xref: /openbmc/qemu/include/hw/core/cpu.h (revision 7df5e3d6ad569f004d6aa943e8b60ab25875b577)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 #include "qom/object.h"
34 
35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
36                                      void *opaque);
37 
38 /**
39  * vaddr:
40  * Type wide enough to contain any #target_ulong virtual address.
41  */
42 typedef uint64_t vaddr;
43 #define VADDR_PRId PRId64
44 #define VADDR_PRIu PRIu64
45 #define VADDR_PRIo PRIo64
46 #define VADDR_PRIx PRIx64
47 #define VADDR_PRIX PRIX64
48 #define VADDR_MAX UINT64_MAX
49 
50 /**
51  * SECTION:cpu
52  * @section_id: QEMU-cpu
53  * @title: CPU Class
54  * @short_description: Base class for all CPUs
55  */
56 
57 #define TYPE_CPU "cpu"
58 
59 /* Since this macro is used a lot in hot code paths and in conjunction with
60  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
61  * an unchecked cast.
62  */
63 #define CPU(obj) ((CPUState *)(obj))
64 
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 typedef enum MMUAccessType {
70     MMU_DATA_LOAD  = 0,
71     MMU_DATA_STORE = 1,
72     MMU_INST_FETCH = 2
73 } MMUAccessType;
74 
75 typedef struct CPUWatchpoint CPUWatchpoint;
76 
77 struct TranslationBlock;
78 
79 /**
80  * struct TcgCpuOperations: TCG operations specific to a CPU class
81  */
82 typedef struct TcgCpuOperations {
83     /**
84      * @initialize: Initalize TCG state
85      *
86      * Called when the first CPU is realized.
87      */
88     void (*initialize)(void);
89 
90 } TcgCpuOperations;
91 
92 /**
93  * CPUClass:
94  * @class_by_name: Callback to map -cpu command line model name to an
95  * instantiatable CPU type.
96  * @parse_features: Callback to parse command line arguments.
97  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
98  * @has_work: Callback for checking if there is work to do.
99  * @do_interrupt: Callback for interrupt handling.
100  * @do_unaligned_access: Callback for unaligned access handling, if
101  * the target defines #TARGET_ALIGNED_ONLY.
102  * @do_transaction_failed: Callback for handling failed memory transactions
103  * (ie bus faults or external aborts; not MMU faults)
104  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
105  * runtime configurable endianness is currently big-endian. Non-configurable
106  * CPUs can use the default implementation of this method. This method should
107  * not be used by any callers other than the pre-1.0 virtio devices.
108  * @memory_rw_debug: Callback for GDB memory access.
109  * @dump_state: Callback for dumping state.
110  * @dump_statistics: Callback for dumping statistics.
111  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
112  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
113  * @get_memory_mapping: Callback for obtaining the memory mappings.
114  * @set_pc: Callback for setting the Program Counter register. This
115  *       should have the semantics used by the target architecture when
116  *       setting the PC from a source such as an ELF file entry point;
117  *       for example on Arm it will also set the Thumb mode bit based
118  *       on the least significant bit of the new PC value.
119  *       If the target behaviour here is anything other than "set
120  *       the PC register to the value passed in" then the target must
121  *       also implement the synchronize_from_tb hook.
122  * @synchronize_from_tb: Callback for synchronizing state from a TCG
123  *       #TranslationBlock. This is called when we abandon execution
124  *       of a TB before starting it, and must set all parts of the CPU
125  *       state which the previous TB in the chain may not have updated.
126  *       This always includes at least the program counter; some targets
127  *       will need to do more. If this hook is not implemented then the
128  *       default is to call @set_pc(tb->pc).
129  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
130  *       address fault.  For system mode, if the access is valid, call
131  *       tlb_set_page and return true; if the access is invalid, and
132  *       probe is true, return false; otherwise raise an exception and
133  *       do not return.  For user-only mode, always raise an exception
134  *       and do not return.
135  * @get_phys_page_debug: Callback for obtaining a physical address.
136  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
137  *       associated memory transaction attributes to use for the access.
138  *       CPUs which use memory transaction attributes should implement this
139  *       instead of get_phys_page_debug.
140  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
141  *       a memory access with the specified memory transaction attributes.
142  * @gdb_read_register: Callback for letting GDB read a register.
143  * @gdb_write_register: Callback for letting GDB write a register.
144  * @debug_check_watchpoint: Callback: return true if the architectural
145  *       watchpoint whose address has matched should really fire.
146  * @debug_excp_handler: Callback for handling debug exceptions.
147  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
148  * 64-bit VM coredump.
149  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
150  * note to a 32-bit VM coredump.
151  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
152  * 32-bit VM coredump.
153  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
154  * note to a 32-bit VM coredump.
155  * @vmsd: State description for migration.
156  * @gdb_num_core_regs: Number of core registers accessible to GDB.
157  * @gdb_core_xml_file: File name for core registers GDB XML description.
158  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
159  *           before the insn which triggers a watchpoint rather than after it.
160  * @gdb_arch_name: Optional callback that returns the architecture name known
161  * to GDB. The caller must free the returned string with g_free.
162  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
163  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
164  *   or NULL if the CPU doesn't have a dynamically generated content for it.
165  * @cpu_exec_enter: Callback for cpu_exec preparation.
166  * @cpu_exec_exit: Callback for cpu_exec cleanup.
167  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
168  * @disas_set_info: Setup architecture specific components of disassembly info
169  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
170  * address before attempting to match it against watchpoints.
171  * @deprecation_note: If this CPUClass is deprecated, this field provides
172  *                    related information.
173  *
174  * Represents a CPU family or model.
175  */
176 struct CPUClass {
177     /*< private >*/
178     DeviceClass parent_class;
179     /*< public >*/
180 
181     ObjectClass *(*class_by_name)(const char *cpu_model);
182     void (*parse_features)(const char *typename, char *str, Error **errp);
183 
184     int reset_dump_flags;
185     bool (*has_work)(CPUState *cpu);
186     void (*do_interrupt)(CPUState *cpu);
187     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
188                                 MMUAccessType access_type,
189                                 int mmu_idx, uintptr_t retaddr);
190     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
191                                   unsigned size, MMUAccessType access_type,
192                                   int mmu_idx, MemTxAttrs attrs,
193                                   MemTxResult response, uintptr_t retaddr);
194     bool (*virtio_is_big_endian)(CPUState *cpu);
195     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
196                            uint8_t *buf, int len, bool is_write);
197     void (*dump_state)(CPUState *cpu, FILE *, int flags);
198     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
199     void (*dump_statistics)(CPUState *cpu, int flags);
200     int64_t (*get_arch_id)(CPUState *cpu);
201     bool (*get_paging_enabled)(const CPUState *cpu);
202     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
203                                Error **errp);
204     void (*set_pc)(CPUState *cpu, vaddr value);
205     void (*synchronize_from_tb)(CPUState *cpu,
206                                 const struct TranslationBlock *tb);
207     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
208                      MMUAccessType access_type, int mmu_idx,
209                      bool probe, uintptr_t retaddr);
210     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
211     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
212                                         MemTxAttrs *attrs);
213     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
214     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
215     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
216     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
217     void (*debug_excp_handler)(CPUState *cpu);
218 
219     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
220                             int cpuid, void *opaque);
221     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
222                                 void *opaque);
223     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
224                             int cpuid, void *opaque);
225     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
226                                 void *opaque);
227 
228     const VMStateDescription *vmsd;
229     const char *gdb_core_xml_file;
230     gchar * (*gdb_arch_name)(CPUState *cpu);
231     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
232     void (*cpu_exec_enter)(CPUState *cpu);
233     void (*cpu_exec_exit)(CPUState *cpu);
234     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
235 
236     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
237     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
238 
239     const char *deprecation_note;
240     /* Keep non-pointer data at the end to minimize holes.  */
241     int gdb_num_core_regs;
242     bool gdb_stop_before_watchpoint;
243 
244     TcgCpuOperations tcg_ops;
245 };
246 
247 /*
248  * Low 16 bits: number of cycles left, used only in icount mode.
249  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
250  * for this CPU and return to its top level loop (even in non-icount mode).
251  * This allows a single read-compare-cbranch-write sequence to test
252  * for both decrementer underflow and exceptions.
253  */
254 typedef union IcountDecr {
255     uint32_t u32;
256     struct {
257 #ifdef HOST_WORDS_BIGENDIAN
258         uint16_t high;
259         uint16_t low;
260 #else
261         uint16_t low;
262         uint16_t high;
263 #endif
264     } u16;
265 } IcountDecr;
266 
267 typedef struct CPUBreakpoint {
268     vaddr pc;
269     int flags; /* BP_* */
270     QTAILQ_ENTRY(CPUBreakpoint) entry;
271 } CPUBreakpoint;
272 
273 struct CPUWatchpoint {
274     vaddr vaddr;
275     vaddr len;
276     vaddr hitaddr;
277     MemTxAttrs hitattrs;
278     int flags; /* BP_* */
279     QTAILQ_ENTRY(CPUWatchpoint) entry;
280 };
281 
282 #ifdef CONFIG_PLUGIN
283 /*
284  * For plugins we sometime need to save the resolved iotlb data before
285  * the memory regions get moved around  by io_writex.
286  */
287 typedef struct SavedIOTLB {
288     hwaddr addr;
289     MemoryRegionSection *section;
290     hwaddr mr_offset;
291 } SavedIOTLB;
292 #endif
293 
294 struct KVMState;
295 struct kvm_run;
296 
297 struct hax_vcpu_state;
298 
299 #define TB_JMP_CACHE_BITS 12
300 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
301 
302 /* work queue */
303 
304 /* The union type allows passing of 64 bit target pointers on 32 bit
305  * hosts in a single parameter
306  */
307 typedef union {
308     int           host_int;
309     unsigned long host_ulong;
310     void         *host_ptr;
311     vaddr         target_ptr;
312 } run_on_cpu_data;
313 
314 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
315 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
316 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
317 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
318 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
319 
320 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
321 
322 struct qemu_work_item;
323 
324 #define CPU_UNSET_NUMA_NODE_ID -1
325 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
326 
327 /**
328  * CPUState:
329  * @cpu_index: CPU index (informative).
330  * @cluster_index: Identifies which cluster this CPU is in.
331  *   For boards which don't define clusters or for "loose" CPUs not assigned
332  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
333  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
334  *   QOM parent.
335  * @nr_cores: Number of cores within this CPU package.
336  * @nr_threads: Number of threads within this CPU.
337  * @running: #true if CPU is currently running (lockless).
338  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
339  * valid under cpu_list_lock.
340  * @created: Indicates whether the CPU thread has been successfully created.
341  * @interrupt_request: Indicates a pending interrupt request.
342  * @halted: Nonzero if the CPU is in suspended state.
343  * @stop: Indicates a pending stop request.
344  * @stopped: Indicates the CPU has been artificially stopped.
345  * @unplug: Indicates a pending CPU unplug request.
346  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
347  * @singlestep_enabled: Flags for single-stepping.
348  * @icount_extra: Instructions until next timer event.
349  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
350  * requires that IO only be performed on the last instruction of a TB
351  * so that interrupts take effect immediately.
352  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
353  *            AddressSpaces this CPU has)
354  * @num_ases: number of CPUAddressSpaces in @cpu_ases
355  * @as: Pointer to the first AddressSpace, for the convenience of targets which
356  *      only have a single AddressSpace
357  * @env_ptr: Pointer to subclass-specific CPUArchState field.
358  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
359  * @gdb_regs: Additional GDB registers.
360  * @gdb_num_regs: Number of total registers accessible to GDB.
361  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
362  * @next_cpu: Next CPU sharing TB cache.
363  * @opaque: User data.
364  * @mem_io_pc: Host Program Counter at which the memory was accessed.
365  * @kvm_fd: vCPU file descriptor for KVM.
366  * @work_mutex: Lock to prevent multiple access to @work_list.
367  * @work_list: List of pending asynchronous work.
368  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
369  *                        to @trace_dstate).
370  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
371  * @plugin_mask: Plugin event bitmap. Modified only via async work.
372  * @ignore_memory_transaction_failures: Cached copy of the MachineState
373  *    flag of the same name: allows the board to suppress calling of the
374  *    CPU do_transaction_failed hook function.
375  *
376  * State of one CPU core or thread.
377  */
378 struct CPUState {
379     /*< private >*/
380     DeviceState parent_obj;
381     /*< public >*/
382 
383     int nr_cores;
384     int nr_threads;
385 
386     struct QemuThread *thread;
387 #ifdef _WIN32
388     HANDLE hThread;
389 #endif
390     int thread_id;
391     bool running, has_waiter;
392     struct QemuCond *halt_cond;
393     bool thread_kicked;
394     bool created;
395     bool stop;
396     bool stopped;
397 
398     /* Should CPU start in powered-off state? */
399     bool start_powered_off;
400 
401     bool unplug;
402     bool crash_occurred;
403     bool exit_request;
404     bool in_exclusive_context;
405     uint32_t cflags_next_tb;
406     /* updates protected by BQL */
407     uint32_t interrupt_request;
408     int singlestep_enabled;
409     int64_t icount_budget;
410     int64_t icount_extra;
411     uint64_t random_seed;
412     sigjmp_buf jmp_env;
413 
414     QemuMutex work_mutex;
415     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
416 
417     CPUAddressSpace *cpu_ases;
418     int num_ases;
419     AddressSpace *as;
420     MemoryRegion *memory;
421 
422     void *env_ptr; /* CPUArchState */
423     IcountDecr *icount_decr_ptr;
424 
425     /* Accessed in parallel; all accesses must be atomic */
426     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
427 
428     struct GDBRegisterState *gdb_regs;
429     int gdb_num_regs;
430     int gdb_num_g_regs;
431     QTAILQ_ENTRY(CPUState) node;
432 
433     /* ice debug support */
434     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
435 
436     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
437     CPUWatchpoint *watchpoint_hit;
438 
439     void *opaque;
440 
441     /* In order to avoid passing too many arguments to the MMIO helpers,
442      * we store some rarely used information in the CPU context.
443      */
444     uintptr_t mem_io_pc;
445 
446     int kvm_fd;
447     struct KVMState *kvm_state;
448     struct kvm_run *kvm_run;
449 
450     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
451     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
452     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
453 
454     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
455 
456 #ifdef CONFIG_PLUGIN
457     GArray *plugin_mem_cbs;
458     /* saved iotlb data from io_writex */
459     SavedIOTLB saved_iotlb;
460 #endif
461 
462     /* TODO Move common fields from CPUArchState here. */
463     int cpu_index;
464     int cluster_index;
465     uint32_t halted;
466     uint32_t can_do_io;
467     int32_t exception_index;
468 
469     /* shared by kvm, hax and hvf */
470     bool vcpu_dirty;
471 
472     /* Used to keep track of an outstanding cpu throttle thread for migration
473      * autoconverge
474      */
475     bool throttle_thread_scheduled;
476 
477     bool ignore_memory_transaction_failures;
478 
479     struct hax_vcpu_state *hax_vcpu;
480 
481     int hvf_fd;
482 
483     /* track IOMMUs whose translations we've cached in the TCG TLB */
484     GArray *iommu_notifiers;
485 };
486 
487 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
488 extern CPUTailQ cpus;
489 
490 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
491 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
492 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
493 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
494     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
495 
496 extern __thread CPUState *current_cpu;
497 
498 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
499 {
500     unsigned int i;
501 
502     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
503         qatomic_set(&cpu->tb_jmp_cache[i], NULL);
504     }
505 }
506 
507 /**
508  * qemu_tcg_mttcg_enabled:
509  * Check whether we are running MultiThread TCG or not.
510  *
511  * Returns: %true if we are in MTTCG mode %false otherwise.
512  */
513 extern bool mttcg_enabled;
514 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
515 
516 /**
517  * cpu_paging_enabled:
518  * @cpu: The CPU whose state is to be inspected.
519  *
520  * Returns: %true if paging is enabled, %false otherwise.
521  */
522 bool cpu_paging_enabled(const CPUState *cpu);
523 
524 /**
525  * cpu_get_memory_mapping:
526  * @cpu: The CPU whose memory mappings are to be obtained.
527  * @list: Where to write the memory mappings to.
528  * @errp: Pointer for reporting an #Error.
529  */
530 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
531                             Error **errp);
532 
533 #if !defined(CONFIG_USER_ONLY)
534 
535 /**
536  * cpu_write_elf64_note:
537  * @f: pointer to a function that writes memory to a file
538  * @cpu: The CPU whose memory is to be dumped
539  * @cpuid: ID number of the CPU
540  * @opaque: pointer to the CPUState struct
541  */
542 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
543                          int cpuid, void *opaque);
544 
545 /**
546  * cpu_write_elf64_qemunote:
547  * @f: pointer to a function that writes memory to a file
548  * @cpu: The CPU whose memory is to be dumped
549  * @cpuid: ID number of the CPU
550  * @opaque: pointer to the CPUState struct
551  */
552 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
553                              void *opaque);
554 
555 /**
556  * cpu_write_elf32_note:
557  * @f: pointer to a function that writes memory to a file
558  * @cpu: The CPU whose memory is to be dumped
559  * @cpuid: ID number of the CPU
560  * @opaque: pointer to the CPUState struct
561  */
562 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
563                          int cpuid, void *opaque);
564 
565 /**
566  * cpu_write_elf32_qemunote:
567  * @f: pointer to a function that writes memory to a file
568  * @cpu: The CPU whose memory is to be dumped
569  * @cpuid: ID number of the CPU
570  * @opaque: pointer to the CPUState struct
571  */
572 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
573                              void *opaque);
574 
575 /**
576  * cpu_get_crash_info:
577  * @cpu: The CPU to get crash information for
578  *
579  * Gets the previously saved crash information.
580  * Caller is responsible for freeing the data.
581  */
582 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
583 
584 #endif /* !CONFIG_USER_ONLY */
585 
586 /**
587  * CPUDumpFlags:
588  * @CPU_DUMP_CODE:
589  * @CPU_DUMP_FPU: dump FPU register state, not just integer
590  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
591  */
592 enum CPUDumpFlags {
593     CPU_DUMP_CODE = 0x00010000,
594     CPU_DUMP_FPU  = 0x00020000,
595     CPU_DUMP_CCOP = 0x00040000,
596 };
597 
598 /**
599  * cpu_dump_state:
600  * @cpu: The CPU whose state is to be dumped.
601  * @f: If non-null, dump to this stream, else to current print sink.
602  *
603  * Dumps CPU state.
604  */
605 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
606 
607 /**
608  * cpu_dump_statistics:
609  * @cpu: The CPU whose state is to be dumped.
610  * @flags: Flags what to dump.
611  *
612  * Dump CPU statistics to the current monitor if we have one, else to
613  * stdout.
614  */
615 void cpu_dump_statistics(CPUState *cpu, int flags);
616 
617 #ifndef CONFIG_USER_ONLY
618 /**
619  * cpu_get_phys_page_attrs_debug:
620  * @cpu: The CPU to obtain the physical page address for.
621  * @addr: The virtual address.
622  * @attrs: Updated on return with the memory transaction attributes to use
623  *         for this access.
624  *
625  * Obtains the physical page corresponding to a virtual one, together
626  * with the corresponding memory transaction attributes to use for the access.
627  * Use it only for debugging because no protection checks are done.
628  *
629  * Returns: Corresponding physical page address or -1 if no page found.
630  */
631 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
632                                                    MemTxAttrs *attrs)
633 {
634     CPUClass *cc = CPU_GET_CLASS(cpu);
635 
636     if (cc->get_phys_page_attrs_debug) {
637         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
638     }
639     /* Fallback for CPUs which don't implement the _attrs_ hook */
640     *attrs = MEMTXATTRS_UNSPECIFIED;
641     return cc->get_phys_page_debug(cpu, addr);
642 }
643 
644 /**
645  * cpu_get_phys_page_debug:
646  * @cpu: The CPU to obtain the physical page address for.
647  * @addr: The virtual address.
648  *
649  * Obtains the physical page corresponding to a virtual one.
650  * Use it only for debugging because no protection checks are done.
651  *
652  * Returns: Corresponding physical page address or -1 if no page found.
653  */
654 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
655 {
656     MemTxAttrs attrs = {};
657 
658     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
659 }
660 
661 /** cpu_asidx_from_attrs:
662  * @cpu: CPU
663  * @attrs: memory transaction attributes
664  *
665  * Returns the address space index specifying the CPU AddressSpace
666  * to use for a memory access with the given transaction attributes.
667  */
668 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
669 {
670     CPUClass *cc = CPU_GET_CLASS(cpu);
671     int ret = 0;
672 
673     if (cc->asidx_from_attrs) {
674         ret = cc->asidx_from_attrs(cpu, attrs);
675         assert(ret < cpu->num_ases && ret >= 0);
676     }
677     return ret;
678 }
679 
680 #endif /* CONFIG_USER_ONLY */
681 
682 /**
683  * cpu_list_add:
684  * @cpu: The CPU to be added to the list of CPUs.
685  */
686 void cpu_list_add(CPUState *cpu);
687 
688 /**
689  * cpu_list_remove:
690  * @cpu: The CPU to be removed from the list of CPUs.
691  */
692 void cpu_list_remove(CPUState *cpu);
693 
694 /**
695  * cpu_reset:
696  * @cpu: The CPU whose state is to be reset.
697  */
698 void cpu_reset(CPUState *cpu);
699 
700 /**
701  * cpu_class_by_name:
702  * @typename: The CPU base type.
703  * @cpu_model: The model string without any parameters.
704  *
705  * Looks up a CPU #ObjectClass matching name @cpu_model.
706  *
707  * Returns: A #CPUClass or %NULL if not matching class is found.
708  */
709 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
710 
711 /**
712  * cpu_create:
713  * @typename: The CPU type.
714  *
715  * Instantiates a CPU and realizes the CPU.
716  *
717  * Returns: A #CPUState or %NULL if an error occurred.
718  */
719 CPUState *cpu_create(const char *typename);
720 
721 /**
722  * parse_cpu_option:
723  * @cpu_option: The -cpu option including optional parameters.
724  *
725  * processes optional parameters and registers them as global properties
726  *
727  * Returns: type of CPU to create or prints error and terminates process
728  *          if an error occurred.
729  */
730 const char *parse_cpu_option(const char *cpu_option);
731 
732 /**
733  * cpu_has_work:
734  * @cpu: The vCPU to check.
735  *
736  * Checks whether the CPU has work to do.
737  *
738  * Returns: %true if the CPU has work, %false otherwise.
739  */
740 static inline bool cpu_has_work(CPUState *cpu)
741 {
742     CPUClass *cc = CPU_GET_CLASS(cpu);
743 
744     g_assert(cc->has_work);
745     return cc->has_work(cpu);
746 }
747 
748 /**
749  * qemu_cpu_is_self:
750  * @cpu: The vCPU to check against.
751  *
752  * Checks whether the caller is executing on the vCPU thread.
753  *
754  * Returns: %true if called from @cpu's thread, %false otherwise.
755  */
756 bool qemu_cpu_is_self(CPUState *cpu);
757 
758 /**
759  * qemu_cpu_kick:
760  * @cpu: The vCPU to kick.
761  *
762  * Kicks @cpu's thread.
763  */
764 void qemu_cpu_kick(CPUState *cpu);
765 
766 /**
767  * cpu_is_stopped:
768  * @cpu: The CPU to check.
769  *
770  * Checks whether the CPU is stopped.
771  *
772  * Returns: %true if run state is not running or if artificially stopped;
773  * %false otherwise.
774  */
775 bool cpu_is_stopped(CPUState *cpu);
776 
777 /**
778  * do_run_on_cpu:
779  * @cpu: The vCPU to run on.
780  * @func: The function to be executed.
781  * @data: Data to pass to the function.
782  * @mutex: Mutex to release while waiting for @func to run.
783  *
784  * Used internally in the implementation of run_on_cpu.
785  */
786 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
787                    QemuMutex *mutex);
788 
789 /**
790  * run_on_cpu:
791  * @cpu: The vCPU to run on.
792  * @func: The function to be executed.
793  * @data: Data to pass to the function.
794  *
795  * Schedules the function @func for execution on the vCPU @cpu.
796  */
797 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
798 
799 /**
800  * async_run_on_cpu:
801  * @cpu: The vCPU to run on.
802  * @func: The function to be executed.
803  * @data: Data to pass to the function.
804  *
805  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
806  */
807 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
808 
809 /**
810  * async_safe_run_on_cpu:
811  * @cpu: The vCPU to run on.
812  * @func: The function to be executed.
813  * @data: Data to pass to the function.
814  *
815  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
816  * while all other vCPUs are sleeping.
817  *
818  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
819  * BQL.
820  */
821 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
822 
823 /**
824  * cpu_in_exclusive_context()
825  * @cpu: The vCPU to check
826  *
827  * Returns true if @cpu is an exclusive context, for example running
828  * something which has previously been queued via async_safe_run_on_cpu().
829  */
830 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
831 {
832     return cpu->in_exclusive_context;
833 }
834 
835 /**
836  * qemu_get_cpu:
837  * @index: The CPUState@cpu_index value of the CPU to obtain.
838  *
839  * Gets a CPU matching @index.
840  *
841  * Returns: The CPU or %NULL if there is no matching CPU.
842  */
843 CPUState *qemu_get_cpu(int index);
844 
845 /**
846  * cpu_exists:
847  * @id: Guest-exposed CPU ID to lookup.
848  *
849  * Search for CPU with specified ID.
850  *
851  * Returns: %true - CPU is found, %false - CPU isn't found.
852  */
853 bool cpu_exists(int64_t id);
854 
855 /**
856  * cpu_by_arch_id:
857  * @id: Guest-exposed CPU ID of the CPU to obtain.
858  *
859  * Get a CPU with matching @id.
860  *
861  * Returns: The CPU or %NULL if there is no matching CPU.
862  */
863 CPUState *cpu_by_arch_id(int64_t id);
864 
865 /**
866  * cpu_interrupt:
867  * @cpu: The CPU to set an interrupt on.
868  * @mask: The interrupts to set.
869  *
870  * Invokes the interrupt handler.
871  */
872 
873 void cpu_interrupt(CPUState *cpu, int mask);
874 
875 #ifdef NEED_CPU_H
876 
877 #ifdef CONFIG_SOFTMMU
878 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
879                                         MMUAccessType access_type,
880                                         int mmu_idx, uintptr_t retaddr)
881 {
882     CPUClass *cc = CPU_GET_CLASS(cpu);
883 
884     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
885 }
886 
887 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
888                                           vaddr addr, unsigned size,
889                                           MMUAccessType access_type,
890                                           int mmu_idx, MemTxAttrs attrs,
891                                           MemTxResult response,
892                                           uintptr_t retaddr)
893 {
894     CPUClass *cc = CPU_GET_CLASS(cpu);
895 
896     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
897         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
898                                   mmu_idx, attrs, response, retaddr);
899     }
900 }
901 #endif
902 
903 #endif /* NEED_CPU_H */
904 
905 /**
906  * cpu_set_pc:
907  * @cpu: The CPU to set the program counter for.
908  * @addr: Program counter value.
909  *
910  * Sets the program counter for a CPU.
911  */
912 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
913 {
914     CPUClass *cc = CPU_GET_CLASS(cpu);
915 
916     cc->set_pc(cpu, addr);
917 }
918 
919 /**
920  * cpu_reset_interrupt:
921  * @cpu: The CPU to clear the interrupt on.
922  * @mask: The interrupt mask to clear.
923  *
924  * Resets interrupts on the vCPU @cpu.
925  */
926 void cpu_reset_interrupt(CPUState *cpu, int mask);
927 
928 /**
929  * cpu_exit:
930  * @cpu: The CPU to exit.
931  *
932  * Requests the CPU @cpu to exit execution.
933  */
934 void cpu_exit(CPUState *cpu);
935 
936 /**
937  * cpu_resume:
938  * @cpu: The CPU to resume.
939  *
940  * Resumes CPU, i.e. puts CPU into runnable state.
941  */
942 void cpu_resume(CPUState *cpu);
943 
944 /**
945  * cpu_remove_sync:
946  * @cpu: The CPU to remove.
947  *
948  * Requests the CPU to be removed and waits till it is removed.
949  */
950 void cpu_remove_sync(CPUState *cpu);
951 
952 /**
953  * process_queued_cpu_work() - process all items on CPU work queue
954  * @cpu: The CPU which work queue to process.
955  */
956 void process_queued_cpu_work(CPUState *cpu);
957 
958 /**
959  * cpu_exec_start:
960  * @cpu: The CPU for the current thread.
961  *
962  * Record that a CPU has started execution and can be interrupted with
963  * cpu_exit.
964  */
965 void cpu_exec_start(CPUState *cpu);
966 
967 /**
968  * cpu_exec_end:
969  * @cpu: The CPU for the current thread.
970  *
971  * Record that a CPU has stopped execution and exclusive sections
972  * can be executed without interrupting it.
973  */
974 void cpu_exec_end(CPUState *cpu);
975 
976 /**
977  * start_exclusive:
978  *
979  * Wait for a concurrent exclusive section to end, and then start
980  * a section of work that is run while other CPUs are not running
981  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
982  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
983  * during the exclusive section go to sleep until this CPU calls
984  * end_exclusive.
985  */
986 void start_exclusive(void);
987 
988 /**
989  * end_exclusive:
990  *
991  * Concludes an exclusive execution section started by start_exclusive.
992  */
993 void end_exclusive(void);
994 
995 /**
996  * qemu_init_vcpu:
997  * @cpu: The vCPU to initialize.
998  *
999  * Initializes a vCPU.
1000  */
1001 void qemu_init_vcpu(CPUState *cpu);
1002 
1003 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1004 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1005 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1006 
1007 /**
1008  * cpu_single_step:
1009  * @cpu: CPU to the flags for.
1010  * @enabled: Flags to enable.
1011  *
1012  * Enables or disables single-stepping for @cpu.
1013  */
1014 void cpu_single_step(CPUState *cpu, int enabled);
1015 
1016 /* Breakpoint/watchpoint flags */
1017 #define BP_MEM_READ           0x01
1018 #define BP_MEM_WRITE          0x02
1019 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1020 #define BP_STOP_BEFORE_ACCESS 0x04
1021 /* 0x08 currently unused */
1022 #define BP_GDB                0x10
1023 #define BP_CPU                0x20
1024 #define BP_ANY                (BP_GDB | BP_CPU)
1025 #define BP_WATCHPOINT_HIT_READ 0x40
1026 #define BP_WATCHPOINT_HIT_WRITE 0x80
1027 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1028 
1029 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1030                           CPUBreakpoint **breakpoint);
1031 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1032 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1033 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1034 
1035 /* Return true if PC matches an installed breakpoint.  */
1036 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1037 {
1038     CPUBreakpoint *bp;
1039 
1040     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1041         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1042             if (bp->pc == pc && (bp->flags & mask)) {
1043                 return true;
1044             }
1045         }
1046     }
1047     return false;
1048 }
1049 
1050 #ifdef CONFIG_USER_ONLY
1051 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1052                                         int flags, CPUWatchpoint **watchpoint)
1053 {
1054     return -ENOSYS;
1055 }
1056 
1057 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1058                                         vaddr len, int flags)
1059 {
1060     return -ENOSYS;
1061 }
1062 
1063 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1064                                                 CPUWatchpoint *wp)
1065 {
1066 }
1067 
1068 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1069 {
1070 }
1071 
1072 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1073                                         MemTxAttrs atr, int fl, uintptr_t ra)
1074 {
1075 }
1076 
1077 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1078                                                  vaddr addr, vaddr len)
1079 {
1080     return 0;
1081 }
1082 #else
1083 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1084                           int flags, CPUWatchpoint **watchpoint);
1085 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1086                           vaddr len, int flags);
1087 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1088 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1089 
1090 /**
1091  * cpu_check_watchpoint:
1092  * @cpu: cpu context
1093  * @addr: guest virtual address
1094  * @len: access length
1095  * @attrs: memory access attributes
1096  * @flags: watchpoint access type
1097  * @ra: unwind return address
1098  *
1099  * Check for a watchpoint hit in [addr, addr+len) of the type
1100  * specified by @flags.  Exit via exception with a hit.
1101  */
1102 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1103                           MemTxAttrs attrs, int flags, uintptr_t ra);
1104 
1105 /**
1106  * cpu_watchpoint_address_matches:
1107  * @cpu: cpu context
1108  * @addr: guest virtual address
1109  * @len: access length
1110  *
1111  * Return the watchpoint flags that apply to [addr, addr+len).
1112  * If no watchpoint is registered for the range, the result is 0.
1113  */
1114 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1115 #endif
1116 
1117 /**
1118  * cpu_get_address_space:
1119  * @cpu: CPU to get address space from
1120  * @asidx: index identifying which address space to get
1121  *
1122  * Return the requested address space of this CPU. @asidx
1123  * specifies which address space to read.
1124  */
1125 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1126 
1127 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1128     GCC_FMT_ATTR(2, 3);
1129 
1130 /* $(top_srcdir)/cpu.c */
1131 void cpu_exec_initfn(CPUState *cpu);
1132 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1133 void cpu_exec_unrealizefn(CPUState *cpu);
1134 
1135 /**
1136  * target_words_bigendian:
1137  * Returns true if the (default) endianness of the target is big endian,
1138  * false otherwise. Note that in target-specific code, you can use
1139  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1140  * code should normally never need to know about the endianness of the
1141  * target, so please do *not* use this function unless you know very well
1142  * what you are doing!
1143  */
1144 bool target_words_bigendian(void);
1145 
1146 #ifdef NEED_CPU_H
1147 
1148 #ifdef CONFIG_SOFTMMU
1149 extern const VMStateDescription vmstate_cpu_common;
1150 #else
1151 #define vmstate_cpu_common vmstate_dummy
1152 #endif
1153 
1154 #define VMSTATE_CPU() {                                                     \
1155     .name = "parent_obj",                                                   \
1156     .size = sizeof(CPUState),                                               \
1157     .vmsd = &vmstate_cpu_common,                                            \
1158     .flags = VMS_STRUCT,                                                    \
1159     .offset = 0,                                                            \
1160 }
1161 
1162 #endif /* NEED_CPU_H */
1163 
1164 #define UNASSIGNED_CPU_INDEX -1
1165 #define UNASSIGNED_CLUSTER_INDEX -1
1166 
1167 #endif
1168