xref: /openbmc/qemu/include/hw/core/cpu.h (revision 8535dd70)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 #include "qom/object.h"
34 
35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
36                                      void *opaque);
37 
38 /**
39  * vaddr:
40  * Type wide enough to contain any #target_ulong virtual address.
41  */
42 typedef uint64_t vaddr;
43 #define VADDR_PRId PRId64
44 #define VADDR_PRIu PRIu64
45 #define VADDR_PRIo PRIo64
46 #define VADDR_PRIx PRIx64
47 #define VADDR_PRIX PRIX64
48 #define VADDR_MAX UINT64_MAX
49 
50 /**
51  * SECTION:cpu
52  * @section_id: QEMU-cpu
53  * @title: CPU Class
54  * @short_description: Base class for all CPUs
55  */
56 
57 #define TYPE_CPU "cpu"
58 
59 /* Since this macro is used a lot in hot code paths and in conjunction with
60  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
61  * an unchecked cast.
62  */
63 #define CPU(obj) ((CPUState *)(obj))
64 
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 typedef enum MMUAccessType {
70     MMU_DATA_LOAD  = 0,
71     MMU_DATA_STORE = 1,
72     MMU_INST_FETCH = 2
73 } MMUAccessType;
74 
75 typedef struct CPUWatchpoint CPUWatchpoint;
76 
77 struct TranslationBlock;
78 
79 /**
80  * struct TcgCpuOperations: TCG operations specific to a CPU class
81  */
82 typedef struct TcgCpuOperations {
83     /**
84      * @initialize: Initalize TCG state
85      *
86      * Called when the first CPU is realized.
87      */
88     void (*initialize)(void);
89     /**
90      * @synchronize_from_tb: Synchronize state from a TCG #TranslationBlock
91      *
92      * This is called when we abandon execution of a TB before starting it,
93      * and must set all parts of the CPU state which the previous TB in the
94      * chain may not have updated.
95      * By default, when this is NULL, a call is made to @set_pc(tb->pc).
96      *
97      * If more state needs to be restored, the target must implement a
98      * function to restore all the state, and register it here.
99      */
100     void (*synchronize_from_tb)(CPUState *cpu,
101                                 const struct TranslationBlock *tb);
102     /** @cpu_exec_enter: Callback for cpu_exec preparation */
103     void (*cpu_exec_enter)(CPUState *cpu);
104     /** @cpu_exec_exit: Callback for cpu_exec cleanup */
105     void (*cpu_exec_exit)(CPUState *cpu);
106     /** @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec */
107     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
108     /** @do_interrupt: Callback for interrupt handling. */
109     void (*do_interrupt)(CPUState *cpu);
110     /**
111      * @tlb_fill: Handle a softmmu tlb miss or user-only address fault
112      *
113      * For system mode, if the access is valid, call tlb_set_page
114      * and return true; if the access is invalid, and probe is
115      * true, return false; otherwise raise an exception and do
116      * not return.  For user-only mode, always raise an exception
117      * and do not return.
118      */
119     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
120                      MMUAccessType access_type, int mmu_idx,
121                      bool probe, uintptr_t retaddr);
122     /** @debug_excp_handler: Callback for handling debug exceptions */
123     void (*debug_excp_handler)(CPUState *cpu);
124 
125     /**
126      * @do_transaction_failed: Callback for handling failed memory transactions
127      * (ie bus faults or external aborts; not MMU faults)
128      */
129     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
130                                   unsigned size, MMUAccessType access_type,
131                                   int mmu_idx, MemTxAttrs attrs,
132                                   MemTxResult response, uintptr_t retaddr);
133     /**
134      * @do_unaligned_access: Callback for unaligned access handling
135      */
136     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
137                                 MMUAccessType access_type,
138                                 int mmu_idx, uintptr_t retaddr);
139 } TcgCpuOperations;
140 
141 /**
142  * CPUClass:
143  * @class_by_name: Callback to map -cpu command line model name to an
144  * instantiatable CPU type.
145  * @parse_features: Callback to parse command line arguments.
146  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
147  * @has_work: Callback for checking if there is work to do.
148  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
149  * runtime configurable endianness is currently big-endian. Non-configurable
150  * CPUs can use the default implementation of this method. This method should
151  * not be used by any callers other than the pre-1.0 virtio devices.
152  * @memory_rw_debug: Callback for GDB memory access.
153  * @dump_state: Callback for dumping state.
154  * @dump_statistics: Callback for dumping statistics.
155  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
156  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
157  * @get_memory_mapping: Callback for obtaining the memory mappings.
158  * @set_pc: Callback for setting the Program Counter register. This
159  *       should have the semantics used by the target architecture when
160  *       setting the PC from a source such as an ELF file entry point;
161  *       for example on Arm it will also set the Thumb mode bit based
162  *       on the least significant bit of the new PC value.
163  *       If the target behaviour here is anything other than "set
164  *       the PC register to the value passed in" then the target must
165  *       also implement the synchronize_from_tb hook.
166  * @get_phys_page_debug: Callback for obtaining a physical address.
167  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
168  *       associated memory transaction attributes to use for the access.
169  *       CPUs which use memory transaction attributes should implement this
170  *       instead of get_phys_page_debug.
171  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
172  *       a memory access with the specified memory transaction attributes.
173  * @gdb_read_register: Callback for letting GDB read a register.
174  * @gdb_write_register: Callback for letting GDB write a register.
175  * @debug_check_watchpoint: Callback: return true if the architectural
176  *       watchpoint whose address has matched should really fire.
177  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
178  * 64-bit VM coredump.
179  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
180  * note to a 32-bit VM coredump.
181  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
182  * 32-bit VM coredump.
183  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
184  * note to a 32-bit VM coredump.
185  * @vmsd: State description for migration.
186  * @gdb_num_core_regs: Number of core registers accessible to GDB.
187  * @gdb_core_xml_file: File name for core registers GDB XML description.
188  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
189  *           before the insn which triggers a watchpoint rather than after it.
190  * @gdb_arch_name: Optional callback that returns the architecture name known
191  * to GDB. The caller must free the returned string with g_free.
192  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
193  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
194  *   or NULL if the CPU doesn't have a dynamically generated content for it.
195  * @disas_set_info: Setup architecture specific components of disassembly info
196  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
197  * address before attempting to match it against watchpoints.
198  * @deprecation_note: If this CPUClass is deprecated, this field provides
199  *                    related information.
200  *
201  * Represents a CPU family or model.
202  */
203 struct CPUClass {
204     /*< private >*/
205     DeviceClass parent_class;
206     /*< public >*/
207 
208     ObjectClass *(*class_by_name)(const char *cpu_model);
209     void (*parse_features)(const char *typename, char *str, Error **errp);
210 
211     int reset_dump_flags;
212     bool (*has_work)(CPUState *cpu);
213     bool (*virtio_is_big_endian)(CPUState *cpu);
214     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
215                            uint8_t *buf, int len, bool is_write);
216     void (*dump_state)(CPUState *cpu, FILE *, int flags);
217     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
218     void (*dump_statistics)(CPUState *cpu, int flags);
219     int64_t (*get_arch_id)(CPUState *cpu);
220     bool (*get_paging_enabled)(const CPUState *cpu);
221     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
222                                Error **errp);
223     void (*set_pc)(CPUState *cpu, vaddr value);
224     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
225     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
226                                         MemTxAttrs *attrs);
227     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
228     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
229     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
230     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
231 
232     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
233                             int cpuid, void *opaque);
234     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
235                                 void *opaque);
236     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
237                             int cpuid, void *opaque);
238     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
239                                 void *opaque);
240 
241     const VMStateDescription *vmsd;
242     const char *gdb_core_xml_file;
243     gchar * (*gdb_arch_name)(CPUState *cpu);
244     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
245 
246     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
247     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
248 
249     const char *deprecation_note;
250     /* Keep non-pointer data at the end to minimize holes.  */
251     int gdb_num_core_regs;
252     bool gdb_stop_before_watchpoint;
253 
254     TcgCpuOperations tcg_ops;
255 };
256 
257 /*
258  * Low 16 bits: number of cycles left, used only in icount mode.
259  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
260  * for this CPU and return to its top level loop (even in non-icount mode).
261  * This allows a single read-compare-cbranch-write sequence to test
262  * for both decrementer underflow and exceptions.
263  */
264 typedef union IcountDecr {
265     uint32_t u32;
266     struct {
267 #ifdef HOST_WORDS_BIGENDIAN
268         uint16_t high;
269         uint16_t low;
270 #else
271         uint16_t low;
272         uint16_t high;
273 #endif
274     } u16;
275 } IcountDecr;
276 
277 typedef struct CPUBreakpoint {
278     vaddr pc;
279     int flags; /* BP_* */
280     QTAILQ_ENTRY(CPUBreakpoint) entry;
281 } CPUBreakpoint;
282 
283 struct CPUWatchpoint {
284     vaddr vaddr;
285     vaddr len;
286     vaddr hitaddr;
287     MemTxAttrs hitattrs;
288     int flags; /* BP_* */
289     QTAILQ_ENTRY(CPUWatchpoint) entry;
290 };
291 
292 #ifdef CONFIG_PLUGIN
293 /*
294  * For plugins we sometime need to save the resolved iotlb data before
295  * the memory regions get moved around  by io_writex.
296  */
297 typedef struct SavedIOTLB {
298     hwaddr addr;
299     MemoryRegionSection *section;
300     hwaddr mr_offset;
301 } SavedIOTLB;
302 #endif
303 
304 struct KVMState;
305 struct kvm_run;
306 
307 struct hax_vcpu_state;
308 
309 #define TB_JMP_CACHE_BITS 12
310 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
311 
312 /* work queue */
313 
314 /* The union type allows passing of 64 bit target pointers on 32 bit
315  * hosts in a single parameter
316  */
317 typedef union {
318     int           host_int;
319     unsigned long host_ulong;
320     void         *host_ptr;
321     vaddr         target_ptr;
322 } run_on_cpu_data;
323 
324 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
325 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
326 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
327 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
328 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
329 
330 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
331 
332 struct qemu_work_item;
333 
334 #define CPU_UNSET_NUMA_NODE_ID -1
335 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
336 
337 /**
338  * CPUState:
339  * @cpu_index: CPU index (informative).
340  * @cluster_index: Identifies which cluster this CPU is in.
341  *   For boards which don't define clusters or for "loose" CPUs not assigned
342  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
343  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
344  *   QOM parent.
345  * @nr_cores: Number of cores within this CPU package.
346  * @nr_threads: Number of threads within this CPU.
347  * @running: #true if CPU is currently running (lockless).
348  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
349  * valid under cpu_list_lock.
350  * @created: Indicates whether the CPU thread has been successfully created.
351  * @interrupt_request: Indicates a pending interrupt request.
352  * @halted: Nonzero if the CPU is in suspended state.
353  * @stop: Indicates a pending stop request.
354  * @stopped: Indicates the CPU has been artificially stopped.
355  * @unplug: Indicates a pending CPU unplug request.
356  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
357  * @singlestep_enabled: Flags for single-stepping.
358  * @icount_extra: Instructions until next timer event.
359  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
360  * requires that IO only be performed on the last instruction of a TB
361  * so that interrupts take effect immediately.
362  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
363  *            AddressSpaces this CPU has)
364  * @num_ases: number of CPUAddressSpaces in @cpu_ases
365  * @as: Pointer to the first AddressSpace, for the convenience of targets which
366  *      only have a single AddressSpace
367  * @env_ptr: Pointer to subclass-specific CPUArchState field.
368  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
369  * @gdb_regs: Additional GDB registers.
370  * @gdb_num_regs: Number of total registers accessible to GDB.
371  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
372  * @next_cpu: Next CPU sharing TB cache.
373  * @opaque: User data.
374  * @mem_io_pc: Host Program Counter at which the memory was accessed.
375  * @kvm_fd: vCPU file descriptor for KVM.
376  * @work_mutex: Lock to prevent multiple access to @work_list.
377  * @work_list: List of pending asynchronous work.
378  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
379  *                        to @trace_dstate).
380  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
381  * @plugin_mask: Plugin event bitmap. Modified only via async work.
382  * @ignore_memory_transaction_failures: Cached copy of the MachineState
383  *    flag of the same name: allows the board to suppress calling of the
384  *    CPU do_transaction_failed hook function.
385  *
386  * State of one CPU core or thread.
387  */
388 struct CPUState {
389     /*< private >*/
390     DeviceState parent_obj;
391     /*< public >*/
392 
393     int nr_cores;
394     int nr_threads;
395 
396     struct QemuThread *thread;
397 #ifdef _WIN32
398     HANDLE hThread;
399 #endif
400     int thread_id;
401     bool running, has_waiter;
402     struct QemuCond *halt_cond;
403     bool thread_kicked;
404     bool created;
405     bool stop;
406     bool stopped;
407 
408     /* Should CPU start in powered-off state? */
409     bool start_powered_off;
410 
411     bool unplug;
412     bool crash_occurred;
413     bool exit_request;
414     bool in_exclusive_context;
415     uint32_t cflags_next_tb;
416     /* updates protected by BQL */
417     uint32_t interrupt_request;
418     int singlestep_enabled;
419     int64_t icount_budget;
420     int64_t icount_extra;
421     uint64_t random_seed;
422     sigjmp_buf jmp_env;
423 
424     QemuMutex work_mutex;
425     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
426 
427     CPUAddressSpace *cpu_ases;
428     int num_ases;
429     AddressSpace *as;
430     MemoryRegion *memory;
431 
432     void *env_ptr; /* CPUArchState */
433     IcountDecr *icount_decr_ptr;
434 
435     /* Accessed in parallel; all accesses must be atomic */
436     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
437 
438     struct GDBRegisterState *gdb_regs;
439     int gdb_num_regs;
440     int gdb_num_g_regs;
441     QTAILQ_ENTRY(CPUState) node;
442 
443     /* ice debug support */
444     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
445 
446     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
447     CPUWatchpoint *watchpoint_hit;
448 
449     void *opaque;
450 
451     /* In order to avoid passing too many arguments to the MMIO helpers,
452      * we store some rarely used information in the CPU context.
453      */
454     uintptr_t mem_io_pc;
455 
456     int kvm_fd;
457     struct KVMState *kvm_state;
458     struct kvm_run *kvm_run;
459 
460     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
461     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
462     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
463 
464     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
465 
466 #ifdef CONFIG_PLUGIN
467     GArray *plugin_mem_cbs;
468     /* saved iotlb data from io_writex */
469     SavedIOTLB saved_iotlb;
470 #endif
471 
472     /* TODO Move common fields from CPUArchState here. */
473     int cpu_index;
474     int cluster_index;
475     uint32_t halted;
476     uint32_t can_do_io;
477     int32_t exception_index;
478 
479     /* shared by kvm, hax and hvf */
480     bool vcpu_dirty;
481 
482     /* Used to keep track of an outstanding cpu throttle thread for migration
483      * autoconverge
484      */
485     bool throttle_thread_scheduled;
486 
487     bool ignore_memory_transaction_failures;
488 
489     struct hax_vcpu_state *hax_vcpu;
490 
491     int hvf_fd;
492 
493     /* track IOMMUs whose translations we've cached in the TCG TLB */
494     GArray *iommu_notifiers;
495 };
496 
497 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
498 extern CPUTailQ cpus;
499 
500 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
501 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
502 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
503 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
504     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
505 
506 extern __thread CPUState *current_cpu;
507 
508 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
509 {
510     unsigned int i;
511 
512     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
513         qatomic_set(&cpu->tb_jmp_cache[i], NULL);
514     }
515 }
516 
517 /**
518  * qemu_tcg_mttcg_enabled:
519  * Check whether we are running MultiThread TCG or not.
520  *
521  * Returns: %true if we are in MTTCG mode %false otherwise.
522  */
523 extern bool mttcg_enabled;
524 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
525 
526 /**
527  * cpu_paging_enabled:
528  * @cpu: The CPU whose state is to be inspected.
529  *
530  * Returns: %true if paging is enabled, %false otherwise.
531  */
532 bool cpu_paging_enabled(const CPUState *cpu);
533 
534 /**
535  * cpu_get_memory_mapping:
536  * @cpu: The CPU whose memory mappings are to be obtained.
537  * @list: Where to write the memory mappings to.
538  * @errp: Pointer for reporting an #Error.
539  */
540 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
541                             Error **errp);
542 
543 #if !defined(CONFIG_USER_ONLY)
544 
545 /**
546  * cpu_write_elf64_note:
547  * @f: pointer to a function that writes memory to a file
548  * @cpu: The CPU whose memory is to be dumped
549  * @cpuid: ID number of the CPU
550  * @opaque: pointer to the CPUState struct
551  */
552 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
553                          int cpuid, void *opaque);
554 
555 /**
556  * cpu_write_elf64_qemunote:
557  * @f: pointer to a function that writes memory to a file
558  * @cpu: The CPU whose memory is to be dumped
559  * @cpuid: ID number of the CPU
560  * @opaque: pointer to the CPUState struct
561  */
562 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
563                              void *opaque);
564 
565 /**
566  * cpu_write_elf32_note:
567  * @f: pointer to a function that writes memory to a file
568  * @cpu: The CPU whose memory is to be dumped
569  * @cpuid: ID number of the CPU
570  * @opaque: pointer to the CPUState struct
571  */
572 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
573                          int cpuid, void *opaque);
574 
575 /**
576  * cpu_write_elf32_qemunote:
577  * @f: pointer to a function that writes memory to a file
578  * @cpu: The CPU whose memory is to be dumped
579  * @cpuid: ID number of the CPU
580  * @opaque: pointer to the CPUState struct
581  */
582 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
583                              void *opaque);
584 
585 /**
586  * cpu_get_crash_info:
587  * @cpu: The CPU to get crash information for
588  *
589  * Gets the previously saved crash information.
590  * Caller is responsible for freeing the data.
591  */
592 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
593 
594 #endif /* !CONFIG_USER_ONLY */
595 
596 /**
597  * CPUDumpFlags:
598  * @CPU_DUMP_CODE:
599  * @CPU_DUMP_FPU: dump FPU register state, not just integer
600  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
601  */
602 enum CPUDumpFlags {
603     CPU_DUMP_CODE = 0x00010000,
604     CPU_DUMP_FPU  = 0x00020000,
605     CPU_DUMP_CCOP = 0x00040000,
606 };
607 
608 /**
609  * cpu_dump_state:
610  * @cpu: The CPU whose state is to be dumped.
611  * @f: If non-null, dump to this stream, else to current print sink.
612  *
613  * Dumps CPU state.
614  */
615 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
616 
617 /**
618  * cpu_dump_statistics:
619  * @cpu: The CPU whose state is to be dumped.
620  * @flags: Flags what to dump.
621  *
622  * Dump CPU statistics to the current monitor if we have one, else to
623  * stdout.
624  */
625 void cpu_dump_statistics(CPUState *cpu, int flags);
626 
627 #ifndef CONFIG_USER_ONLY
628 /**
629  * cpu_get_phys_page_attrs_debug:
630  * @cpu: The CPU to obtain the physical page address for.
631  * @addr: The virtual address.
632  * @attrs: Updated on return with the memory transaction attributes to use
633  *         for this access.
634  *
635  * Obtains the physical page corresponding to a virtual one, together
636  * with the corresponding memory transaction attributes to use for the access.
637  * Use it only for debugging because no protection checks are done.
638  *
639  * Returns: Corresponding physical page address or -1 if no page found.
640  */
641 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
642                                                    MemTxAttrs *attrs)
643 {
644     CPUClass *cc = CPU_GET_CLASS(cpu);
645 
646     if (cc->get_phys_page_attrs_debug) {
647         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
648     }
649     /* Fallback for CPUs which don't implement the _attrs_ hook */
650     *attrs = MEMTXATTRS_UNSPECIFIED;
651     return cc->get_phys_page_debug(cpu, addr);
652 }
653 
654 /**
655  * cpu_get_phys_page_debug:
656  * @cpu: The CPU to obtain the physical page address for.
657  * @addr: The virtual address.
658  *
659  * Obtains the physical page corresponding to a virtual one.
660  * Use it only for debugging because no protection checks are done.
661  *
662  * Returns: Corresponding physical page address or -1 if no page found.
663  */
664 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
665 {
666     MemTxAttrs attrs = {};
667 
668     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
669 }
670 
671 /** cpu_asidx_from_attrs:
672  * @cpu: CPU
673  * @attrs: memory transaction attributes
674  *
675  * Returns the address space index specifying the CPU AddressSpace
676  * to use for a memory access with the given transaction attributes.
677  */
678 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
679 {
680     CPUClass *cc = CPU_GET_CLASS(cpu);
681     int ret = 0;
682 
683     if (cc->asidx_from_attrs) {
684         ret = cc->asidx_from_attrs(cpu, attrs);
685         assert(ret < cpu->num_ases && ret >= 0);
686     }
687     return ret;
688 }
689 
690 #endif /* CONFIG_USER_ONLY */
691 
692 /**
693  * cpu_list_add:
694  * @cpu: The CPU to be added to the list of CPUs.
695  */
696 void cpu_list_add(CPUState *cpu);
697 
698 /**
699  * cpu_list_remove:
700  * @cpu: The CPU to be removed from the list of CPUs.
701  */
702 void cpu_list_remove(CPUState *cpu);
703 
704 /**
705  * cpu_reset:
706  * @cpu: The CPU whose state is to be reset.
707  */
708 void cpu_reset(CPUState *cpu);
709 
710 /**
711  * cpu_class_by_name:
712  * @typename: The CPU base type.
713  * @cpu_model: The model string without any parameters.
714  *
715  * Looks up a CPU #ObjectClass matching name @cpu_model.
716  *
717  * Returns: A #CPUClass or %NULL if not matching class is found.
718  */
719 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
720 
721 /**
722  * cpu_create:
723  * @typename: The CPU type.
724  *
725  * Instantiates a CPU and realizes the CPU.
726  *
727  * Returns: A #CPUState or %NULL if an error occurred.
728  */
729 CPUState *cpu_create(const char *typename);
730 
731 /**
732  * parse_cpu_option:
733  * @cpu_option: The -cpu option including optional parameters.
734  *
735  * processes optional parameters and registers them as global properties
736  *
737  * Returns: type of CPU to create or prints error and terminates process
738  *          if an error occurred.
739  */
740 const char *parse_cpu_option(const char *cpu_option);
741 
742 /**
743  * cpu_has_work:
744  * @cpu: The vCPU to check.
745  *
746  * Checks whether the CPU has work to do.
747  *
748  * Returns: %true if the CPU has work, %false otherwise.
749  */
750 static inline bool cpu_has_work(CPUState *cpu)
751 {
752     CPUClass *cc = CPU_GET_CLASS(cpu);
753 
754     g_assert(cc->has_work);
755     return cc->has_work(cpu);
756 }
757 
758 /**
759  * qemu_cpu_is_self:
760  * @cpu: The vCPU to check against.
761  *
762  * Checks whether the caller is executing on the vCPU thread.
763  *
764  * Returns: %true if called from @cpu's thread, %false otherwise.
765  */
766 bool qemu_cpu_is_self(CPUState *cpu);
767 
768 /**
769  * qemu_cpu_kick:
770  * @cpu: The vCPU to kick.
771  *
772  * Kicks @cpu's thread.
773  */
774 void qemu_cpu_kick(CPUState *cpu);
775 
776 /**
777  * cpu_is_stopped:
778  * @cpu: The CPU to check.
779  *
780  * Checks whether the CPU is stopped.
781  *
782  * Returns: %true if run state is not running or if artificially stopped;
783  * %false otherwise.
784  */
785 bool cpu_is_stopped(CPUState *cpu);
786 
787 /**
788  * do_run_on_cpu:
789  * @cpu: The vCPU to run on.
790  * @func: The function to be executed.
791  * @data: Data to pass to the function.
792  * @mutex: Mutex to release while waiting for @func to run.
793  *
794  * Used internally in the implementation of run_on_cpu.
795  */
796 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
797                    QemuMutex *mutex);
798 
799 /**
800  * run_on_cpu:
801  * @cpu: The vCPU to run on.
802  * @func: The function to be executed.
803  * @data: Data to pass to the function.
804  *
805  * Schedules the function @func for execution on the vCPU @cpu.
806  */
807 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
808 
809 /**
810  * async_run_on_cpu:
811  * @cpu: The vCPU to run on.
812  * @func: The function to be executed.
813  * @data: Data to pass to the function.
814  *
815  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
816  */
817 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
818 
819 /**
820  * async_safe_run_on_cpu:
821  * @cpu: The vCPU to run on.
822  * @func: The function to be executed.
823  * @data: Data to pass to the function.
824  *
825  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
826  * while all other vCPUs are sleeping.
827  *
828  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
829  * BQL.
830  */
831 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
832 
833 /**
834  * cpu_in_exclusive_context()
835  * @cpu: The vCPU to check
836  *
837  * Returns true if @cpu is an exclusive context, for example running
838  * something which has previously been queued via async_safe_run_on_cpu().
839  */
840 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
841 {
842     return cpu->in_exclusive_context;
843 }
844 
845 /**
846  * qemu_get_cpu:
847  * @index: The CPUState@cpu_index value of the CPU to obtain.
848  *
849  * Gets a CPU matching @index.
850  *
851  * Returns: The CPU or %NULL if there is no matching CPU.
852  */
853 CPUState *qemu_get_cpu(int index);
854 
855 /**
856  * cpu_exists:
857  * @id: Guest-exposed CPU ID to lookup.
858  *
859  * Search for CPU with specified ID.
860  *
861  * Returns: %true - CPU is found, %false - CPU isn't found.
862  */
863 bool cpu_exists(int64_t id);
864 
865 /**
866  * cpu_by_arch_id:
867  * @id: Guest-exposed CPU ID of the CPU to obtain.
868  *
869  * Get a CPU with matching @id.
870  *
871  * Returns: The CPU or %NULL if there is no matching CPU.
872  */
873 CPUState *cpu_by_arch_id(int64_t id);
874 
875 /**
876  * cpu_interrupt:
877  * @cpu: The CPU to set an interrupt on.
878  * @mask: The interrupts to set.
879  *
880  * Invokes the interrupt handler.
881  */
882 
883 void cpu_interrupt(CPUState *cpu, int mask);
884 
885 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
886                                         MMUAccessType access_type,
887                                         int mmu_idx, uintptr_t retaddr)
888 {
889     CPUClass *cc = CPU_GET_CLASS(cpu);
890 
891     cc->tcg_ops.do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
892 }
893 
894 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
895                                           vaddr addr, unsigned size,
896                                           MMUAccessType access_type,
897                                           int mmu_idx, MemTxAttrs attrs,
898                                           MemTxResult response,
899                                           uintptr_t retaddr)
900 {
901     CPUClass *cc = CPU_GET_CLASS(cpu);
902 
903     if (!cpu->ignore_memory_transaction_failures &&
904         cc->tcg_ops.do_transaction_failed) {
905         cc->tcg_ops.do_transaction_failed(cpu, physaddr, addr, size,
906                                           access_type, mmu_idx, attrs,
907                                           response, retaddr);
908     }
909 }
910 
911 /**
912  * cpu_set_pc:
913  * @cpu: The CPU to set the program counter for.
914  * @addr: Program counter value.
915  *
916  * Sets the program counter for a CPU.
917  */
918 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
919 {
920     CPUClass *cc = CPU_GET_CLASS(cpu);
921 
922     cc->set_pc(cpu, addr);
923 }
924 
925 /**
926  * cpu_reset_interrupt:
927  * @cpu: The CPU to clear the interrupt on.
928  * @mask: The interrupt mask to clear.
929  *
930  * Resets interrupts on the vCPU @cpu.
931  */
932 void cpu_reset_interrupt(CPUState *cpu, int mask);
933 
934 /**
935  * cpu_exit:
936  * @cpu: The CPU to exit.
937  *
938  * Requests the CPU @cpu to exit execution.
939  */
940 void cpu_exit(CPUState *cpu);
941 
942 /**
943  * cpu_resume:
944  * @cpu: The CPU to resume.
945  *
946  * Resumes CPU, i.e. puts CPU into runnable state.
947  */
948 void cpu_resume(CPUState *cpu);
949 
950 /**
951  * cpu_remove_sync:
952  * @cpu: The CPU to remove.
953  *
954  * Requests the CPU to be removed and waits till it is removed.
955  */
956 void cpu_remove_sync(CPUState *cpu);
957 
958 /**
959  * process_queued_cpu_work() - process all items on CPU work queue
960  * @cpu: The CPU which work queue to process.
961  */
962 void process_queued_cpu_work(CPUState *cpu);
963 
964 /**
965  * cpu_exec_start:
966  * @cpu: The CPU for the current thread.
967  *
968  * Record that a CPU has started execution and can be interrupted with
969  * cpu_exit.
970  */
971 void cpu_exec_start(CPUState *cpu);
972 
973 /**
974  * cpu_exec_end:
975  * @cpu: The CPU for the current thread.
976  *
977  * Record that a CPU has stopped execution and exclusive sections
978  * can be executed without interrupting it.
979  */
980 void cpu_exec_end(CPUState *cpu);
981 
982 /**
983  * start_exclusive:
984  *
985  * Wait for a concurrent exclusive section to end, and then start
986  * a section of work that is run while other CPUs are not running
987  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
988  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
989  * during the exclusive section go to sleep until this CPU calls
990  * end_exclusive.
991  */
992 void start_exclusive(void);
993 
994 /**
995  * end_exclusive:
996  *
997  * Concludes an exclusive execution section started by start_exclusive.
998  */
999 void end_exclusive(void);
1000 
1001 /**
1002  * qemu_init_vcpu:
1003  * @cpu: The vCPU to initialize.
1004  *
1005  * Initializes a vCPU.
1006  */
1007 void qemu_init_vcpu(CPUState *cpu);
1008 
1009 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1010 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1011 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1012 
1013 /**
1014  * cpu_single_step:
1015  * @cpu: CPU to the flags for.
1016  * @enabled: Flags to enable.
1017  *
1018  * Enables or disables single-stepping for @cpu.
1019  */
1020 void cpu_single_step(CPUState *cpu, int enabled);
1021 
1022 /* Breakpoint/watchpoint flags */
1023 #define BP_MEM_READ           0x01
1024 #define BP_MEM_WRITE          0x02
1025 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1026 #define BP_STOP_BEFORE_ACCESS 0x04
1027 /* 0x08 currently unused */
1028 #define BP_GDB                0x10
1029 #define BP_CPU                0x20
1030 #define BP_ANY                (BP_GDB | BP_CPU)
1031 #define BP_WATCHPOINT_HIT_READ 0x40
1032 #define BP_WATCHPOINT_HIT_WRITE 0x80
1033 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1034 
1035 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1036                           CPUBreakpoint **breakpoint);
1037 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1038 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1039 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1040 
1041 /* Return true if PC matches an installed breakpoint.  */
1042 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1043 {
1044     CPUBreakpoint *bp;
1045 
1046     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1047         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1048             if (bp->pc == pc && (bp->flags & mask)) {
1049                 return true;
1050             }
1051         }
1052     }
1053     return false;
1054 }
1055 
1056 #ifdef CONFIG_USER_ONLY
1057 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1058                                         int flags, CPUWatchpoint **watchpoint)
1059 {
1060     return -ENOSYS;
1061 }
1062 
1063 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1064                                         vaddr len, int flags)
1065 {
1066     return -ENOSYS;
1067 }
1068 
1069 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1070                                                 CPUWatchpoint *wp)
1071 {
1072 }
1073 
1074 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1075 {
1076 }
1077 
1078 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1079                                         MemTxAttrs atr, int fl, uintptr_t ra)
1080 {
1081 }
1082 
1083 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1084                                                  vaddr addr, vaddr len)
1085 {
1086     return 0;
1087 }
1088 #else
1089 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1090                           int flags, CPUWatchpoint **watchpoint);
1091 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1092                           vaddr len, int flags);
1093 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1094 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1095 
1096 /**
1097  * cpu_check_watchpoint:
1098  * @cpu: cpu context
1099  * @addr: guest virtual address
1100  * @len: access length
1101  * @attrs: memory access attributes
1102  * @flags: watchpoint access type
1103  * @ra: unwind return address
1104  *
1105  * Check for a watchpoint hit in [addr, addr+len) of the type
1106  * specified by @flags.  Exit via exception with a hit.
1107  */
1108 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1109                           MemTxAttrs attrs, int flags, uintptr_t ra);
1110 
1111 /**
1112  * cpu_watchpoint_address_matches:
1113  * @cpu: cpu context
1114  * @addr: guest virtual address
1115  * @len: access length
1116  *
1117  * Return the watchpoint flags that apply to [addr, addr+len).
1118  * If no watchpoint is registered for the range, the result is 0.
1119  */
1120 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1121 #endif
1122 
1123 /**
1124  * cpu_get_address_space:
1125  * @cpu: CPU to get address space from
1126  * @asidx: index identifying which address space to get
1127  *
1128  * Return the requested address space of this CPU. @asidx
1129  * specifies which address space to read.
1130  */
1131 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1132 
1133 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1134     GCC_FMT_ATTR(2, 3);
1135 
1136 /* $(top_srcdir)/cpu.c */
1137 void cpu_exec_initfn(CPUState *cpu);
1138 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1139 void cpu_exec_unrealizefn(CPUState *cpu);
1140 
1141 /**
1142  * target_words_bigendian:
1143  * Returns true if the (default) endianness of the target is big endian,
1144  * false otherwise. Note that in target-specific code, you can use
1145  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1146  * code should normally never need to know about the endianness of the
1147  * target, so please do *not* use this function unless you know very well
1148  * what you are doing!
1149  */
1150 bool target_words_bigendian(void);
1151 
1152 #ifdef NEED_CPU_H
1153 
1154 #ifdef CONFIG_SOFTMMU
1155 extern const VMStateDescription vmstate_cpu_common;
1156 #else
1157 #define vmstate_cpu_common vmstate_dummy
1158 #endif
1159 
1160 #define VMSTATE_CPU() {                                                     \
1161     .name = "parent_obj",                                                   \
1162     .size = sizeof(CPUState),                                               \
1163     .vmsd = &vmstate_cpu_common,                                            \
1164     .flags = VMS_STRUCT,                                                    \
1165     .offset = 0,                                                            \
1166 }
1167 
1168 #endif /* NEED_CPU_H */
1169 
1170 #define UNASSIGNED_CPU_INDEX -1
1171 #define UNASSIGNED_CLUSTER_INDEX -1
1172 
1173 #endif
1174