1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/cpu-common.h" 26 #include "exec/hwaddr.h" 27 #include "exec/memattrs.h" 28 #include "qapi/qapi-types-run-state.h" 29 #include "qemu/bitmap.h" 30 #include "qemu/rcu_queue.h" 31 #include "qemu/queue.h" 32 #include "qemu/thread.h" 33 #include "qemu/plugin.h" 34 #include "qom/object.h" 35 36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 37 void *opaque); 38 39 /** 40 * SECTION:cpu 41 * @section_id: QEMU-cpu 42 * @title: CPU Class 43 * @short_description: Base class for all CPUs 44 */ 45 46 #define TYPE_CPU "cpu" 47 48 /* Since this macro is used a lot in hot code paths and in conjunction with 49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 50 * an unchecked cast. 51 */ 52 #define CPU(obj) ((CPUState *)(obj)) 53 54 typedef struct CPUClass CPUClass; 55 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 56 TYPE_CPU) 57 58 /** 59 * OBJECT_DECLARE_CPU_TYPE: 60 * @CpuInstanceType: instance struct name 61 * @CpuClassType: class struct name 62 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 63 * 64 * This macro is typically used in "cpu-qom.h" header file, and will: 65 * 66 * - create the typedefs for the CPU object and class structs 67 * - register the type for use with g_autoptr 68 * - provide three standard type cast functions 69 * 70 * The object struct and class struct need to be declared manually. 71 */ 72 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 73 typedef struct ArchCPU CpuInstanceType; \ 74 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 75 76 typedef enum MMUAccessType { 77 MMU_DATA_LOAD = 0, 78 MMU_DATA_STORE = 1, 79 MMU_INST_FETCH = 2 80 } MMUAccessType; 81 82 typedef struct CPUWatchpoint CPUWatchpoint; 83 84 /* see tcg-cpu-ops.h */ 85 struct TCGCPUOps; 86 87 /* see accel-cpu.h */ 88 struct AccelCPUClass; 89 90 /* see sysemu-cpu-ops.h */ 91 struct SysemuCPUOps; 92 93 /** 94 * CPUClass: 95 * @class_by_name: Callback to map -cpu command line model name to an 96 * instantiatable CPU type. 97 * @parse_features: Callback to parse command line arguments. 98 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 99 * @has_work: Callback for checking if there is work to do. 100 * @memory_rw_debug: Callback for GDB memory access. 101 * @dump_state: Callback for dumping state. 102 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 103 * @set_pc: Callback for setting the Program Counter register. This 104 * should have the semantics used by the target architecture when 105 * setting the PC from a source such as an ELF file entry point; 106 * for example on Arm it will also set the Thumb mode bit based 107 * on the least significant bit of the new PC value. 108 * If the target behaviour here is anything other than "set 109 * the PC register to the value passed in" then the target must 110 * also implement the synchronize_from_tb hook. 111 * @gdb_read_register: Callback for letting GDB read a register. 112 * @gdb_write_register: Callback for letting GDB write a register. 113 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 114 * breakpoint. Used by AVR to handle a gdb mis-feature with 115 * its Harvard architecture split code and data. 116 * @gdb_num_core_regs: Number of core registers accessible to GDB. 117 * @gdb_core_xml_file: File name for core registers GDB XML description. 118 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 119 * before the insn which triggers a watchpoint rather than after it. 120 * @gdb_arch_name: Optional callback that returns the architecture name known 121 * to GDB. The caller must free the returned string with g_free. 122 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 123 * gdb stub. Returns a pointer to the XML contents for the specified XML file 124 * or NULL if the CPU doesn't have a dynamically generated content for it. 125 * @disas_set_info: Setup architecture specific components of disassembly info 126 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 127 * address before attempting to match it against watchpoints. 128 * @deprecation_note: If this CPUClass is deprecated, this field provides 129 * related information. 130 * 131 * Represents a CPU family or model. 132 */ 133 struct CPUClass { 134 /*< private >*/ 135 DeviceClass parent_class; 136 /*< public >*/ 137 138 ObjectClass *(*class_by_name)(const char *cpu_model); 139 void (*parse_features)(const char *typename, char *str, Error **errp); 140 141 bool (*has_work)(CPUState *cpu); 142 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 143 uint8_t *buf, int len, bool is_write); 144 void (*dump_state)(CPUState *cpu, FILE *, int flags); 145 int64_t (*get_arch_id)(CPUState *cpu); 146 void (*set_pc)(CPUState *cpu, vaddr value); 147 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 148 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 149 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 150 151 const char *gdb_core_xml_file; 152 gchar * (*gdb_arch_name)(CPUState *cpu); 153 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 154 155 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 156 157 const char *deprecation_note; 158 struct AccelCPUClass *accel_cpu; 159 160 /* when system emulation is not available, this pointer is NULL */ 161 const struct SysemuCPUOps *sysemu_ops; 162 163 /* when TCG is not available, this pointer is NULL */ 164 const struct TCGCPUOps *tcg_ops; 165 166 /* 167 * if not NULL, this is called in order for the CPUClass to initialize 168 * class data that depends on the accelerator, see accel/accel-common.c. 169 */ 170 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 171 172 /* 173 * Keep non-pointer data at the end to minimize holes. 174 */ 175 int reset_dump_flags; 176 int gdb_num_core_regs; 177 bool gdb_stop_before_watchpoint; 178 }; 179 180 /* 181 * Low 16 bits: number of cycles left, used only in icount mode. 182 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 183 * for this CPU and return to its top level loop (even in non-icount mode). 184 * This allows a single read-compare-cbranch-write sequence to test 185 * for both decrementer underflow and exceptions. 186 */ 187 typedef union IcountDecr { 188 uint32_t u32; 189 struct { 190 #if HOST_BIG_ENDIAN 191 uint16_t high; 192 uint16_t low; 193 #else 194 uint16_t low; 195 uint16_t high; 196 #endif 197 } u16; 198 } IcountDecr; 199 200 typedef struct CPUBreakpoint { 201 vaddr pc; 202 int flags; /* BP_* */ 203 QTAILQ_ENTRY(CPUBreakpoint) entry; 204 } CPUBreakpoint; 205 206 struct CPUWatchpoint { 207 vaddr vaddr; 208 vaddr len; 209 vaddr hitaddr; 210 MemTxAttrs hitattrs; 211 int flags; /* BP_* */ 212 QTAILQ_ENTRY(CPUWatchpoint) entry; 213 }; 214 215 #ifdef CONFIG_PLUGIN 216 /* 217 * For plugins we sometime need to save the resolved iotlb data before 218 * the memory regions get moved around by io_writex. 219 */ 220 typedef struct SavedIOTLB { 221 hwaddr addr; 222 MemoryRegionSection *section; 223 hwaddr mr_offset; 224 } SavedIOTLB; 225 #endif 226 227 struct KVMState; 228 struct kvm_run; 229 230 struct hax_vcpu_state; 231 struct hvf_vcpu_state; 232 233 #define TB_JMP_CACHE_BITS 12 234 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 235 236 /* work queue */ 237 238 /* The union type allows passing of 64 bit target pointers on 32 bit 239 * hosts in a single parameter 240 */ 241 typedef union { 242 int host_int; 243 unsigned long host_ulong; 244 void *host_ptr; 245 vaddr target_ptr; 246 } run_on_cpu_data; 247 248 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 249 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 250 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 251 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 252 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 253 254 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 255 256 struct qemu_work_item; 257 258 #define CPU_UNSET_NUMA_NODE_ID -1 259 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 260 261 /** 262 * CPUState: 263 * @cpu_index: CPU index (informative). 264 * @cluster_index: Identifies which cluster this CPU is in. 265 * For boards which don't define clusters or for "loose" CPUs not assigned 266 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 267 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 268 * QOM parent. 269 * @tcg_cflags: Pre-computed cflags for this cpu. 270 * @nr_cores: Number of cores within this CPU package. 271 * @nr_threads: Number of threads within this CPU. 272 * @running: #true if CPU is currently running (lockless). 273 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 274 * valid under cpu_list_lock. 275 * @created: Indicates whether the CPU thread has been successfully created. 276 * @interrupt_request: Indicates a pending interrupt request. 277 * @halted: Nonzero if the CPU is in suspended state. 278 * @stop: Indicates a pending stop request. 279 * @stopped: Indicates the CPU has been artificially stopped. 280 * @unplug: Indicates a pending CPU unplug request. 281 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 282 * @singlestep_enabled: Flags for single-stepping. 283 * @icount_extra: Instructions until next timer event. 284 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 285 * requires that IO only be performed on the last instruction of a TB 286 * so that interrupts take effect immediately. 287 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 288 * AddressSpaces this CPU has) 289 * @num_ases: number of CPUAddressSpaces in @cpu_ases 290 * @as: Pointer to the first AddressSpace, for the convenience of targets which 291 * only have a single AddressSpace 292 * @env_ptr: Pointer to subclass-specific CPUArchState field. 293 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 294 * @gdb_regs: Additional GDB registers. 295 * @gdb_num_regs: Number of total registers accessible to GDB. 296 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 297 * @next_cpu: Next CPU sharing TB cache. 298 * @opaque: User data. 299 * @mem_io_pc: Host Program Counter at which the memory was accessed. 300 * @kvm_fd: vCPU file descriptor for KVM. 301 * @work_mutex: Lock to prevent multiple access to @work_list. 302 * @work_list: List of pending asynchronous work. 303 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 304 * to @trace_dstate). 305 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 306 * @plugin_mask: Plugin event bitmap. Modified only via async work. 307 * @ignore_memory_transaction_failures: Cached copy of the MachineState 308 * flag of the same name: allows the board to suppress calling of the 309 * CPU do_transaction_failed hook function. 310 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 311 * ring is enabled. 312 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 313 * dirty ring structure. 314 * 315 * State of one CPU core or thread. 316 */ 317 struct CPUState { 318 /*< private >*/ 319 DeviceState parent_obj; 320 /*< public >*/ 321 322 int nr_cores; 323 int nr_threads; 324 325 struct QemuThread *thread; 326 #ifdef _WIN32 327 HANDLE hThread; 328 #endif 329 int thread_id; 330 bool running, has_waiter; 331 struct QemuCond *halt_cond; 332 bool thread_kicked; 333 bool created; 334 bool stop; 335 bool stopped; 336 337 /* Should CPU start in powered-off state? */ 338 bool start_powered_off; 339 340 bool unplug; 341 bool crash_occurred; 342 bool exit_request; 343 bool in_exclusive_context; 344 uint32_t cflags_next_tb; 345 /* updates protected by BQL */ 346 uint32_t interrupt_request; 347 int singlestep_enabled; 348 int64_t icount_budget; 349 int64_t icount_extra; 350 uint64_t random_seed; 351 sigjmp_buf jmp_env; 352 353 QemuMutex work_mutex; 354 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 355 356 CPUAddressSpace *cpu_ases; 357 int num_ases; 358 AddressSpace *as; 359 MemoryRegion *memory; 360 361 CPUArchState *env_ptr; 362 IcountDecr *icount_decr_ptr; 363 364 /* Accessed in parallel; all accesses must be atomic */ 365 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 366 367 struct GDBRegisterState *gdb_regs; 368 int gdb_num_regs; 369 int gdb_num_g_regs; 370 QTAILQ_ENTRY(CPUState) node; 371 372 /* ice debug support */ 373 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 374 375 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 376 CPUWatchpoint *watchpoint_hit; 377 378 void *opaque; 379 380 /* In order to avoid passing too many arguments to the MMIO helpers, 381 * we store some rarely used information in the CPU context. 382 */ 383 uintptr_t mem_io_pc; 384 385 /* Only used in KVM */ 386 int kvm_fd; 387 struct KVMState *kvm_state; 388 struct kvm_run *kvm_run; 389 struct kvm_dirty_gfn *kvm_dirty_gfns; 390 uint32_t kvm_fetch_index; 391 uint64_t dirty_pages; 392 393 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 394 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 395 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 396 397 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 398 399 #ifdef CONFIG_PLUGIN 400 GArray *plugin_mem_cbs; 401 /* saved iotlb data from io_writex */ 402 SavedIOTLB saved_iotlb; 403 #endif 404 405 /* TODO Move common fields from CPUArchState here. */ 406 int cpu_index; 407 int cluster_index; 408 uint32_t tcg_cflags; 409 uint32_t halted; 410 uint32_t can_do_io; 411 int32_t exception_index; 412 413 /* shared by kvm, hax and hvf */ 414 bool vcpu_dirty; 415 416 /* Used to keep track of an outstanding cpu throttle thread for migration 417 * autoconverge 418 */ 419 bool throttle_thread_scheduled; 420 421 bool ignore_memory_transaction_failures; 422 423 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 424 bool prctl_unalign_sigbus; 425 426 struct hax_vcpu_state *hax_vcpu; 427 428 struct hvf_vcpu_state *hvf; 429 430 /* track IOMMUs whose translations we've cached in the TCG TLB */ 431 GArray *iommu_notifiers; 432 }; 433 434 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 435 extern CPUTailQ cpus; 436 437 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 438 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 439 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 440 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 441 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 442 443 extern __thread CPUState *current_cpu; 444 445 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 446 { 447 unsigned int i; 448 449 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 450 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 451 } 452 } 453 454 /** 455 * qemu_tcg_mttcg_enabled: 456 * Check whether we are running MultiThread TCG or not. 457 * 458 * Returns: %true if we are in MTTCG mode %false otherwise. 459 */ 460 extern bool mttcg_enabled; 461 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 462 463 /** 464 * cpu_paging_enabled: 465 * @cpu: The CPU whose state is to be inspected. 466 * 467 * Returns: %true if paging is enabled, %false otherwise. 468 */ 469 bool cpu_paging_enabled(const CPUState *cpu); 470 471 /** 472 * cpu_get_memory_mapping: 473 * @cpu: The CPU whose memory mappings are to be obtained. 474 * @list: Where to write the memory mappings to. 475 * @errp: Pointer for reporting an #Error. 476 */ 477 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 478 Error **errp); 479 480 #if !defined(CONFIG_USER_ONLY) 481 482 /** 483 * cpu_write_elf64_note: 484 * @f: pointer to a function that writes memory to a file 485 * @cpu: The CPU whose memory is to be dumped 486 * @cpuid: ID number of the CPU 487 * @opaque: pointer to the CPUState struct 488 */ 489 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 490 int cpuid, void *opaque); 491 492 /** 493 * cpu_write_elf64_qemunote: 494 * @f: pointer to a function that writes memory to a file 495 * @cpu: The CPU whose memory is to be dumped 496 * @cpuid: ID number of the CPU 497 * @opaque: pointer to the CPUState struct 498 */ 499 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 500 void *opaque); 501 502 /** 503 * cpu_write_elf32_note: 504 * @f: pointer to a function that writes memory to a file 505 * @cpu: The CPU whose memory is to be dumped 506 * @cpuid: ID number of the CPU 507 * @opaque: pointer to the CPUState struct 508 */ 509 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 510 int cpuid, void *opaque); 511 512 /** 513 * cpu_write_elf32_qemunote: 514 * @f: pointer to a function that writes memory to a file 515 * @cpu: The CPU whose memory is to be dumped 516 * @cpuid: ID number of the CPU 517 * @opaque: pointer to the CPUState struct 518 */ 519 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 520 void *opaque); 521 522 /** 523 * cpu_get_crash_info: 524 * @cpu: The CPU to get crash information for 525 * 526 * Gets the previously saved crash information. 527 * Caller is responsible for freeing the data. 528 */ 529 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 530 531 #endif /* !CONFIG_USER_ONLY */ 532 533 /** 534 * CPUDumpFlags: 535 * @CPU_DUMP_CODE: 536 * @CPU_DUMP_FPU: dump FPU register state, not just integer 537 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 538 */ 539 enum CPUDumpFlags { 540 CPU_DUMP_CODE = 0x00010000, 541 CPU_DUMP_FPU = 0x00020000, 542 CPU_DUMP_CCOP = 0x00040000, 543 }; 544 545 /** 546 * cpu_dump_state: 547 * @cpu: The CPU whose state is to be dumped. 548 * @f: If non-null, dump to this stream, else to current print sink. 549 * 550 * Dumps CPU state. 551 */ 552 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 553 554 #ifndef CONFIG_USER_ONLY 555 /** 556 * cpu_get_phys_page_attrs_debug: 557 * @cpu: The CPU to obtain the physical page address for. 558 * @addr: The virtual address. 559 * @attrs: Updated on return with the memory transaction attributes to use 560 * for this access. 561 * 562 * Obtains the physical page corresponding to a virtual one, together 563 * with the corresponding memory transaction attributes to use for the access. 564 * Use it only for debugging because no protection checks are done. 565 * 566 * Returns: Corresponding physical page address or -1 if no page found. 567 */ 568 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 569 MemTxAttrs *attrs); 570 571 /** 572 * cpu_get_phys_page_debug: 573 * @cpu: The CPU to obtain the physical page address for. 574 * @addr: The virtual address. 575 * 576 * Obtains the physical page corresponding to a virtual one. 577 * Use it only for debugging because no protection checks are done. 578 * 579 * Returns: Corresponding physical page address or -1 if no page found. 580 */ 581 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 582 583 /** cpu_asidx_from_attrs: 584 * @cpu: CPU 585 * @attrs: memory transaction attributes 586 * 587 * Returns the address space index specifying the CPU AddressSpace 588 * to use for a memory access with the given transaction attributes. 589 */ 590 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 591 592 /** 593 * cpu_virtio_is_big_endian: 594 * @cpu: CPU 595 596 * Returns %true if a CPU which supports runtime configurable endianness 597 * is currently big-endian. 598 */ 599 bool cpu_virtio_is_big_endian(CPUState *cpu); 600 601 #endif /* CONFIG_USER_ONLY */ 602 603 /** 604 * cpu_list_add: 605 * @cpu: The CPU to be added to the list of CPUs. 606 */ 607 void cpu_list_add(CPUState *cpu); 608 609 /** 610 * cpu_list_remove: 611 * @cpu: The CPU to be removed from the list of CPUs. 612 */ 613 void cpu_list_remove(CPUState *cpu); 614 615 /** 616 * cpu_reset: 617 * @cpu: The CPU whose state is to be reset. 618 */ 619 void cpu_reset(CPUState *cpu); 620 621 /** 622 * cpu_class_by_name: 623 * @typename: The CPU base type. 624 * @cpu_model: The model string without any parameters. 625 * 626 * Looks up a CPU #ObjectClass matching name @cpu_model. 627 * 628 * Returns: A #CPUClass or %NULL if not matching class is found. 629 */ 630 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 631 632 /** 633 * cpu_create: 634 * @typename: The CPU type. 635 * 636 * Instantiates a CPU and realizes the CPU. 637 * 638 * Returns: A #CPUState or %NULL if an error occurred. 639 */ 640 CPUState *cpu_create(const char *typename); 641 642 /** 643 * parse_cpu_option: 644 * @cpu_option: The -cpu option including optional parameters. 645 * 646 * processes optional parameters and registers them as global properties 647 * 648 * Returns: type of CPU to create or prints error and terminates process 649 * if an error occurred. 650 */ 651 const char *parse_cpu_option(const char *cpu_option); 652 653 /** 654 * cpu_has_work: 655 * @cpu: The vCPU to check. 656 * 657 * Checks whether the CPU has work to do. 658 * 659 * Returns: %true if the CPU has work, %false otherwise. 660 */ 661 static inline bool cpu_has_work(CPUState *cpu) 662 { 663 CPUClass *cc = CPU_GET_CLASS(cpu); 664 665 g_assert(cc->has_work); 666 return cc->has_work(cpu); 667 } 668 669 /** 670 * qemu_cpu_is_self: 671 * @cpu: The vCPU to check against. 672 * 673 * Checks whether the caller is executing on the vCPU thread. 674 * 675 * Returns: %true if called from @cpu's thread, %false otherwise. 676 */ 677 bool qemu_cpu_is_self(CPUState *cpu); 678 679 /** 680 * qemu_cpu_kick: 681 * @cpu: The vCPU to kick. 682 * 683 * Kicks @cpu's thread. 684 */ 685 void qemu_cpu_kick(CPUState *cpu); 686 687 /** 688 * cpu_is_stopped: 689 * @cpu: The CPU to check. 690 * 691 * Checks whether the CPU is stopped. 692 * 693 * Returns: %true if run state is not running or if artificially stopped; 694 * %false otherwise. 695 */ 696 bool cpu_is_stopped(CPUState *cpu); 697 698 /** 699 * do_run_on_cpu: 700 * @cpu: The vCPU to run on. 701 * @func: The function to be executed. 702 * @data: Data to pass to the function. 703 * @mutex: Mutex to release while waiting for @func to run. 704 * 705 * Used internally in the implementation of run_on_cpu. 706 */ 707 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 708 QemuMutex *mutex); 709 710 /** 711 * run_on_cpu: 712 * @cpu: The vCPU to run on. 713 * @func: The function to be executed. 714 * @data: Data to pass to the function. 715 * 716 * Schedules the function @func for execution on the vCPU @cpu. 717 */ 718 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 719 720 /** 721 * async_run_on_cpu: 722 * @cpu: The vCPU to run on. 723 * @func: The function to be executed. 724 * @data: Data to pass to the function. 725 * 726 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 727 */ 728 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 729 730 /** 731 * async_safe_run_on_cpu: 732 * @cpu: The vCPU to run on. 733 * @func: The function to be executed. 734 * @data: Data to pass to the function. 735 * 736 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 737 * while all other vCPUs are sleeping. 738 * 739 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 740 * BQL. 741 */ 742 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 743 744 /** 745 * cpu_in_exclusive_context() 746 * @cpu: The vCPU to check 747 * 748 * Returns true if @cpu is an exclusive context, for example running 749 * something which has previously been queued via async_safe_run_on_cpu(). 750 */ 751 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 752 { 753 return cpu->in_exclusive_context; 754 } 755 756 /** 757 * qemu_get_cpu: 758 * @index: The CPUState@cpu_index value of the CPU to obtain. 759 * 760 * Gets a CPU matching @index. 761 * 762 * Returns: The CPU or %NULL if there is no matching CPU. 763 */ 764 CPUState *qemu_get_cpu(int index); 765 766 /** 767 * cpu_exists: 768 * @id: Guest-exposed CPU ID to lookup. 769 * 770 * Search for CPU with specified ID. 771 * 772 * Returns: %true - CPU is found, %false - CPU isn't found. 773 */ 774 bool cpu_exists(int64_t id); 775 776 /** 777 * cpu_by_arch_id: 778 * @id: Guest-exposed CPU ID of the CPU to obtain. 779 * 780 * Get a CPU with matching @id. 781 * 782 * Returns: The CPU or %NULL if there is no matching CPU. 783 */ 784 CPUState *cpu_by_arch_id(int64_t id); 785 786 /** 787 * cpu_interrupt: 788 * @cpu: The CPU to set an interrupt on. 789 * @mask: The interrupts to set. 790 * 791 * Invokes the interrupt handler. 792 */ 793 794 void cpu_interrupt(CPUState *cpu, int mask); 795 796 /** 797 * cpu_set_pc: 798 * @cpu: The CPU to set the program counter for. 799 * @addr: Program counter value. 800 * 801 * Sets the program counter for a CPU. 802 */ 803 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 804 { 805 CPUClass *cc = CPU_GET_CLASS(cpu); 806 807 cc->set_pc(cpu, addr); 808 } 809 810 /** 811 * cpu_reset_interrupt: 812 * @cpu: The CPU to clear the interrupt on. 813 * @mask: The interrupt mask to clear. 814 * 815 * Resets interrupts on the vCPU @cpu. 816 */ 817 void cpu_reset_interrupt(CPUState *cpu, int mask); 818 819 /** 820 * cpu_exit: 821 * @cpu: The CPU to exit. 822 * 823 * Requests the CPU @cpu to exit execution. 824 */ 825 void cpu_exit(CPUState *cpu); 826 827 /** 828 * cpu_resume: 829 * @cpu: The CPU to resume. 830 * 831 * Resumes CPU, i.e. puts CPU into runnable state. 832 */ 833 void cpu_resume(CPUState *cpu); 834 835 /** 836 * cpu_remove_sync: 837 * @cpu: The CPU to remove. 838 * 839 * Requests the CPU to be removed and waits till it is removed. 840 */ 841 void cpu_remove_sync(CPUState *cpu); 842 843 /** 844 * process_queued_cpu_work() - process all items on CPU work queue 845 * @cpu: The CPU which work queue to process. 846 */ 847 void process_queued_cpu_work(CPUState *cpu); 848 849 /** 850 * cpu_exec_start: 851 * @cpu: The CPU for the current thread. 852 * 853 * Record that a CPU has started execution and can be interrupted with 854 * cpu_exit. 855 */ 856 void cpu_exec_start(CPUState *cpu); 857 858 /** 859 * cpu_exec_end: 860 * @cpu: The CPU for the current thread. 861 * 862 * Record that a CPU has stopped execution and exclusive sections 863 * can be executed without interrupting it. 864 */ 865 void cpu_exec_end(CPUState *cpu); 866 867 /** 868 * start_exclusive: 869 * 870 * Wait for a concurrent exclusive section to end, and then start 871 * a section of work that is run while other CPUs are not running 872 * between cpu_exec_start and cpu_exec_end. CPUs that are running 873 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 874 * during the exclusive section go to sleep until this CPU calls 875 * end_exclusive. 876 */ 877 void start_exclusive(void); 878 879 /** 880 * end_exclusive: 881 * 882 * Concludes an exclusive execution section started by start_exclusive. 883 */ 884 void end_exclusive(void); 885 886 /** 887 * qemu_init_vcpu: 888 * @cpu: The vCPU to initialize. 889 * 890 * Initializes a vCPU. 891 */ 892 void qemu_init_vcpu(CPUState *cpu); 893 894 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 895 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 896 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 897 898 /** 899 * cpu_single_step: 900 * @cpu: CPU to the flags for. 901 * @enabled: Flags to enable. 902 * 903 * Enables or disables single-stepping for @cpu. 904 */ 905 void cpu_single_step(CPUState *cpu, int enabled); 906 907 /* Breakpoint/watchpoint flags */ 908 #define BP_MEM_READ 0x01 909 #define BP_MEM_WRITE 0x02 910 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 911 #define BP_STOP_BEFORE_ACCESS 0x04 912 /* 0x08 currently unused */ 913 #define BP_GDB 0x10 914 #define BP_CPU 0x20 915 #define BP_ANY (BP_GDB | BP_CPU) 916 #define BP_WATCHPOINT_HIT_READ 0x40 917 #define BP_WATCHPOINT_HIT_WRITE 0x80 918 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 919 920 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 921 CPUBreakpoint **breakpoint); 922 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 923 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 924 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 925 926 /* Return true if PC matches an installed breakpoint. */ 927 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 928 { 929 CPUBreakpoint *bp; 930 931 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 932 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 933 if (bp->pc == pc && (bp->flags & mask)) { 934 return true; 935 } 936 } 937 } 938 return false; 939 } 940 941 #ifdef CONFIG_USER_ONLY 942 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 943 int flags, CPUWatchpoint **watchpoint) 944 { 945 return -ENOSYS; 946 } 947 948 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 949 vaddr len, int flags) 950 { 951 return -ENOSYS; 952 } 953 954 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 955 CPUWatchpoint *wp) 956 { 957 } 958 959 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 960 { 961 } 962 963 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 964 MemTxAttrs atr, int fl, uintptr_t ra) 965 { 966 } 967 968 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 969 vaddr addr, vaddr len) 970 { 971 return 0; 972 } 973 #else 974 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 975 int flags, CPUWatchpoint **watchpoint); 976 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 977 vaddr len, int flags); 978 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 979 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 980 981 /** 982 * cpu_check_watchpoint: 983 * @cpu: cpu context 984 * @addr: guest virtual address 985 * @len: access length 986 * @attrs: memory access attributes 987 * @flags: watchpoint access type 988 * @ra: unwind return address 989 * 990 * Check for a watchpoint hit in [addr, addr+len) of the type 991 * specified by @flags. Exit via exception with a hit. 992 */ 993 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 994 MemTxAttrs attrs, int flags, uintptr_t ra); 995 996 /** 997 * cpu_watchpoint_address_matches: 998 * @cpu: cpu context 999 * @addr: guest virtual address 1000 * @len: access length 1001 * 1002 * Return the watchpoint flags that apply to [addr, addr+len). 1003 * If no watchpoint is registered for the range, the result is 0. 1004 */ 1005 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1006 #endif 1007 1008 /** 1009 * cpu_get_address_space: 1010 * @cpu: CPU to get address space from 1011 * @asidx: index identifying which address space to get 1012 * 1013 * Return the requested address space of this CPU. @asidx 1014 * specifies which address space to read. 1015 */ 1016 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1017 1018 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1019 G_GNUC_PRINTF(2, 3); 1020 1021 /* $(top_srcdir)/cpu.c */ 1022 void cpu_class_init_props(DeviceClass *dc); 1023 void cpu_exec_initfn(CPUState *cpu); 1024 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1025 void cpu_exec_unrealizefn(CPUState *cpu); 1026 1027 /** 1028 * target_words_bigendian: 1029 * Returns true if the (default) endianness of the target is big endian, 1030 * false otherwise. Note that in target-specific code, you can use 1031 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1032 * code should normally never need to know about the endianness of the 1033 * target, so please do *not* use this function unless you know very well 1034 * what you are doing! 1035 */ 1036 bool target_words_bigendian(void); 1037 1038 #ifdef NEED_CPU_H 1039 1040 #ifdef CONFIG_SOFTMMU 1041 1042 extern const VMStateDescription vmstate_cpu_common; 1043 1044 #define VMSTATE_CPU() { \ 1045 .name = "parent_obj", \ 1046 .size = sizeof(CPUState), \ 1047 .vmsd = &vmstate_cpu_common, \ 1048 .flags = VMS_STRUCT, \ 1049 .offset = 0, \ 1050 } 1051 #endif /* CONFIG_SOFTMMU */ 1052 1053 #endif /* NEED_CPU_H */ 1054 1055 #define UNASSIGNED_CPU_INDEX -1 1056 #define UNASSIGNED_CLUSTER_INDEX -1 1057 1058 #endif 1059