1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /* see sysemu-cpu-ops.h */ 84 struct SysemuCPUOps; 85 86 /** 87 * CPUClass: 88 * @class_by_name: Callback to map -cpu command line model name to an 89 * instantiatable CPU type. 90 * @parse_features: Callback to parse command line arguments. 91 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 92 * @has_work: Callback for checking if there is work to do. 93 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 94 * runtime configurable endianness is currently big-endian. Non-configurable 95 * CPUs can use the default implementation of this method. This method should 96 * not be used by any callers other than the pre-1.0 virtio devices. 97 * @memory_rw_debug: Callback for GDB memory access. 98 * @dump_state: Callback for dumping state. 99 * @dump_statistics: Callback for dumping statistics. 100 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 101 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 102 * @get_memory_mapping: Callback for obtaining the memory mappings. 103 * @set_pc: Callback for setting the Program Counter register. This 104 * should have the semantics used by the target architecture when 105 * setting the PC from a source such as an ELF file entry point; 106 * for example on Arm it will also set the Thumb mode bit based 107 * on the least significant bit of the new PC value. 108 * If the target behaviour here is anything other than "set 109 * the PC register to the value passed in" then the target must 110 * also implement the synchronize_from_tb hook. 111 * @get_phys_page_debug: Callback for obtaining a physical address. 112 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 113 * associated memory transaction attributes to use for the access. 114 * CPUs which use memory transaction attributes should implement this 115 * instead of get_phys_page_debug. 116 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 117 * a memory access with the specified memory transaction attributes. 118 * @gdb_read_register: Callback for letting GDB read a register. 119 * @gdb_write_register: Callback for letting GDB write a register. 120 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 121 * 64-bit VM coredump. 122 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 123 * note to a 32-bit VM coredump. 124 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 125 * 32-bit VM coredump. 126 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 127 * note to a 32-bit VM coredump. 128 * @legacy_vmsd: Legacy state description for migration. 129 * Do not use in new targets, use #DeviceClass::vmsd instead. 130 * @gdb_num_core_regs: Number of core registers accessible to GDB. 131 * @gdb_core_xml_file: File name for core registers GDB XML description. 132 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 133 * before the insn which triggers a watchpoint rather than after it. 134 * @gdb_arch_name: Optional callback that returns the architecture name known 135 * to GDB. The caller must free the returned string with g_free. 136 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 137 * gdb stub. Returns a pointer to the XML contents for the specified XML file 138 * or NULL if the CPU doesn't have a dynamically generated content for it. 139 * @disas_set_info: Setup architecture specific components of disassembly info 140 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 141 * address before attempting to match it against watchpoints. 142 * @deprecation_note: If this CPUClass is deprecated, this field provides 143 * related information. 144 * 145 * Represents a CPU family or model. 146 */ 147 struct CPUClass { 148 /*< private >*/ 149 DeviceClass parent_class; 150 /*< public >*/ 151 152 ObjectClass *(*class_by_name)(const char *cpu_model); 153 void (*parse_features)(const char *typename, char *str, Error **errp); 154 155 int reset_dump_flags; 156 bool (*has_work)(CPUState *cpu); 157 bool (*virtio_is_big_endian)(CPUState *cpu); 158 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 159 uint8_t *buf, int len, bool is_write); 160 void (*dump_state)(CPUState *cpu, FILE *, int flags); 161 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 162 void (*dump_statistics)(CPUState *cpu, int flags); 163 int64_t (*get_arch_id)(CPUState *cpu); 164 bool (*get_paging_enabled)(const CPUState *cpu); 165 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 166 Error **errp); 167 void (*set_pc)(CPUState *cpu, vaddr value); 168 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 169 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 170 MemTxAttrs *attrs); 171 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 172 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 173 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 174 175 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 176 int cpuid, void *opaque); 177 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 178 void *opaque); 179 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 180 int cpuid, void *opaque); 181 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 182 void *opaque); 183 184 const VMStateDescription *legacy_vmsd; 185 const char *gdb_core_xml_file; 186 gchar * (*gdb_arch_name)(CPUState *cpu); 187 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 188 189 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 190 191 const char *deprecation_note; 192 /* Keep non-pointer data at the end to minimize holes. */ 193 int gdb_num_core_regs; 194 bool gdb_stop_before_watchpoint; 195 struct AccelCPUClass *accel_cpu; 196 197 /* when system emulation is not available, this pointer is NULL */ 198 const struct SysemuCPUOps *sysemu_ops; 199 200 /* when TCG is not available, this pointer is NULL */ 201 struct TCGCPUOps *tcg_ops; 202 203 /* 204 * if not NULL, this is called in order for the CPUClass to initialize 205 * class data that depends on the accelerator, see accel/accel-common.c. 206 */ 207 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 208 }; 209 210 /* 211 * Low 16 bits: number of cycles left, used only in icount mode. 212 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 213 * for this CPU and return to its top level loop (even in non-icount mode). 214 * This allows a single read-compare-cbranch-write sequence to test 215 * for both decrementer underflow and exceptions. 216 */ 217 typedef union IcountDecr { 218 uint32_t u32; 219 struct { 220 #ifdef HOST_WORDS_BIGENDIAN 221 uint16_t high; 222 uint16_t low; 223 #else 224 uint16_t low; 225 uint16_t high; 226 #endif 227 } u16; 228 } IcountDecr; 229 230 typedef struct CPUBreakpoint { 231 vaddr pc; 232 int flags; /* BP_* */ 233 QTAILQ_ENTRY(CPUBreakpoint) entry; 234 } CPUBreakpoint; 235 236 struct CPUWatchpoint { 237 vaddr vaddr; 238 vaddr len; 239 vaddr hitaddr; 240 MemTxAttrs hitattrs; 241 int flags; /* BP_* */ 242 QTAILQ_ENTRY(CPUWatchpoint) entry; 243 }; 244 245 #ifdef CONFIG_PLUGIN 246 /* 247 * For plugins we sometime need to save the resolved iotlb data before 248 * the memory regions get moved around by io_writex. 249 */ 250 typedef struct SavedIOTLB { 251 hwaddr addr; 252 MemoryRegionSection *section; 253 hwaddr mr_offset; 254 } SavedIOTLB; 255 #endif 256 257 struct KVMState; 258 struct kvm_run; 259 260 struct hax_vcpu_state; 261 262 #define TB_JMP_CACHE_BITS 12 263 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 264 265 /* work queue */ 266 267 /* The union type allows passing of 64 bit target pointers on 32 bit 268 * hosts in a single parameter 269 */ 270 typedef union { 271 int host_int; 272 unsigned long host_ulong; 273 void *host_ptr; 274 vaddr target_ptr; 275 } run_on_cpu_data; 276 277 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 278 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 279 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 280 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 281 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 282 283 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 284 285 struct qemu_work_item; 286 287 #define CPU_UNSET_NUMA_NODE_ID -1 288 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 289 290 /** 291 * CPUState: 292 * @cpu_index: CPU index (informative). 293 * @cluster_index: Identifies which cluster this CPU is in. 294 * For boards which don't define clusters or for "loose" CPUs not assigned 295 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 296 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 297 * QOM parent. 298 * @tcg_cflags: Pre-computed cflags for this cpu. 299 * @nr_cores: Number of cores within this CPU package. 300 * @nr_threads: Number of threads within this CPU. 301 * @running: #true if CPU is currently running (lockless). 302 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 303 * valid under cpu_list_lock. 304 * @created: Indicates whether the CPU thread has been successfully created. 305 * @interrupt_request: Indicates a pending interrupt request. 306 * @halted: Nonzero if the CPU is in suspended state. 307 * @stop: Indicates a pending stop request. 308 * @stopped: Indicates the CPU has been artificially stopped. 309 * @unplug: Indicates a pending CPU unplug request. 310 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 311 * @singlestep_enabled: Flags for single-stepping. 312 * @icount_extra: Instructions until next timer event. 313 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 314 * requires that IO only be performed on the last instruction of a TB 315 * so that interrupts take effect immediately. 316 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 317 * AddressSpaces this CPU has) 318 * @num_ases: number of CPUAddressSpaces in @cpu_ases 319 * @as: Pointer to the first AddressSpace, for the convenience of targets which 320 * only have a single AddressSpace 321 * @env_ptr: Pointer to subclass-specific CPUArchState field. 322 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 323 * @gdb_regs: Additional GDB registers. 324 * @gdb_num_regs: Number of total registers accessible to GDB. 325 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 326 * @next_cpu: Next CPU sharing TB cache. 327 * @opaque: User data. 328 * @mem_io_pc: Host Program Counter at which the memory was accessed. 329 * @kvm_fd: vCPU file descriptor for KVM. 330 * @work_mutex: Lock to prevent multiple access to @work_list. 331 * @work_list: List of pending asynchronous work. 332 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 333 * to @trace_dstate). 334 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 335 * @plugin_mask: Plugin event bitmap. Modified only via async work. 336 * @ignore_memory_transaction_failures: Cached copy of the MachineState 337 * flag of the same name: allows the board to suppress calling of the 338 * CPU do_transaction_failed hook function. 339 * 340 * State of one CPU core or thread. 341 */ 342 struct CPUState { 343 /*< private >*/ 344 DeviceState parent_obj; 345 /*< public >*/ 346 347 int nr_cores; 348 int nr_threads; 349 350 struct QemuThread *thread; 351 #ifdef _WIN32 352 HANDLE hThread; 353 #endif 354 int thread_id; 355 bool running, has_waiter; 356 struct QemuCond *halt_cond; 357 bool thread_kicked; 358 bool created; 359 bool stop; 360 bool stopped; 361 362 /* Should CPU start in powered-off state? */ 363 bool start_powered_off; 364 365 bool unplug; 366 bool crash_occurred; 367 bool exit_request; 368 bool in_exclusive_context; 369 uint32_t cflags_next_tb; 370 /* updates protected by BQL */ 371 uint32_t interrupt_request; 372 int singlestep_enabled; 373 int64_t icount_budget; 374 int64_t icount_extra; 375 uint64_t random_seed; 376 sigjmp_buf jmp_env; 377 378 QemuMutex work_mutex; 379 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 380 381 CPUAddressSpace *cpu_ases; 382 int num_ases; 383 AddressSpace *as; 384 MemoryRegion *memory; 385 386 void *env_ptr; /* CPUArchState */ 387 IcountDecr *icount_decr_ptr; 388 389 /* Accessed in parallel; all accesses must be atomic */ 390 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 391 392 struct GDBRegisterState *gdb_regs; 393 int gdb_num_regs; 394 int gdb_num_g_regs; 395 QTAILQ_ENTRY(CPUState) node; 396 397 /* ice debug support */ 398 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 399 400 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 401 CPUWatchpoint *watchpoint_hit; 402 403 void *opaque; 404 405 /* In order to avoid passing too many arguments to the MMIO helpers, 406 * we store some rarely used information in the CPU context. 407 */ 408 uintptr_t mem_io_pc; 409 410 int kvm_fd; 411 struct KVMState *kvm_state; 412 struct kvm_run *kvm_run; 413 414 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 415 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 416 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 417 418 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 419 420 #ifdef CONFIG_PLUGIN 421 GArray *plugin_mem_cbs; 422 /* saved iotlb data from io_writex */ 423 SavedIOTLB saved_iotlb; 424 #endif 425 426 /* TODO Move common fields from CPUArchState here. */ 427 int cpu_index; 428 int cluster_index; 429 uint32_t tcg_cflags; 430 uint32_t halted; 431 uint32_t can_do_io; 432 int32_t exception_index; 433 434 /* shared by kvm, hax and hvf */ 435 bool vcpu_dirty; 436 437 /* Used to keep track of an outstanding cpu throttle thread for migration 438 * autoconverge 439 */ 440 bool throttle_thread_scheduled; 441 442 bool ignore_memory_transaction_failures; 443 444 struct hax_vcpu_state *hax_vcpu; 445 446 int hvf_fd; 447 448 /* track IOMMUs whose translations we've cached in the TCG TLB */ 449 GArray *iommu_notifiers; 450 }; 451 452 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 453 extern CPUTailQ cpus; 454 455 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 456 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 457 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 458 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 459 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 460 461 extern __thread CPUState *current_cpu; 462 463 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 464 { 465 unsigned int i; 466 467 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 468 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 469 } 470 } 471 472 /** 473 * qemu_tcg_mttcg_enabled: 474 * Check whether we are running MultiThread TCG or not. 475 * 476 * Returns: %true if we are in MTTCG mode %false otherwise. 477 */ 478 extern bool mttcg_enabled; 479 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 480 481 /** 482 * cpu_paging_enabled: 483 * @cpu: The CPU whose state is to be inspected. 484 * 485 * Returns: %true if paging is enabled, %false otherwise. 486 */ 487 bool cpu_paging_enabled(const CPUState *cpu); 488 489 /** 490 * cpu_get_memory_mapping: 491 * @cpu: The CPU whose memory mappings are to be obtained. 492 * @list: Where to write the memory mappings to. 493 * @errp: Pointer for reporting an #Error. 494 */ 495 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 496 Error **errp); 497 498 #if !defined(CONFIG_USER_ONLY) 499 500 /** 501 * cpu_write_elf64_note: 502 * @f: pointer to a function that writes memory to a file 503 * @cpu: The CPU whose memory is to be dumped 504 * @cpuid: ID number of the CPU 505 * @opaque: pointer to the CPUState struct 506 */ 507 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 508 int cpuid, void *opaque); 509 510 /** 511 * cpu_write_elf64_qemunote: 512 * @f: pointer to a function that writes memory to a file 513 * @cpu: The CPU whose memory is to be dumped 514 * @cpuid: ID number of the CPU 515 * @opaque: pointer to the CPUState struct 516 */ 517 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 518 void *opaque); 519 520 /** 521 * cpu_write_elf32_note: 522 * @f: pointer to a function that writes memory to a file 523 * @cpu: The CPU whose memory is to be dumped 524 * @cpuid: ID number of the CPU 525 * @opaque: pointer to the CPUState struct 526 */ 527 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 528 int cpuid, void *opaque); 529 530 /** 531 * cpu_write_elf32_qemunote: 532 * @f: pointer to a function that writes memory to a file 533 * @cpu: The CPU whose memory is to be dumped 534 * @cpuid: ID number of the CPU 535 * @opaque: pointer to the CPUState struct 536 */ 537 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 538 void *opaque); 539 540 /** 541 * cpu_get_crash_info: 542 * @cpu: The CPU to get crash information for 543 * 544 * Gets the previously saved crash information. 545 * Caller is responsible for freeing the data. 546 */ 547 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 548 549 #endif /* !CONFIG_USER_ONLY */ 550 551 /** 552 * CPUDumpFlags: 553 * @CPU_DUMP_CODE: 554 * @CPU_DUMP_FPU: dump FPU register state, not just integer 555 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 556 */ 557 enum CPUDumpFlags { 558 CPU_DUMP_CODE = 0x00010000, 559 CPU_DUMP_FPU = 0x00020000, 560 CPU_DUMP_CCOP = 0x00040000, 561 }; 562 563 /** 564 * cpu_dump_state: 565 * @cpu: The CPU whose state is to be dumped. 566 * @f: If non-null, dump to this stream, else to current print sink. 567 * 568 * Dumps CPU state. 569 */ 570 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 571 572 /** 573 * cpu_dump_statistics: 574 * @cpu: The CPU whose state is to be dumped. 575 * @flags: Flags what to dump. 576 * 577 * Dump CPU statistics to the current monitor if we have one, else to 578 * stdout. 579 */ 580 void cpu_dump_statistics(CPUState *cpu, int flags); 581 582 #ifndef CONFIG_USER_ONLY 583 /** 584 * cpu_get_phys_page_attrs_debug: 585 * @cpu: The CPU to obtain the physical page address for. 586 * @addr: The virtual address. 587 * @attrs: Updated on return with the memory transaction attributes to use 588 * for this access. 589 * 590 * Obtains the physical page corresponding to a virtual one, together 591 * with the corresponding memory transaction attributes to use for the access. 592 * Use it only for debugging because no protection checks are done. 593 * 594 * Returns: Corresponding physical page address or -1 if no page found. 595 */ 596 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 597 MemTxAttrs *attrs); 598 599 /** 600 * cpu_get_phys_page_debug: 601 * @cpu: The CPU to obtain the physical page address for. 602 * @addr: The virtual address. 603 * 604 * Obtains the physical page corresponding to a virtual one. 605 * Use it only for debugging because no protection checks are done. 606 * 607 * Returns: Corresponding physical page address or -1 if no page found. 608 */ 609 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 610 611 /** cpu_asidx_from_attrs: 612 * @cpu: CPU 613 * @attrs: memory transaction attributes 614 * 615 * Returns the address space index specifying the CPU AddressSpace 616 * to use for a memory access with the given transaction attributes. 617 */ 618 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 619 620 /** 621 * cpu_virtio_is_big_endian: 622 * @cpu: CPU 623 624 * Returns %true if a CPU which supports runtime configurable endianness 625 * is currently big-endian. 626 */ 627 bool cpu_virtio_is_big_endian(CPUState *cpu); 628 629 #endif /* CONFIG_USER_ONLY */ 630 631 /** 632 * cpu_list_add: 633 * @cpu: The CPU to be added to the list of CPUs. 634 */ 635 void cpu_list_add(CPUState *cpu); 636 637 /** 638 * cpu_list_remove: 639 * @cpu: The CPU to be removed from the list of CPUs. 640 */ 641 void cpu_list_remove(CPUState *cpu); 642 643 /** 644 * cpu_reset: 645 * @cpu: The CPU whose state is to be reset. 646 */ 647 void cpu_reset(CPUState *cpu); 648 649 /** 650 * cpu_class_by_name: 651 * @typename: The CPU base type. 652 * @cpu_model: The model string without any parameters. 653 * 654 * Looks up a CPU #ObjectClass matching name @cpu_model. 655 * 656 * Returns: A #CPUClass or %NULL if not matching class is found. 657 */ 658 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 659 660 /** 661 * cpu_create: 662 * @typename: The CPU type. 663 * 664 * Instantiates a CPU and realizes the CPU. 665 * 666 * Returns: A #CPUState or %NULL if an error occurred. 667 */ 668 CPUState *cpu_create(const char *typename); 669 670 /** 671 * parse_cpu_option: 672 * @cpu_option: The -cpu option including optional parameters. 673 * 674 * processes optional parameters and registers them as global properties 675 * 676 * Returns: type of CPU to create or prints error and terminates process 677 * if an error occurred. 678 */ 679 const char *parse_cpu_option(const char *cpu_option); 680 681 /** 682 * cpu_has_work: 683 * @cpu: The vCPU to check. 684 * 685 * Checks whether the CPU has work to do. 686 * 687 * Returns: %true if the CPU has work, %false otherwise. 688 */ 689 static inline bool cpu_has_work(CPUState *cpu) 690 { 691 CPUClass *cc = CPU_GET_CLASS(cpu); 692 693 g_assert(cc->has_work); 694 return cc->has_work(cpu); 695 } 696 697 /** 698 * qemu_cpu_is_self: 699 * @cpu: The vCPU to check against. 700 * 701 * Checks whether the caller is executing on the vCPU thread. 702 * 703 * Returns: %true if called from @cpu's thread, %false otherwise. 704 */ 705 bool qemu_cpu_is_self(CPUState *cpu); 706 707 /** 708 * qemu_cpu_kick: 709 * @cpu: The vCPU to kick. 710 * 711 * Kicks @cpu's thread. 712 */ 713 void qemu_cpu_kick(CPUState *cpu); 714 715 /** 716 * cpu_is_stopped: 717 * @cpu: The CPU to check. 718 * 719 * Checks whether the CPU is stopped. 720 * 721 * Returns: %true if run state is not running or if artificially stopped; 722 * %false otherwise. 723 */ 724 bool cpu_is_stopped(CPUState *cpu); 725 726 /** 727 * do_run_on_cpu: 728 * @cpu: The vCPU to run on. 729 * @func: The function to be executed. 730 * @data: Data to pass to the function. 731 * @mutex: Mutex to release while waiting for @func to run. 732 * 733 * Used internally in the implementation of run_on_cpu. 734 */ 735 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 736 QemuMutex *mutex); 737 738 /** 739 * run_on_cpu: 740 * @cpu: The vCPU to run on. 741 * @func: The function to be executed. 742 * @data: Data to pass to the function. 743 * 744 * Schedules the function @func for execution on the vCPU @cpu. 745 */ 746 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 747 748 /** 749 * async_run_on_cpu: 750 * @cpu: The vCPU to run on. 751 * @func: The function to be executed. 752 * @data: Data to pass to the function. 753 * 754 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 755 */ 756 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 757 758 /** 759 * async_safe_run_on_cpu: 760 * @cpu: The vCPU to run on. 761 * @func: The function to be executed. 762 * @data: Data to pass to the function. 763 * 764 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 765 * while all other vCPUs are sleeping. 766 * 767 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 768 * BQL. 769 */ 770 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 771 772 /** 773 * cpu_in_exclusive_context() 774 * @cpu: The vCPU to check 775 * 776 * Returns true if @cpu is an exclusive context, for example running 777 * something which has previously been queued via async_safe_run_on_cpu(). 778 */ 779 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 780 { 781 return cpu->in_exclusive_context; 782 } 783 784 /** 785 * qemu_get_cpu: 786 * @index: The CPUState@cpu_index value of the CPU to obtain. 787 * 788 * Gets a CPU matching @index. 789 * 790 * Returns: The CPU or %NULL if there is no matching CPU. 791 */ 792 CPUState *qemu_get_cpu(int index); 793 794 /** 795 * cpu_exists: 796 * @id: Guest-exposed CPU ID to lookup. 797 * 798 * Search for CPU with specified ID. 799 * 800 * Returns: %true - CPU is found, %false - CPU isn't found. 801 */ 802 bool cpu_exists(int64_t id); 803 804 /** 805 * cpu_by_arch_id: 806 * @id: Guest-exposed CPU ID of the CPU to obtain. 807 * 808 * Get a CPU with matching @id. 809 * 810 * Returns: The CPU or %NULL if there is no matching CPU. 811 */ 812 CPUState *cpu_by_arch_id(int64_t id); 813 814 /** 815 * cpu_interrupt: 816 * @cpu: The CPU to set an interrupt on. 817 * @mask: The interrupts to set. 818 * 819 * Invokes the interrupt handler. 820 */ 821 822 void cpu_interrupt(CPUState *cpu, int mask); 823 824 /** 825 * cpu_set_pc: 826 * @cpu: The CPU to set the program counter for. 827 * @addr: Program counter value. 828 * 829 * Sets the program counter for a CPU. 830 */ 831 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 832 { 833 CPUClass *cc = CPU_GET_CLASS(cpu); 834 835 cc->set_pc(cpu, addr); 836 } 837 838 /** 839 * cpu_reset_interrupt: 840 * @cpu: The CPU to clear the interrupt on. 841 * @mask: The interrupt mask to clear. 842 * 843 * Resets interrupts on the vCPU @cpu. 844 */ 845 void cpu_reset_interrupt(CPUState *cpu, int mask); 846 847 /** 848 * cpu_exit: 849 * @cpu: The CPU to exit. 850 * 851 * Requests the CPU @cpu to exit execution. 852 */ 853 void cpu_exit(CPUState *cpu); 854 855 /** 856 * cpu_resume: 857 * @cpu: The CPU to resume. 858 * 859 * Resumes CPU, i.e. puts CPU into runnable state. 860 */ 861 void cpu_resume(CPUState *cpu); 862 863 /** 864 * cpu_remove_sync: 865 * @cpu: The CPU to remove. 866 * 867 * Requests the CPU to be removed and waits till it is removed. 868 */ 869 void cpu_remove_sync(CPUState *cpu); 870 871 /** 872 * process_queued_cpu_work() - process all items on CPU work queue 873 * @cpu: The CPU which work queue to process. 874 */ 875 void process_queued_cpu_work(CPUState *cpu); 876 877 /** 878 * cpu_exec_start: 879 * @cpu: The CPU for the current thread. 880 * 881 * Record that a CPU has started execution and can be interrupted with 882 * cpu_exit. 883 */ 884 void cpu_exec_start(CPUState *cpu); 885 886 /** 887 * cpu_exec_end: 888 * @cpu: The CPU for the current thread. 889 * 890 * Record that a CPU has stopped execution and exclusive sections 891 * can be executed without interrupting it. 892 */ 893 void cpu_exec_end(CPUState *cpu); 894 895 /** 896 * start_exclusive: 897 * 898 * Wait for a concurrent exclusive section to end, and then start 899 * a section of work that is run while other CPUs are not running 900 * between cpu_exec_start and cpu_exec_end. CPUs that are running 901 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 902 * during the exclusive section go to sleep until this CPU calls 903 * end_exclusive. 904 */ 905 void start_exclusive(void); 906 907 /** 908 * end_exclusive: 909 * 910 * Concludes an exclusive execution section started by start_exclusive. 911 */ 912 void end_exclusive(void); 913 914 /** 915 * qemu_init_vcpu: 916 * @cpu: The vCPU to initialize. 917 * 918 * Initializes a vCPU. 919 */ 920 void qemu_init_vcpu(CPUState *cpu); 921 922 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 923 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 924 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 925 926 /** 927 * cpu_single_step: 928 * @cpu: CPU to the flags for. 929 * @enabled: Flags to enable. 930 * 931 * Enables or disables single-stepping for @cpu. 932 */ 933 void cpu_single_step(CPUState *cpu, int enabled); 934 935 /* Breakpoint/watchpoint flags */ 936 #define BP_MEM_READ 0x01 937 #define BP_MEM_WRITE 0x02 938 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 939 #define BP_STOP_BEFORE_ACCESS 0x04 940 /* 0x08 currently unused */ 941 #define BP_GDB 0x10 942 #define BP_CPU 0x20 943 #define BP_ANY (BP_GDB | BP_CPU) 944 #define BP_WATCHPOINT_HIT_READ 0x40 945 #define BP_WATCHPOINT_HIT_WRITE 0x80 946 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 947 948 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 949 CPUBreakpoint **breakpoint); 950 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 951 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 952 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 953 954 /* Return true if PC matches an installed breakpoint. */ 955 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 956 { 957 CPUBreakpoint *bp; 958 959 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 960 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 961 if (bp->pc == pc && (bp->flags & mask)) { 962 return true; 963 } 964 } 965 } 966 return false; 967 } 968 969 #ifdef CONFIG_USER_ONLY 970 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 971 int flags, CPUWatchpoint **watchpoint) 972 { 973 return -ENOSYS; 974 } 975 976 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 977 vaddr len, int flags) 978 { 979 return -ENOSYS; 980 } 981 982 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 983 CPUWatchpoint *wp) 984 { 985 } 986 987 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 988 { 989 } 990 991 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 992 MemTxAttrs atr, int fl, uintptr_t ra) 993 { 994 } 995 996 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 997 vaddr addr, vaddr len) 998 { 999 return 0; 1000 } 1001 #else 1002 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1003 int flags, CPUWatchpoint **watchpoint); 1004 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1005 vaddr len, int flags); 1006 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1007 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1008 1009 /** 1010 * cpu_check_watchpoint: 1011 * @cpu: cpu context 1012 * @addr: guest virtual address 1013 * @len: access length 1014 * @attrs: memory access attributes 1015 * @flags: watchpoint access type 1016 * @ra: unwind return address 1017 * 1018 * Check for a watchpoint hit in [addr, addr+len) of the type 1019 * specified by @flags. Exit via exception with a hit. 1020 */ 1021 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1022 MemTxAttrs attrs, int flags, uintptr_t ra); 1023 1024 /** 1025 * cpu_watchpoint_address_matches: 1026 * @cpu: cpu context 1027 * @addr: guest virtual address 1028 * @len: access length 1029 * 1030 * Return the watchpoint flags that apply to [addr, addr+len). 1031 * If no watchpoint is registered for the range, the result is 0. 1032 */ 1033 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1034 #endif 1035 1036 /** 1037 * cpu_get_address_space: 1038 * @cpu: CPU to get address space from 1039 * @asidx: index identifying which address space to get 1040 * 1041 * Return the requested address space of this CPU. @asidx 1042 * specifies which address space to read. 1043 */ 1044 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1045 1046 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1047 GCC_FMT_ATTR(2, 3); 1048 1049 /* $(top_srcdir)/cpu.c */ 1050 void cpu_exec_initfn(CPUState *cpu); 1051 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1052 void cpu_exec_unrealizefn(CPUState *cpu); 1053 1054 /** 1055 * target_words_bigendian: 1056 * Returns true if the (default) endianness of the target is big endian, 1057 * false otherwise. Note that in target-specific code, you can use 1058 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1059 * code should normally never need to know about the endianness of the 1060 * target, so please do *not* use this function unless you know very well 1061 * what you are doing! 1062 */ 1063 bool target_words_bigendian(void); 1064 1065 #ifdef NEED_CPU_H 1066 1067 #ifdef CONFIG_SOFTMMU 1068 extern const VMStateDescription vmstate_cpu_common; 1069 #else 1070 #define vmstate_cpu_common vmstate_dummy 1071 #endif 1072 1073 #define VMSTATE_CPU() { \ 1074 .name = "parent_obj", \ 1075 .size = sizeof(CPUState), \ 1076 .vmsd = &vmstate_cpu_common, \ 1077 .flags = VMS_STRUCT, \ 1078 .offset = 0, \ 1079 } 1080 1081 #endif /* NEED_CPU_H */ 1082 1083 #define UNASSIGNED_CPU_INDEX -1 1084 #define UNASSIGNED_CLUSTER_INDEX -1 1085 1086 #endif 1087