exceptions.
267  */
268 typedef union IcountDecr {
269     uint32_t u32;
270     struct {
271 #ifdef HOST_WORDS_BIGENDIAN
272         uint16_t high;
273         uint16_t low;
274 #else
275         uint16_t low;
276         uint16_t high;
277 #endif
278     } u16;
279 } IcountDecr;
280 
281 typedef struct CPUBreakpoint {
282     vaddr pc;
283     int flags; /* BP_* */
284     QTAILQ_ENTRY(CPUBreakpoint) entry;
285 } CPUBreakpoint;
286 
287 struct CPUWatchpoint {
288     vaddr vaddr;
289     vaddr len;
290     vaddr hitaddr;
291     MemTxAttrs hitattrs;
292     int flags; /* BP_* */
293     QTAILQ_ENTRY(CPUWatchpoint) entry;
294 };
295 
296 #ifdef CONFIG_PLUGIN
297 /*
298  * For plugins we sometime need to save the resolved iotlb data before
299  * the memory regions get moved around  by io_writex.
300  */
301 typedef struct SavedIOTLB {
302     hwaddr addr;
303     MemoryRegionSection *section;
304     hwaddr mr_offset;
305 } SavedIOTLB;
306 #endif
307 
308 struct KVMState;
309 struct kvm_run;
310 
311 struct hax_vcpu_state;
312 
313 #define TB_JMP_CACHE_BITS 12
314 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
315 
316 /* work queue */
317 
318 /* The union type allows passing of 64 bit target pointers on 32 bit
319  * hosts in a single parameter
320  */
321 typedef union {
322     int           host_int;
323     unsigned long host_ulong;
324     void         *host_ptr;
325     vaddr         target_ptr;
326 } run_on_cpu_data;
327 
328 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
329 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
330 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
331 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
332 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
333 
334 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
335 
336 struct qemu_work_item;
337 
338 #define CPU_UNSET_NUMA_NODE_ID -1
339 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
340 
341 /**
342  * CPUState:
343  * @cpu_index: CPU index (informative).
344  * @cluster_index: Identifies which cluster this CPU is in.
345  *   For boards which don't define clusters or for "loose" CPUs not assigned
346  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
347  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
348  *   QOM parent.
349  * @nr_cores: Number of cores within this CPU package.
350  * @nr_threads: Number of threads within this CPU.
351  * @running: #true if CPU is currently running (lockless).
352  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
353  * valid under cpu_list_lock.
354  * @created: Indicates whether the CPU thread has been successfully created.
355  * @interrupt_request: Indicates a pending interrupt request.
356  * @halted: Nonzero if the CPU is in suspended state.
357  * @stop: Indicates a pending stop request.
358  * @stopped: Indicates the CPU has been artificially stopped.
359  * @unplug: Indicates a pending CPU unplug request.
360  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
361  * @singlestep_enabled: Flags for single-stepping.
362  * @icount_extra: Instructions until next timer event.
363  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
364  * requires that IO only be performed on the last instruction of a TB
365  * so that interrupts take effect immediately.
366  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
367  *            AddressSpaces this CPU has)
368  * @num_ases: number of CPUAddressSpaces in @cpu_ases
369  * @as: Pointer to the first AddressSpace, for the convenience of targets which
370  *      only have a single AddressSpace
371  * @env_ptr: Pointer to subclass-specific CPUArchState field.
372  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
373  * @gdb_regs: Additional GDB registers.
374  * @gdb_num_regs: Number of total registers accessible to GDB.
375  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
376  * @next_cpu: Next CPU sharing TB cache.
377  * @opaque: User data.
378  * @mem_io_pc: Host Program Counter at which the memory was accessed.
379  * @kvm_fd: vCPU file descriptor for KVM.
380  * @work_mutex: Lock to prevent multiple access to @work_list.
381  * @work_list: List of pending asynchronous work.
382  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
383  *                        to @trace_dstate).
384  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
385  * @plugin_mask: Plugin event bitmap. Modified only via async work.
386  * @ignore_memory_transaction_failures: Cached copy of the MachineState
387  *    flag of the same name: allows the board to suppress calling of the
388  *    CPU do_transaction_failed hook function.
389  *
390  * State of one CPU core or thread.
391  */
392 struct CPUState {
393     /*< private >*/
394     DeviceState parent_obj;
395     /*< public >*/
396 
397     int nr_cores;
398     int nr_threads;
399 
400     struct QemuThread *thread;
401 #ifdef _WIN32
402     HANDLE hThread;
403 #endif
404     int thread_id;
405     bool running, has_waiter;
406     struct QemuCond *halt_cond;
407     bool thread_kicked;
408     bool created;
409     bool stop;
410     bool stopped;
411 
412     /* Should CPU start in powered-off state? */
413     bool start_powered_off;
414 
415     bool unplug;
416     bool crash_occurred;
417     bool exit_request;
418     bool in_exclusive_context;
419     uint32_t cflags_next_tb;
420     /* updates protected by BQL */
421     uint32_t interrupt_request;
422     int singlestep_enabled;
423     int64_t icount_budget;
424     int64_t icount_extra;
425     uint64_t random_seed;
426     sigjmp_buf jmp_env;
427 
428     QemuMutex work_mutex;
429     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
430 
431     CPUAddressSpace *cpu_ases;
432     int num_ases;
433     AddressSpace *as;
434     MemoryRegion *memory;
435 
436     void *env_ptr; /* CPUArchState */
437     IcountDecr *icount_decr_ptr;
438 
439     /* Accessed in parallel; all accesses must be atomic */
440     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
441 
442     struct GDBRegisterState *gdb_regs;
443     int gdb_num_regs;
444     int gdb_num_g_regs;
445     QTAILQ_ENTRY(CPUState) node;
446 
447     /* ice debug support */
448     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
449 
450     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
451     CPUWatchpoint *watchpoint_hit;
452 
453     void *opaque;
454 
455     /* In order to avoid passing too many arguments to the MMIO helpers,
456      * we store some rarely used information in the CPU context.
457      */
458     uintptr_t mem_io_pc;
459 
460     int kvm_fd;
461     struct KVMState *kvm_state;
462     struct kvm_run *kvm_run;
463 
464     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
465     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
466     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
467 
468     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
469 
470 #ifdef CONFIG_PLUGIN
471     GArray *plugin_mem_cbs;
472     /* saved iotlb data from io_writex */
473     SavedIOTLB saved_iotlb;
474 #endif
475 
476     /* TODO Move common fields from CPUArchState here. */
477     int cpu_index;
478     int cluster_index;
479     uint32_t halted;
480     uint32_t can_do_io;
481     int32_t exception_index;
482 
483     /* shared by kvm, hax and hvf */
484     bool vcpu_dirty;
485 
486     /* Used to keep track of an outstanding cpu throttle thread for migration
487      * autoconverge
488      */
489     bool throttle_thread_scheduled;
490 
491     bool ignore_memory_transaction_failures;
492 
493     struct hax_vcpu_state *hax_vcpu;
494 
495     int hvf_fd;
496 
497     /* track IOMMUs whose translations we've cached in the TCG TLB */
498     GArray *iommu_notifiers;
499 };
500 
501 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
502 extern CPUTailQ cpus;
503 
504 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
505 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
506 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
507 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
508     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
509 
510 extern __thread CPUState *current_cpu;
511 
512 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
513 {
514     unsigned int i;
515 
516     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
517         qatomic_set(&cpu->tb_jmp_cache[i], NULL);
518     }
519 }
520 
521 /**
522  * qemu_tcg_mttcg_enabled:
523  * Check whether we are running MultiThread TCG or not.
524  *
525  * Returns: %true if we are in MTTCG mode %false otherwise.
526  */
527 extern bool mttcg_enabled;
528 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
529 
530 /**
531  * cpu_paging_enabled:
532  * @cpu: The CPU whose state is to be inspected.
533  *
534  * Returns: %true if paging is enabled, %false otherwise.
535  */
536 bool cpu_paging_enabled(const CPUState *cpu);
537 
538 /**
539  * cpu_get_memory_mapping:
540  * @cpu: The CPU whose memory mappings are to be obtained.
541  * @list: Where to write the memory mappings to.
542  * @errp: Pointer for reporting an #Error.
543  */
544 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
545                             Error **errp);
546 
547 #if !defined(CONFIG_USER_ONLY)
548 
549 /**
550  * cpu_write_elf64_note:
551  * @f: pointer to a function that writes memory to a file
552  * @cpu: The CPU whose memory is to be dumped
553  * @cpuid: ID number of the CPU
554  * @opaque: pointer to the CPUState struct
555  */
556 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
557                          int cpuid, void *opaque);
558 
559 /**
560  * cpu_write_elf64_qemunote:
561  * @f: pointer to a function that writes memory to a file
562  * @cpu: The CPU whose memory is to be dumped
563  * @cpuid: ID number of the CPU
564  * @opaque: pointer to the CPUState struct
565  */
566 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
567                              void *opaque);
568 
569 /**
570  * cpu_write_elf32_note:
571  * @f: pointer to a function that writes memory to a file
572  * @cpu: The CPU whose memory is to be dumped
573  * @cpuid: ID number of the CPU
574  * @opaque: pointer to the CPUState struct
575  */
576 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
577                          int cpuid, void *opaque);
578 
579 /**
580  * cpu_write_elf32_qemunote:
581  * @f: pointer to a function that writes memory to a file
582  * @cpu: The CPU whose memory is to be dumped
583  * @cpuid: ID number of the CPU
584  * @opaque: pointer to the CPUState struct
585  */
586 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
587                              void *opaque);
588 
589 /**
590  * cpu_get_crash_info:
591  * @cpu: The CPU to get crash information for
592  *
593  * Gets the previously saved crash information.
594  * Caller is responsible for freeing the data.
595  */
596 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
597 
598 #endif /* !CONFIG_USER_ONLY */
599 
600 /**
601  * CPUDumpFlags:
602  * @CPU_DUMP_CODE:
603  * @CPU_DUMP_FPU: dump FPU register state, not just integer
604  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
605  */
606 enum CPUDumpFlags {
607     CPU_DUMP_CODE = 0x00010000,
608     CPU_DUMP_FPU  = 0x00020000,
609     CPU_DUMP_CCOP = 0x00040000,
610 };
611 
612 /**
613  * cpu_dump_state:
614  * @cpu: The CPU whose state is to be dumped.
615  * @f: If non-null, dump to this stream, else to current print sink.
616  *
617  * Dumps CPU state.
618  */
619 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
620 
621 /**
622  * cpu_dump_statistics:
623  * @cpu: The CPU whose state is to be dumped.
624  * @flags: Flags what to dump.
625  *
626  * Dump CPU statistics to the current monitor if we have one, else to
627  * stdout.
628  */
629 void cpu_dump_statistics(CPUState *cpu, int flags);
630 
631 #ifndef CONFIG_USER_ONLY
632 /**
633  * cpu_get_phys_page_attrs_debug:
634  * @cpu: The CPU to obtain the physical page address for.
635  * @addr: The virtual address.
636  * @attrs: Updated on return with the memory transaction attributes to use
637  *         for this access.
638  *
639  * Obtains the physical page corresponding to a virtual one, together
640  * with the corresponding memory transaction attributes to use for the access.
641  * Use it only for debugging because no protection checks are done.
642  *
643  * Returns: Corresponding physical page address or -1 if no page found.
644  */
645 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
646                                                    MemTxAttrs *attrs)
647 {
648     CPUClass *cc = CPU_GET_CLASS(cpu);
649 
650     if (cc->get_phys_page_attrs_debug) {
651         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
652     }
653     /* Fallback for CPUs which don't implement the _attrs_ hook */
654     *attrs = MEMTXATTRS_UNSPECIFIED;
655     return cc->get_phys_page_debug(cpu, addr);
656 }
657 
658 /**
659  * cpu_get_phys_page_debug:
660  * @cpu: The CPU to obtain the physical page address for.
661  * @addr: The virtual address.
662  *
663  * Obtains the physical page corresponding to a virtual one.
664  * Use it only for debugging because no protection checks are done.
665  *
666  * Returns: Corresponding physical page address or -1 if no page found.
667  */
668 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
669 {
670     MemTxAttrs attrs = {};
671 
672     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
673 }
674 
675 /** cpu_asidx_from_attrs:
676  * @cpu: CPU
677  * @attrs: memory transaction attributes
678  *
679  * Returns the address space index specifying the CPU AddressSpace
680  * to use for a memory access with the given transaction attributes.
681  */
682 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
683 {
684     CPUClass *cc = CPU_GET_CLASS(cpu);
685     int ret = 0;
686 
687     if (cc->asidx_from_attrs) {
688         ret = cc->asidx_from_attrs(cpu, attrs);
689         assert(ret < cpu->num_ases && ret >= 0);
690     }
691     return ret;
692 }
693 
694 #endif /* CONFIG_USER_ONLY */
695 
696 /**
697  * cpu_list_add:
698  * @cpu: The CPU to be added to the list of CPUs.
699  */
700 void cpu_list_add(CPUState *cpu);
701 
702 /**
703  * cpu_list_remove:
704  * @cpu: The CPU to be removed from the list of CPUs.
705  */
706 void cpu_list_remove(CPUState *cpu);
707 
708 /**
709  * cpu_reset:
710  * @cpu: The CPU whose state is to be reset.
711  */
712 void cpu_reset(CPUState *cpu);
713 
714 /**
715  * cpu_class_by_name:
716  * @typename: The CPU base type.
717  * @cpu_model: The model string without any parameters.
718  *
719  * Looks up a CPU #ObjectClass matching name @cpu_model.
720  *
721  * Returns: A #CPUClass or %NULL if not matching class is found.
722  */
723 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
724 
725 /**
726  * cpu_create:
727  * @typename: The CPU type.
728  *
729  * Instantiates a CPU and realizes the CPU.
730  *
731  * Returns: A #CPUState or %NULL if an error occurred.
732  */
733 CPUState *cpu_create(const char *typename);
734 
735 /**
736  * parse_cpu_option:
737  * @cpu_option: The -cpu option including optional parameters.
738  *
739  * processes optional parameters and registers them as global properties
740  *
741  * Returns: type of CPU to create or prints error and terminates process
742  *          if an error occurred.
743  */
744 const char *parse_cpu_option(const char *cpu_option);
745 
746 /**
747  * cpu_has_work:
748  * @cpu: The vCPU to check.
749  *
750  * Checks whether the CPU has work to do.
751  *
752  * Returns: %true if the CPU has work, %false otherwise.
753  */
754 static inline bool cpu_has_work(CPUState *cpu)
755 {
756     CPUClass *cc = CPU_GET_CLASS(cpu);
757 
758     g_assert(cc->has_work);
759     return cc->has_work(cpu);
760 }
761 
762 /**
763  * qemu_cpu_is_self:
764  * @cpu: The vCPU to check against.
765  *
766  * Checks whether the caller is executing on the vCPU thread.
767  *
768  * Returns: %true if called from @cpu's thread, %false otherwise.
769  */
770 bool qemu_cpu_is_self(CPUState *cpu);
771 
772 /**
773  * qemu_cpu_kick:
774  * @cpu: The vCPU to kick.
775  *
776  * Kicks @cpu's thread.
777  */
778 void qemu_cpu_kick(CPUState *cpu);
779 
780 /**
781  * cpu_is_stopped:
782  * @cpu: The CPU to check.
783  *
784  * Checks whether the CPU is stopped.
785  *
786  * Returns: %true if run state is not running or if artificially stopped;
787  * %false otherwise.
788  */
789 bool cpu_is_stopped(CPUState *cpu);
790 
791 /**
792  * do_run_on_cpu:
793  * @cpu: The vCPU to run on.
794  * @func: The function to be executed.
795  * @data: Data to pass to the function.
796  * @mutex: Mutex to release while waiting for @func to run.
797  *
798  * Used internally in the implementation of run_on_cpu.
799  */
800 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
801                    QemuMutex *mutex);
802 
803 /**
804  * run_on_cpu:
805  * @cpu: The vCPU to run on.
806  * @func: The function to be executed.
807  * @data: Data to pass to the function.
808  *
809  * Schedules the function @func for execution on the vCPU @cpu.
810  */
811 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
812 
813 /**
814  * async_run_on_cpu:
815  * @cpu: The vCPU to run on.
816  * @func: The function to be executed.
817  * @data: Data to pass to the function.
818  *
819  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
820  */
821 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
822 
823 /**
824  * async_safe_run_on_cpu:
825  * @cpu: The vCPU to run on.
826  * @func: The function to be executed.
827  * @data: Data to pass to the function.
828  *
829  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
830  * while all other vCPUs are sleeping.
831  *
832  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
833  * BQL.
834  */
835 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
836 
837 /**
838  * cpu_in_exclusive_context()
839  * @cpu: The vCPU to check
840  *
841  * Returns true if @cpu is an exclusive context, for example running
842  * something which has previously been queued via async_safe_run_on_cpu().
843  */
844 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
845 {
846     return cpu->in_exclusive_context;
847 }
848 
849 /**
850  * qemu_get_cpu:
851  * @index: The CPUState@cpu_index value of the CPU to obtain.
852  *
853  * Gets a CPU matching @index.
854  *
855  * Returns: The CPU or %NULL if there is no matching CPU.
856  */
857 CPUState *qemu_get_cpu(int index);
858 
859 /**
860  * cpu_exists:
861  * @id: Guest-exposed CPU ID to lookup.
862  *
863  * Search for CPU with specified ID.
864  *
865  * Returns: %true - CPU is found, %false - CPU isn't found.
866  */
867 bool cpu_exists(int64_t id);
868 
869 /**
870  * cpu_by_arch_id:
871  * @id: Guest-exposed CPU ID of the CPU to obtain.
872  *
873  * Get a CPU with matching @id.
874  *
875  * Returns: The CPU or %NULL if there is no matching CPU.
876  */
877 CPUState *cpu_by_arch_id(int64_t id);
878 
879 /**
880  * cpu_interrupt:
881  * @cpu: The CPU to set an interrupt on.
882  * @mask: The interrupts to set.
883  *
884  * Invokes the interrupt handler.
885  */
886 
887 void cpu_interrupt(CPUState *cpu, int mask);
888 
889 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
890                                         MMUAccessType access_type,
891                                         int mmu_idx, uintptr_t retaddr)
892 {
893     CPUClass *cc = CPU_GET_CLASS(cpu);
894 
895     cc->tcg_ops.do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
896 }
897 
898 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
899                                           vaddr addr, unsigned size,
900                                           MMUAccessType access_type,
901                                           int mmu_idx, MemTxAttrs attrs,
902                                           MemTxResult response,
903                                           uintptr_t retaddr)
904 {
905     CPUClass *cc = CPU_GET_CLASS(cpu);
906 
907     if (!cpu->ignore_memory_transaction_failures &&
908         cc->tcg_ops.do_transaction_failed) {
909         cc->tcg_ops.do_transaction_failed(cpu, physaddr, addr, size,
910                                           access_type, mmu_idx, attrs,
911                                           response, retaddr);
912     }
913 }
914 
915 /**
916  * cpu_set_pc:
917  * @cpu: The CPU to set the program counter for.
918  * @addr: Program counter value.
919  *
920  * Sets the program counter for a CPU.
921  */
922 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
923 {
924     CPUClass *cc = CPU_GET_CLASS(cpu);
925 
926     cc->set_pc(cpu, addr);
927 }
928 
929 /**
930  * cpu_reset_interrupt:
931  * @cpu: The CPU to clear the interrupt on.
932  * @mask: The interrupt mask to clear.
933  *
934  * Resets interrupts on the vCPU @cpu.
935  */
936 void cpu_reset_interrupt(CPUState *cpu, int mask);
937 
938 /**
939  * cpu_exit:
940  * @cpu: The CPU to exit.
941  *
942  * Requests the CPU @cpu to exit execution.
943  */
944 void cpu_exit(CPUState *cpu);
945 
946 /**
947  * cpu_resume:
948  * @cpu: The CPU to resume.
949  *
950  * Resumes CPU, i.e. puts CPU into runnable state.
951  */
952 void cpu_resume(CPUState *cpu);
953 
954 /**
955  * cpu_remove_sync:
956  * @cpu: The CPU to remove.
957  *
958  * Requests the CPU to be removed and waits till it is removed.
959  */
960 void cpu_remove_sync(CPUState *cpu);
961 
962 /**
963  * process_queued_cpu_work() - process all items on CPU work queue
964  * @cpu: The CPU which work queue to process.
965  */
966 void process_queued_cpu_work(CPUState *cpu);
967 
968 /**
969  * cpu_exec_start:
970  * @cpu: The CPU for the current thread.
971  *
972  * Record that a CPU has started execution and can be interrupted with
973  * cpu_exit.
974  */
975 void cpu_exec_start(CPUState *cpu);
976 
977 /**
978  * cpu_exec_end:
979  * @cpu: The CPU for the current thread.
980  *
981  * Record that a CPU has stopped execution and exclusive sections
982  * can be executed without interrupting it.
983  */
984 void cpu_exec_end(CPUState *cpu);
985 
986 /**
987  * start_exclusive:
988  *
989  * Wait for a concurrent exclusive section to end, and then start
990  * a section of work that is run while other CPUs are not running
991  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
992  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
993  * during the exclusive section go to sleep until this CPU calls
994  * end_exclusive.
995  */
996 void start_exclusive(void);
997 
998 /**
999  * end_exclusive:
1000  *
1001  * Concludes an exclusive execution section started by start_exclusive.
1002  */
1003 void end_exclusive(void);
1004 
1005 /**
1006  * qemu_init_vcpu:
1007  * @cpu: The vCPU to initialize.
1008  *
1009  * Initializes a vCPU.
1010  */
1011 void qemu_init_vcpu(CPUState *cpu);
1012 
1013 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1014 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1015 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1016 
1017 /**
1018  * cpu_single_step:
1019  * @cpu: CPU to the flags for.
1020  * @enabled: Flags to enable.
1021  *
1022  * Enables or disables single-stepping for @cpu.
1023  */
1024 void cpu_single_step(CPUState *cpu, int enabled);
1025 
1026 /* Breakpoint/watchpoint flags */
1027 #define BP_MEM_READ           0x01
1028 #define BP_MEM_WRITE          0x02
1029 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1030 #define BP_STOP_BEFORE_ACCESS 0x04
1031 /* 0x08 currently unused */
1032 #define BP_GDB                0x10
1033 #define BP_CPU                0x20
1034 #define BP_ANY                (BP_GDB | BP_CPU)
1035 #define BP_WATCHPOINT_HIT_READ 0x40
1036 #define BP_WATCHPOINT_HIT_WRITE 0x80
1037 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1038 
1039 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1040                           CPUBreakpoint **breakpoint);
1041 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1042 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1043 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1044 
1045 /* Return true if PC matches an installed breakpoint.  */
1046 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1047 {
1048     CPUBreakpoint *bp;
1049 
1050     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1051         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1052             if (bp->pc == pc && (bp->flags & mask)) {
1053                 return true;
1054             }
1055         }
1056     }
1057     return false;
1058 }
1059 
1060 #ifdef CONFIG_USER_ONLY
1061 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1062                                         int flags, CPUWatchpoint **watchpoint)
1063 {
1064     return -ENOSYS;
1065 }
1066 
1067 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1068                                         vaddr len, int flags)
1069 {
1070     return -ENOSYS;
1071 }
1072 
1073 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1074                                                 CPUWatchpoint *wp)
1075 {
1076 }
1077 
1078 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1079 {
1080 }
1081 
1082 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1083                                         MemTxAttrs atr, int fl, uintptr_t ra)
1084 {
1085 }
1086 
1087 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1088                                                  vaddr addr, vaddr len)
1089 {
1090     return 0;
1091 }
1092 #else
1093 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1094                           int flags, CPUWatchpoint **watchpoint);
1095 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1096                           vaddr len, int flags);
1097 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1098 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1099 
1100 /**
1101  * cpu_check_watchpoint:
1102  * @cpu: cpu context
1103  * @addr: guest virtual address
1104  * @len: access length
1105  * @attrs: memory access attributes
1106  * @flags: watchpoint access type
1107  * @ra: unwind return address
1108  *
1109  * Check for a watchpoint hit in [addr, addr+len) of the type
1110  * specified by @flags.  Exit via exception with a hit.
1111  */
1112 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1113                           MemTxAttrs attrs, int flags, uintptr_t ra);
1114 
1115 /**
1116  * cpu_watchpoint_address_matches:
1117  * @cpu: cpu context
1118  * @addr: guest virtual address
1119  * @len: access length
1120  *
1121  * Return the watchpoint flags that apply to [addr, addr+len).
1122  * If no watchpoint is registered for the range, the result is 0.
1123  */
1124 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1125 #endif
1126 
1127 /**
1128  * cpu_get_address_space:
1129  * @cpu: CPU to get address space from
1130  * @asidx: index identifying which address space to get
1131  *
1132  * Return the requested address space of this CPU. @asidx
1133  * specifies which address space to read.
1134  */
1135 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1136 
1137 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1138     GCC_FMT_ATTR(2, 3);
1139 
1140 /* $(top_srcdir)/cpu.c */
1141 void cpu_exec_initfn(CPUState *cpu);
1142 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1143 void cpu_exec_unrealizefn(CPUState *cpu);
1144 
1145 /**
1146  * target_words_bigendian:
1147  * Returns true if the (default) endianness of the target is big endian,
1148  * false otherwise. Note that in target-specific code, you can use
1149  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1150  * code should normally never need to know about the endianness of the
1151  * target, so please do *not* use this function unless you know very well
1152  * what you are doing!
1153  */
1154 bool target_words_bigendian(void);
1155 
1156 #ifdef NEED_CPU_H
1157 
1158 #ifdef CONFIG_SOFTMMU
1159 extern const VMStateDescription vmstate_cpu_common;
1160 #else
1161 #define vmstate_cpu_common vmstate_dummy
1162 #endif
1163 
1164 #define VMSTATE_CPU() {                                                     \
1165     .name = "parent_obj",                                                   \
1166     .size = sizeof(CPUState),                                               \
1167     .vmsd = &vmstate_cpu_common,                                            \
1168     .flags = VMS_STRUCT,                                                    \
1169     .offset = 0,                                                            \
1170 }
1171 
1172 #endif /* NEED_CPU_H */
1173 
1174 #define UNASSIGNED_CPU_INDEX -1
1175 #define UNASSIGNED_CLUSTER_INDEX -1
1176 
1177 #endif
1178