1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 35 void *opaque); 36 37 /** 38 * vaddr: 39 * Type wide enough to contain any #target_ulong virtual address. 40 */ 41 typedef uint64_t vaddr; 42 #define VADDR_PRId PRId64 43 #define VADDR_PRIu PRIu64 44 #define VADDR_PRIo PRIo64 45 #define VADDR_PRIx PRIx64 46 #define VADDR_PRIX PRIX64 47 #define VADDR_MAX UINT64_MAX 48 49 /** 50 * SECTION:cpu 51 * @section_id: QEMU-cpu 52 * @title: CPU Class 53 * @short_description: Base class for all CPUs 54 */ 55 56 #define TYPE_CPU "cpu" 57 58 /* Since this macro is used a lot in hot code paths and in conjunction with 59 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 60 * an unchecked cast. 61 */ 62 #define CPU(obj) ((CPUState *)(obj)) 63 64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU) 65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU) 66 67 typedef enum MMUAccessType { 68 MMU_DATA_LOAD = 0, 69 MMU_DATA_STORE = 1, 70 MMU_INST_FETCH = 2 71 } MMUAccessType; 72 73 typedef struct CPUWatchpoint CPUWatchpoint; 74 75 struct TranslationBlock; 76 77 /** 78 * CPUClass: 79 * @class_by_name: Callback to map -cpu command line model name to an 80 * instantiatable CPU type. 81 * @parse_features: Callback to parse command line arguments. 82 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 83 * @has_work: Callback for checking if there is work to do. 84 * @do_interrupt: Callback for interrupt handling. 85 * @do_unaligned_access: Callback for unaligned access handling, if 86 * the target defines #TARGET_ALIGNED_ONLY. 87 * @do_transaction_failed: Callback for handling failed memory transactions 88 * (ie bus faults or external aborts; not MMU faults) 89 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 90 * runtime configurable endianness is currently big-endian. Non-configurable 91 * CPUs can use the default implementation of this method. This method should 92 * not be used by any callers other than the pre-1.0 virtio devices. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @dump_statistics: Callback for dumping statistics. 96 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 97 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 98 * @get_memory_mapping: Callback for obtaining the memory mappings. 99 * @set_pc: Callback for setting the Program Counter register. This 100 * should have the semantics used by the target architecture when 101 * setting the PC from a source such as an ELF file entry point; 102 * for example on Arm it will also set the Thumb mode bit based 103 * on the least significant bit of the new PC value. 104 * If the target behaviour here is anything other than "set 105 * the PC register to the value passed in" then the target must 106 * also implement the synchronize_from_tb hook. 107 * @synchronize_from_tb: Callback for synchronizing state from a TCG 108 * #TranslationBlock. This is called when we abandon execution 109 * of a TB before starting it, and must set all parts of the CPU 110 * state which the previous TB in the chain may not have updated. 111 * This always includes at least the program counter; some targets 112 * will need to do more. If this hook is not implemented then the 113 * default is to call @set_pc(tb->pc). 114 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only 115 * address fault. For system mode, if the access is valid, call 116 * tlb_set_page and return true; if the access is invalid, and 117 * probe is true, return false; otherwise raise an exception and 118 * do not return. For user-only mode, always raise an exception 119 * and do not return. 120 * @get_phys_page_debug: Callback for obtaining a physical address. 121 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 122 * associated memory transaction attributes to use for the access. 123 * CPUs which use memory transaction attributes should implement this 124 * instead of get_phys_page_debug. 125 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 126 * a memory access with the specified memory transaction attributes. 127 * @gdb_read_register: Callback for letting GDB read a register. 128 * @gdb_write_register: Callback for letting GDB write a register. 129 * @debug_check_watchpoint: Callback: return true if the architectural 130 * watchpoint whose address has matched should really fire. 131 * @debug_excp_handler: Callback for handling debug exceptions. 132 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 133 * 64-bit VM coredump. 134 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 135 * note to a 32-bit VM coredump. 136 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 137 * 32-bit VM coredump. 138 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 139 * note to a 32-bit VM coredump. 140 * @vmsd: State description for migration. 141 * @gdb_num_core_regs: Number of core registers accessible to GDB. 142 * @gdb_core_xml_file: File name for core registers GDB XML description. 143 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 144 * before the insn which triggers a watchpoint rather than after it. 145 * @gdb_arch_name: Optional callback that returns the architecture name known 146 * to GDB. The caller must free the returned string with g_free. 147 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 148 * gdb stub. Returns a pointer to the XML contents for the specified XML file 149 * or NULL if the CPU doesn't have a dynamically generated content for it. 150 * @cpu_exec_enter: Callback for cpu_exec preparation. 151 * @cpu_exec_exit: Callback for cpu_exec cleanup. 152 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. 153 * @disas_set_info: Setup architecture specific components of disassembly info 154 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 155 * address before attempting to match it against watchpoints. 156 * 157 * Represents a CPU family or model. 158 */ 159 typedef struct CPUClass { 160 /*< private >*/ 161 DeviceClass parent_class; 162 /*< public >*/ 163 164 ObjectClass *(*class_by_name)(const char *cpu_model); 165 void (*parse_features)(const char *typename, char *str, Error **errp); 166 167 int reset_dump_flags; 168 bool (*has_work)(CPUState *cpu); 169 void (*do_interrupt)(CPUState *cpu); 170 void (*do_unaligned_access)(CPUState *cpu, vaddr addr, 171 MMUAccessType access_type, 172 int mmu_idx, uintptr_t retaddr); 173 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, 174 unsigned size, MMUAccessType access_type, 175 int mmu_idx, MemTxAttrs attrs, 176 MemTxResult response, uintptr_t retaddr); 177 bool (*virtio_is_big_endian)(CPUState *cpu); 178 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 179 uint8_t *buf, int len, bool is_write); 180 void (*dump_state)(CPUState *cpu, FILE *, int flags); 181 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 182 void (*dump_statistics)(CPUState *cpu, int flags); 183 int64_t (*get_arch_id)(CPUState *cpu); 184 bool (*get_paging_enabled)(const CPUState *cpu); 185 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 186 Error **errp); 187 void (*set_pc)(CPUState *cpu, vaddr value); 188 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb); 189 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, 190 MMUAccessType access_type, int mmu_idx, 191 bool probe, uintptr_t retaddr); 192 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 193 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 194 MemTxAttrs *attrs); 195 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 196 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 197 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 198 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); 199 void (*debug_excp_handler)(CPUState *cpu); 200 201 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 202 int cpuid, void *opaque); 203 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 204 void *opaque); 205 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 206 int cpuid, void *opaque); 207 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 208 void *opaque); 209 210 const VMStateDescription *vmsd; 211 const char *gdb_core_xml_file; 212 gchar * (*gdb_arch_name)(CPUState *cpu); 213 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 214 void (*cpu_exec_enter)(CPUState *cpu); 215 void (*cpu_exec_exit)(CPUState *cpu); 216 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); 217 218 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 219 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); 220 void (*tcg_initialize)(void); 221 222 /* Keep non-pointer data at the end to minimize holes. */ 223 int gdb_num_core_regs; 224 bool gdb_stop_before_watchpoint; 225 } CPUClass; 226 227 /* 228 * Low 16 bits: number of cycles left, used only in icount mode. 229 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 230 * for this CPU and return to its top level loop (even in non-icount mode). 231 * This allows a single read-compare-cbranch-write sequence to test 232 * for both decrementer underflow and exceptions. 233 */ 234 typedef union IcountDecr { 235 uint32_t u32; 236 struct { 237 #ifdef HOST_WORDS_BIGENDIAN 238 uint16_t high; 239 uint16_t low; 240 #else 241 uint16_t low; 242 uint16_t high; 243 #endif 244 } u16; 245 } IcountDecr; 246 247 typedef struct CPUBreakpoint { 248 vaddr pc; 249 int flags; /* BP_* */ 250 QTAILQ_ENTRY(CPUBreakpoint) entry; 251 } CPUBreakpoint; 252 253 struct CPUWatchpoint { 254 vaddr vaddr; 255 vaddr len; 256 vaddr hitaddr; 257 MemTxAttrs hitattrs; 258 int flags; /* BP_* */ 259 QTAILQ_ENTRY(CPUWatchpoint) entry; 260 }; 261 262 struct KVMState; 263 struct kvm_run; 264 265 struct hax_vcpu_state; 266 267 #define TB_JMP_CACHE_BITS 12 268 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 269 270 /* work queue */ 271 272 /* The union type allows passing of 64 bit target pointers on 32 bit 273 * hosts in a single parameter 274 */ 275 typedef union { 276 int host_int; 277 unsigned long host_ulong; 278 void *host_ptr; 279 vaddr target_ptr; 280 } run_on_cpu_data; 281 282 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 283 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 284 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 285 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 286 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 287 288 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 289 290 struct qemu_work_item; 291 292 #define CPU_UNSET_NUMA_NODE_ID -1 293 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 294 295 /** 296 * CPUState: 297 * @cpu_index: CPU index (informative). 298 * @cluster_index: Identifies which cluster this CPU is in. 299 * For boards which don't define clusters or for "loose" CPUs not assigned 300 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 301 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 302 * QOM parent. 303 * @nr_cores: Number of cores within this CPU package. 304 * @nr_threads: Number of threads within this CPU. 305 * @running: #true if CPU is currently running (lockless). 306 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 307 * valid under cpu_list_lock. 308 * @created: Indicates whether the CPU thread has been successfully created. 309 * @interrupt_request: Indicates a pending interrupt request. 310 * @halted: Nonzero if the CPU is in suspended state. 311 * @stop: Indicates a pending stop request. 312 * @stopped: Indicates the CPU has been artificially stopped. 313 * @unplug: Indicates a pending CPU unplug request. 314 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 315 * @singlestep_enabled: Flags for single-stepping. 316 * @icount_extra: Instructions until next timer event. 317 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 318 * requires that IO only be performed on the last instruction of a TB 319 * so that interrupts take effect immediately. 320 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 321 * AddressSpaces this CPU has) 322 * @num_ases: number of CPUAddressSpaces in @cpu_ases 323 * @as: Pointer to the first AddressSpace, for the convenience of targets which 324 * only have a single AddressSpace 325 * @env_ptr: Pointer to subclass-specific CPUArchState field. 326 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 327 * @gdb_regs: Additional GDB registers. 328 * @gdb_num_regs: Number of total registers accessible to GDB. 329 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 330 * @next_cpu: Next CPU sharing TB cache. 331 * @opaque: User data. 332 * @mem_io_pc: Host Program Counter at which the memory was accessed. 333 * @kvm_fd: vCPU file descriptor for KVM. 334 * @work_mutex: Lock to prevent multiple access to @work_list. 335 * @work_list: List of pending asynchronous work. 336 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 337 * to @trace_dstate). 338 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 339 * @plugin_mask: Plugin event bitmap. Modified only via async work. 340 * @ignore_memory_transaction_failures: Cached copy of the MachineState 341 * flag of the same name: allows the board to suppress calling of the 342 * CPU do_transaction_failed hook function. 343 * 344 * State of one CPU core or thread. 345 */ 346 struct CPUState { 347 /*< private >*/ 348 DeviceState parent_obj; 349 /*< public >*/ 350 351 int nr_cores; 352 int nr_threads; 353 354 struct QemuThread *thread; 355 #ifdef _WIN32 356 HANDLE hThread; 357 #endif 358 int thread_id; 359 bool running, has_waiter; 360 struct QemuCond *halt_cond; 361 bool thread_kicked; 362 bool created; 363 bool stop; 364 bool stopped; 365 bool unplug; 366 bool crash_occurred; 367 bool exit_request; 368 bool in_exclusive_context; 369 uint32_t cflags_next_tb; 370 /* updates protected by BQL */ 371 uint32_t interrupt_request; 372 int singlestep_enabled; 373 int64_t icount_budget; 374 int64_t icount_extra; 375 uint64_t random_seed; 376 sigjmp_buf jmp_env; 377 378 QemuMutex work_mutex; 379 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 380 381 CPUAddressSpace *cpu_ases; 382 int num_ases; 383 AddressSpace *as; 384 MemoryRegion *memory; 385 386 void *env_ptr; /* CPUArchState */ 387 IcountDecr *icount_decr_ptr; 388 389 /* Accessed in parallel; all accesses must be atomic */ 390 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 391 392 struct GDBRegisterState *gdb_regs; 393 int gdb_num_regs; 394 int gdb_num_g_regs; 395 QTAILQ_ENTRY(CPUState) node; 396 397 /* ice debug support */ 398 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 399 400 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 401 CPUWatchpoint *watchpoint_hit; 402 403 void *opaque; 404 405 /* In order to avoid passing too many arguments to the MMIO helpers, 406 * we store some rarely used information in the CPU context. 407 */ 408 uintptr_t mem_io_pc; 409 410 int kvm_fd; 411 struct KVMState *kvm_state; 412 struct kvm_run *kvm_run; 413 414 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 415 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 416 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 417 418 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 419 420 GArray *plugin_mem_cbs; 421 422 /* TODO Move common fields from CPUArchState here. */ 423 int cpu_index; 424 int cluster_index; 425 uint32_t halted; 426 uint32_t can_do_io; 427 int32_t exception_index; 428 429 /* shared by kvm, hax and hvf */ 430 bool vcpu_dirty; 431 432 /* Used to keep track of an outstanding cpu throttle thread for migration 433 * autoconverge 434 */ 435 bool throttle_thread_scheduled; 436 437 bool ignore_memory_transaction_failures; 438 439 struct hax_vcpu_state *hax_vcpu; 440 441 int hvf_fd; 442 443 /* track IOMMUs whose translations we've cached in the TCG TLB */ 444 GArray *iommu_notifiers; 445 }; 446 447 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 448 extern CPUTailQ cpus; 449 450 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 451 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 452 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 453 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 454 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 455 456 extern __thread CPUState *current_cpu; 457 458 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 459 { 460 unsigned int i; 461 462 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 463 atomic_set(&cpu->tb_jmp_cache[i], NULL); 464 } 465 } 466 467 /** 468 * qemu_tcg_mttcg_enabled: 469 * Check whether we are running MultiThread TCG or not. 470 * 471 * Returns: %true if we are in MTTCG mode %false otherwise. 472 */ 473 extern bool mttcg_enabled; 474 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 475 476 /** 477 * cpu_paging_enabled: 478 * @cpu: The CPU whose state is to be inspected. 479 * 480 * Returns: %true if paging is enabled, %false otherwise. 481 */ 482 bool cpu_paging_enabled(const CPUState *cpu); 483 484 /** 485 * cpu_get_memory_mapping: 486 * @cpu: The CPU whose memory mappings are to be obtained. 487 * @list: Where to write the memory mappings to. 488 * @errp: Pointer for reporting an #Error. 489 */ 490 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 491 Error **errp); 492 493 #if !defined(CONFIG_USER_ONLY) 494 495 /** 496 * cpu_write_elf64_note: 497 * @f: pointer to a function that writes memory to a file 498 * @cpu: The CPU whose memory is to be dumped 499 * @cpuid: ID number of the CPU 500 * @opaque: pointer to the CPUState struct 501 */ 502 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 503 int cpuid, void *opaque); 504 505 /** 506 * cpu_write_elf64_qemunote: 507 * @f: pointer to a function that writes memory to a file 508 * @cpu: The CPU whose memory is to be dumped 509 * @cpuid: ID number of the CPU 510 * @opaque: pointer to the CPUState struct 511 */ 512 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 513 void *opaque); 514 515 /** 516 * cpu_write_elf32_note: 517 * @f: pointer to a function that writes memory to a file 518 * @cpu: The CPU whose memory is to be dumped 519 * @cpuid: ID number of the CPU 520 * @opaque: pointer to the CPUState struct 521 */ 522 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 523 int cpuid, void *opaque); 524 525 /** 526 * cpu_write_elf32_qemunote: 527 * @f: pointer to a function that writes memory to a file 528 * @cpu: The CPU whose memory is to be dumped 529 * @cpuid: ID number of the CPU 530 * @opaque: pointer to the CPUState struct 531 */ 532 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 533 void *opaque); 534 535 /** 536 * cpu_get_crash_info: 537 * @cpu: The CPU to get crash information for 538 * 539 * Gets the previously saved crash information. 540 * Caller is responsible for freeing the data. 541 */ 542 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 543 544 #endif /* !CONFIG_USER_ONLY */ 545 546 /** 547 * CPUDumpFlags: 548 * @CPU_DUMP_CODE: 549 * @CPU_DUMP_FPU: dump FPU register state, not just integer 550 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 551 */ 552 enum CPUDumpFlags { 553 CPU_DUMP_CODE = 0x00010000, 554 CPU_DUMP_FPU = 0x00020000, 555 CPU_DUMP_CCOP = 0x00040000, 556 }; 557 558 /** 559 * cpu_dump_state: 560 * @cpu: The CPU whose state is to be dumped. 561 * @f: If non-null, dump to this stream, else to current print sink. 562 * 563 * Dumps CPU state. 564 */ 565 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 566 567 /** 568 * cpu_dump_statistics: 569 * @cpu: The CPU whose state is to be dumped. 570 * @flags: Flags what to dump. 571 * 572 * Dump CPU statistics to the current monitor if we have one, else to 573 * stdout. 574 */ 575 void cpu_dump_statistics(CPUState *cpu, int flags); 576 577 #ifndef CONFIG_USER_ONLY 578 /** 579 * cpu_get_phys_page_attrs_debug: 580 * @cpu: The CPU to obtain the physical page address for. 581 * @addr: The virtual address. 582 * @attrs: Updated on return with the memory transaction attributes to use 583 * for this access. 584 * 585 * Obtains the physical page corresponding to a virtual one, together 586 * with the corresponding memory transaction attributes to use for the access. 587 * Use it only for debugging because no protection checks are done. 588 * 589 * Returns: Corresponding physical page address or -1 if no page found. 590 */ 591 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 592 MemTxAttrs *attrs) 593 { 594 CPUClass *cc = CPU_GET_CLASS(cpu); 595 596 if (cc->get_phys_page_attrs_debug) { 597 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 598 } 599 /* Fallback for CPUs which don't implement the _attrs_ hook */ 600 *attrs = MEMTXATTRS_UNSPECIFIED; 601 return cc->get_phys_page_debug(cpu, addr); 602 } 603 604 /** 605 * cpu_get_phys_page_debug: 606 * @cpu: The CPU to obtain the physical page address for. 607 * @addr: The virtual address. 608 * 609 * Obtains the physical page corresponding to a virtual one. 610 * Use it only for debugging because no protection checks are done. 611 * 612 * Returns: Corresponding physical page address or -1 if no page found. 613 */ 614 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 615 { 616 MemTxAttrs attrs = {}; 617 618 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 619 } 620 621 /** cpu_asidx_from_attrs: 622 * @cpu: CPU 623 * @attrs: memory transaction attributes 624 * 625 * Returns the address space index specifying the CPU AddressSpace 626 * to use for a memory access with the given transaction attributes. 627 */ 628 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 629 { 630 CPUClass *cc = CPU_GET_CLASS(cpu); 631 int ret = 0; 632 633 if (cc->asidx_from_attrs) { 634 ret = cc->asidx_from_attrs(cpu, attrs); 635 assert(ret < cpu->num_ases && ret >= 0); 636 } 637 return ret; 638 } 639 640 #endif /* CONFIG_USER_ONLY */ 641 642 /** 643 * cpu_list_add: 644 * @cpu: The CPU to be added to the list of CPUs. 645 */ 646 void cpu_list_add(CPUState *cpu); 647 648 /** 649 * cpu_list_remove: 650 * @cpu: The CPU to be removed from the list of CPUs. 651 */ 652 void cpu_list_remove(CPUState *cpu); 653 654 /** 655 * cpu_reset: 656 * @cpu: The CPU whose state is to be reset. 657 */ 658 void cpu_reset(CPUState *cpu); 659 660 /** 661 * cpu_class_by_name: 662 * @typename: The CPU base type. 663 * @cpu_model: The model string without any parameters. 664 * 665 * Looks up a CPU #ObjectClass matching name @cpu_model. 666 * 667 * Returns: A #CPUClass or %NULL if not matching class is found. 668 */ 669 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 670 671 /** 672 * cpu_create: 673 * @typename: The CPU type. 674 * 675 * Instantiates a CPU and realizes the CPU. 676 * 677 * Returns: A #CPUState or %NULL if an error occurred. 678 */ 679 CPUState *cpu_create(const char *typename); 680 681 /** 682 * parse_cpu_option: 683 * @cpu_option: The -cpu option including optional parameters. 684 * 685 * processes optional parameters and registers them as global properties 686 * 687 * Returns: type of CPU to create or prints error and terminates process 688 * if an error occurred. 689 */ 690 const char *parse_cpu_option(const char *cpu_option); 691 692 /** 693 * cpu_has_work: 694 * @cpu: The vCPU to check. 695 * 696 * Checks whether the CPU has work to do. 697 * 698 * Returns: %true if the CPU has work, %false otherwise. 699 */ 700 static inline bool cpu_has_work(CPUState *cpu) 701 { 702 CPUClass *cc = CPU_GET_CLASS(cpu); 703 704 g_assert(cc->has_work); 705 return cc->has_work(cpu); 706 } 707 708 /** 709 * qemu_cpu_is_self: 710 * @cpu: The vCPU to check against. 711 * 712 * Checks whether the caller is executing on the vCPU thread. 713 * 714 * Returns: %true if called from @cpu's thread, %false otherwise. 715 */ 716 bool qemu_cpu_is_self(CPUState *cpu); 717 718 /** 719 * qemu_cpu_kick: 720 * @cpu: The vCPU to kick. 721 * 722 * Kicks @cpu's thread. 723 */ 724 void qemu_cpu_kick(CPUState *cpu); 725 726 /** 727 * cpu_is_stopped: 728 * @cpu: The CPU to check. 729 * 730 * Checks whether the CPU is stopped. 731 * 732 * Returns: %true if run state is not running or if artificially stopped; 733 * %false otherwise. 734 */ 735 bool cpu_is_stopped(CPUState *cpu); 736 737 /** 738 * do_run_on_cpu: 739 * @cpu: The vCPU to run on. 740 * @func: The function to be executed. 741 * @data: Data to pass to the function. 742 * @mutex: Mutex to release while waiting for @func to run. 743 * 744 * Used internally in the implementation of run_on_cpu. 745 */ 746 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 747 QemuMutex *mutex); 748 749 /** 750 * run_on_cpu: 751 * @cpu: The vCPU to run on. 752 * @func: The function to be executed. 753 * @data: Data to pass to the function. 754 * 755 * Schedules the function @func for execution on the vCPU @cpu. 756 */ 757 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 758 759 /** 760 * async_run_on_cpu: 761 * @cpu: The vCPU to run on. 762 * @func: The function to be executed. 763 * @data: Data to pass to the function. 764 * 765 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 766 */ 767 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 768 769 /** 770 * async_safe_run_on_cpu: 771 * @cpu: The vCPU to run on. 772 * @func: The function to be executed. 773 * @data: Data to pass to the function. 774 * 775 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 776 * while all other vCPUs are sleeping. 777 * 778 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 779 * BQL. 780 */ 781 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 782 783 /** 784 * cpu_in_exclusive_context() 785 * @cpu: The vCPU to check 786 * 787 * Returns true if @cpu is an exclusive context, for example running 788 * something which has previously been queued via async_safe_run_on_cpu(). 789 */ 790 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 791 { 792 return cpu->in_exclusive_context; 793 } 794 795 /** 796 * qemu_get_cpu: 797 * @index: The CPUState@cpu_index value of the CPU to obtain. 798 * 799 * Gets a CPU matching @index. 800 * 801 * Returns: The CPU or %NULL if there is no matching CPU. 802 */ 803 CPUState *qemu_get_cpu(int index); 804 805 /** 806 * cpu_exists: 807 * @id: Guest-exposed CPU ID to lookup. 808 * 809 * Search for CPU with specified ID. 810 * 811 * Returns: %true - CPU is found, %false - CPU isn't found. 812 */ 813 bool cpu_exists(int64_t id); 814 815 /** 816 * cpu_by_arch_id: 817 * @id: Guest-exposed CPU ID of the CPU to obtain. 818 * 819 * Get a CPU with matching @id. 820 * 821 * Returns: The CPU or %NULL if there is no matching CPU. 822 */ 823 CPUState *cpu_by_arch_id(int64_t id); 824 825 #ifndef CONFIG_USER_ONLY 826 827 typedef void (*CPUInterruptHandler)(CPUState *, int); 828 829 extern CPUInterruptHandler cpu_interrupt_handler; 830 831 /** 832 * cpu_interrupt: 833 * @cpu: The CPU to set an interrupt on. 834 * @mask: The interrupts to set. 835 * 836 * Invokes the interrupt handler. 837 */ 838 static inline void cpu_interrupt(CPUState *cpu, int mask) 839 { 840 cpu_interrupt_handler(cpu, mask); 841 } 842 843 #else /* USER_ONLY */ 844 845 void cpu_interrupt(CPUState *cpu, int mask); 846 847 #endif /* USER_ONLY */ 848 849 #ifdef NEED_CPU_H 850 851 #ifdef CONFIG_SOFTMMU 852 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 853 MMUAccessType access_type, 854 int mmu_idx, uintptr_t retaddr) 855 { 856 CPUClass *cc = CPU_GET_CLASS(cpu); 857 858 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 859 } 860 861 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 862 vaddr addr, unsigned size, 863 MMUAccessType access_type, 864 int mmu_idx, MemTxAttrs attrs, 865 MemTxResult response, 866 uintptr_t retaddr) 867 { 868 CPUClass *cc = CPU_GET_CLASS(cpu); 869 870 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { 871 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, 872 mmu_idx, attrs, response, retaddr); 873 } 874 } 875 #endif 876 877 #endif /* NEED_CPU_H */ 878 879 /** 880 * cpu_set_pc: 881 * @cpu: The CPU to set the program counter for. 882 * @addr: Program counter value. 883 * 884 * Sets the program counter for a CPU. 885 */ 886 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 887 { 888 CPUClass *cc = CPU_GET_CLASS(cpu); 889 890 cc->set_pc(cpu, addr); 891 } 892 893 /** 894 * cpu_reset_interrupt: 895 * @cpu: The CPU to clear the interrupt on. 896 * @mask: The interrupt mask to clear. 897 * 898 * Resets interrupts on the vCPU @cpu. 899 */ 900 void cpu_reset_interrupt(CPUState *cpu, int mask); 901 902 /** 903 * cpu_exit: 904 * @cpu: The CPU to exit. 905 * 906 * Requests the CPU @cpu to exit execution. 907 */ 908 void cpu_exit(CPUState *cpu); 909 910 /** 911 * cpu_resume: 912 * @cpu: The CPU to resume. 913 * 914 * Resumes CPU, i.e. puts CPU into runnable state. 915 */ 916 void cpu_resume(CPUState *cpu); 917 918 /** 919 * cpu_remove: 920 * @cpu: The CPU to remove. 921 * 922 * Requests the CPU to be removed. 923 */ 924 void cpu_remove(CPUState *cpu); 925 926 /** 927 * cpu_remove_sync: 928 * @cpu: The CPU to remove. 929 * 930 * Requests the CPU to be removed and waits till it is removed. 931 */ 932 void cpu_remove_sync(CPUState *cpu); 933 934 /** 935 * process_queued_cpu_work() - process all items on CPU work queue 936 * @cpu: The CPU which work queue to process. 937 */ 938 void process_queued_cpu_work(CPUState *cpu); 939 940 /** 941 * cpu_exec_start: 942 * @cpu: The CPU for the current thread. 943 * 944 * Record that a CPU has started execution and can be interrupted with 945 * cpu_exit. 946 */ 947 void cpu_exec_start(CPUState *cpu); 948 949 /** 950 * cpu_exec_end: 951 * @cpu: The CPU for the current thread. 952 * 953 * Record that a CPU has stopped execution and exclusive sections 954 * can be executed without interrupting it. 955 */ 956 void cpu_exec_end(CPUState *cpu); 957 958 /** 959 * start_exclusive: 960 * 961 * Wait for a concurrent exclusive section to end, and then start 962 * a section of work that is run while other CPUs are not running 963 * between cpu_exec_start and cpu_exec_end. CPUs that are running 964 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 965 * during the exclusive section go to sleep until this CPU calls 966 * end_exclusive. 967 */ 968 void start_exclusive(void); 969 970 /** 971 * end_exclusive: 972 * 973 * Concludes an exclusive execution section started by start_exclusive. 974 */ 975 void end_exclusive(void); 976 977 /** 978 * qemu_init_vcpu: 979 * @cpu: The vCPU to initialize. 980 * 981 * Initializes a vCPU. 982 */ 983 void qemu_init_vcpu(CPUState *cpu); 984 985 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 986 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 987 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 988 989 /** 990 * cpu_single_step: 991 * @cpu: CPU to the flags for. 992 * @enabled: Flags to enable. 993 * 994 * Enables or disables single-stepping for @cpu. 995 */ 996 void cpu_single_step(CPUState *cpu, int enabled); 997 998 /* Breakpoint/watchpoint flags */ 999 #define BP_MEM_READ 0x01 1000 #define BP_MEM_WRITE 0x02 1001 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1002 #define BP_STOP_BEFORE_ACCESS 0x04 1003 /* 0x08 currently unused */ 1004 #define BP_GDB 0x10 1005 #define BP_CPU 0x20 1006 #define BP_ANY (BP_GDB | BP_CPU) 1007 #define BP_WATCHPOINT_HIT_READ 0x40 1008 #define BP_WATCHPOINT_HIT_WRITE 0x80 1009 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 1010 1011 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1012 CPUBreakpoint **breakpoint); 1013 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1014 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1015 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1016 1017 /* Return true if PC matches an installed breakpoint. */ 1018 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1019 { 1020 CPUBreakpoint *bp; 1021 1022 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1023 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1024 if (bp->pc == pc && (bp->flags & mask)) { 1025 return true; 1026 } 1027 } 1028 } 1029 return false; 1030 } 1031 1032 #ifdef CONFIG_USER_ONLY 1033 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1034 int flags, CPUWatchpoint **watchpoint) 1035 { 1036 return -ENOSYS; 1037 } 1038 1039 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1040 vaddr len, int flags) 1041 { 1042 return -ENOSYS; 1043 } 1044 1045 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1046 CPUWatchpoint *wp) 1047 { 1048 } 1049 1050 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1051 { 1052 } 1053 1054 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1055 MemTxAttrs atr, int fl, uintptr_t ra) 1056 { 1057 } 1058 1059 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1060 vaddr addr, vaddr len) 1061 { 1062 return 0; 1063 } 1064 #else 1065 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1066 int flags, CPUWatchpoint **watchpoint); 1067 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1068 vaddr len, int flags); 1069 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1070 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1071 1072 /** 1073 * cpu_check_watchpoint: 1074 * @cpu: cpu context 1075 * @addr: guest virtual address 1076 * @len: access length 1077 * @attrs: memory access attributes 1078 * @flags: watchpoint access type 1079 * @ra: unwind return address 1080 * 1081 * Check for a watchpoint hit in [addr, addr+len) of the type 1082 * specified by @flags. Exit via exception with a hit. 1083 */ 1084 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1085 MemTxAttrs attrs, int flags, uintptr_t ra); 1086 1087 /** 1088 * cpu_watchpoint_address_matches: 1089 * @cpu: cpu context 1090 * @addr: guest virtual address 1091 * @len: access length 1092 * 1093 * Return the watchpoint flags that apply to [addr, addr+len). 1094 * If no watchpoint is registered for the range, the result is 0. 1095 */ 1096 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1097 #endif 1098 1099 /** 1100 * cpu_get_address_space: 1101 * @cpu: CPU to get address space from 1102 * @asidx: index identifying which address space to get 1103 * 1104 * Return the requested address space of this CPU. @asidx 1105 * specifies which address space to read. 1106 */ 1107 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1108 1109 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1110 GCC_FMT_ATTR(2, 3); 1111 extern Property cpu_common_props[]; 1112 void cpu_exec_initfn(CPUState *cpu); 1113 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1114 void cpu_exec_unrealizefn(CPUState *cpu); 1115 1116 /** 1117 * target_words_bigendian: 1118 * Returns true if the (default) endianness of the target is big endian, 1119 * false otherwise. Note that in target-specific code, you can use 1120 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1121 * code should normally never need to know about the endianness of the 1122 * target, so please do *not* use this function unless you know very well 1123 * what you are doing! 1124 */ 1125 bool target_words_bigendian(void); 1126 1127 #ifdef NEED_CPU_H 1128 1129 #ifdef CONFIG_SOFTMMU 1130 extern const VMStateDescription vmstate_cpu_common; 1131 #else 1132 #define vmstate_cpu_common vmstate_dummy 1133 #endif 1134 1135 #define VMSTATE_CPU() { \ 1136 .name = "parent_obj", \ 1137 .size = sizeof(CPUState), \ 1138 .vmsd = &vmstate_cpu_common, \ 1139 .flags = VMS_STRUCT, \ 1140 .offset = 0, \ 1141 } 1142 1143 #endif /* NEED_CPU_H */ 1144 1145 #define UNASSIGNED_CPU_INDEX -1 1146 #define UNASSIGNED_CLUSTER_INDEX -1 1147 1148 #endif 1149