1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /* see sysemu-cpu-ops.h */ 84 struct SysemuCPUOps; 85 86 /** 87 * CPUClass: 88 * @class_by_name: Callback to map -cpu command line model name to an 89 * instantiatable CPU type. 90 * @parse_features: Callback to parse command line arguments. 91 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 92 * @has_work: Callback for checking if there is work to do. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 96 * @set_pc: Callback for setting the Program Counter register. This 97 * should have the semantics used by the target architecture when 98 * setting the PC from a source such as an ELF file entry point; 99 * for example on Arm it will also set the Thumb mode bit based 100 * on the least significant bit of the new PC value. 101 * If the target behaviour here is anything other than "set 102 * the PC register to the value passed in" then the target must 103 * also implement the synchronize_from_tb hook. 104 * @gdb_read_register: Callback for letting GDB read a register. 105 * @gdb_write_register: Callback for letting GDB write a register. 106 * @gdb_num_core_regs: Number of core registers accessible to GDB. 107 * @gdb_core_xml_file: File name for core registers GDB XML description. 108 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 109 * before the insn which triggers a watchpoint rather than after it. 110 * @gdb_arch_name: Optional callback that returns the architecture name known 111 * to GDB. The caller must free the returned string with g_free. 112 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 113 * gdb stub. Returns a pointer to the XML contents for the specified XML file 114 * or NULL if the CPU doesn't have a dynamically generated content for it. 115 * @disas_set_info: Setup architecture specific components of disassembly info 116 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 117 * address before attempting to match it against watchpoints. 118 * @deprecation_note: If this CPUClass is deprecated, this field provides 119 * related information. 120 * 121 * Represents a CPU family or model. 122 */ 123 struct CPUClass { 124 /*< private >*/ 125 DeviceClass parent_class; 126 /*< public >*/ 127 128 ObjectClass *(*class_by_name)(const char *cpu_model); 129 void (*parse_features)(const char *typename, char *str, Error **errp); 130 131 int reset_dump_flags; 132 bool (*has_work)(CPUState *cpu); 133 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 134 uint8_t *buf, int len, bool is_write); 135 void (*dump_state)(CPUState *cpu, FILE *, int flags); 136 int64_t (*get_arch_id)(CPUState *cpu); 137 void (*set_pc)(CPUState *cpu, vaddr value); 138 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 139 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 140 141 const char *gdb_core_xml_file; 142 gchar * (*gdb_arch_name)(CPUState *cpu); 143 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 144 145 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 146 147 const char *deprecation_note; 148 /* Keep non-pointer data at the end to minimize holes. */ 149 int gdb_num_core_regs; 150 bool gdb_stop_before_watchpoint; 151 struct AccelCPUClass *accel_cpu; 152 153 /* when system emulation is not available, this pointer is NULL */ 154 const struct SysemuCPUOps *sysemu_ops; 155 156 /* when TCG is not available, this pointer is NULL */ 157 const struct TCGCPUOps *tcg_ops; 158 159 /* 160 * if not NULL, this is called in order for the CPUClass to initialize 161 * class data that depends on the accelerator, see accel/accel-common.c. 162 */ 163 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 164 }; 165 166 /* 167 * Low 16 bits: number of cycles left, used only in icount mode. 168 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 169 * for this CPU and return to its top level loop (even in non-icount mode). 170 * This allows a single read-compare-cbranch-write sequence to test 171 * for both decrementer underflow and exceptions. 172 */ 173 typedef union IcountDecr { 174 uint32_t u32; 175 struct { 176 #ifdef HOST_WORDS_BIGENDIAN 177 uint16_t high; 178 uint16_t low; 179 #else 180 uint16_t low; 181 uint16_t high; 182 #endif 183 } u16; 184 } IcountDecr; 185 186 typedef struct CPUBreakpoint { 187 vaddr pc; 188 int flags; /* BP_* */ 189 QTAILQ_ENTRY(CPUBreakpoint) entry; 190 } CPUBreakpoint; 191 192 struct CPUWatchpoint { 193 vaddr vaddr; 194 vaddr len; 195 vaddr hitaddr; 196 MemTxAttrs hitattrs; 197 int flags; /* BP_* */ 198 QTAILQ_ENTRY(CPUWatchpoint) entry; 199 }; 200 201 #ifdef CONFIG_PLUGIN 202 /* 203 * For plugins we sometime need to save the resolved iotlb data before 204 * the memory regions get moved around by io_writex. 205 */ 206 typedef struct SavedIOTLB { 207 hwaddr addr; 208 MemoryRegionSection *section; 209 hwaddr mr_offset; 210 } SavedIOTLB; 211 #endif 212 213 struct KVMState; 214 struct kvm_run; 215 216 struct hax_vcpu_state; 217 218 #define TB_JMP_CACHE_BITS 12 219 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 220 221 /* work queue */ 222 223 /* The union type allows passing of 64 bit target pointers on 32 bit 224 * hosts in a single parameter 225 */ 226 typedef union { 227 int host_int; 228 unsigned long host_ulong; 229 void *host_ptr; 230 vaddr target_ptr; 231 } run_on_cpu_data; 232 233 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 234 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 235 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 236 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 237 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 238 239 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 240 241 struct qemu_work_item; 242 243 #define CPU_UNSET_NUMA_NODE_ID -1 244 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 245 246 /** 247 * CPUState: 248 * @cpu_index: CPU index (informative). 249 * @cluster_index: Identifies which cluster this CPU is in. 250 * For boards which don't define clusters or for "loose" CPUs not assigned 251 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 252 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 253 * QOM parent. 254 * @tcg_cflags: Pre-computed cflags for this cpu. 255 * @nr_cores: Number of cores within this CPU package. 256 * @nr_threads: Number of threads within this CPU. 257 * @running: #true if CPU is currently running (lockless). 258 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 259 * valid under cpu_list_lock. 260 * @created: Indicates whether the CPU thread has been successfully created. 261 * @interrupt_request: Indicates a pending interrupt request. 262 * @halted: Nonzero if the CPU is in suspended state. 263 * @stop: Indicates a pending stop request. 264 * @stopped: Indicates the CPU has been artificially stopped. 265 * @unplug: Indicates a pending CPU unplug request. 266 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 267 * @singlestep_enabled: Flags for single-stepping. 268 * @icount_extra: Instructions until next timer event. 269 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 270 * requires that IO only be performed on the last instruction of a TB 271 * so that interrupts take effect immediately. 272 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 273 * AddressSpaces this CPU has) 274 * @num_ases: number of CPUAddressSpaces in @cpu_ases 275 * @as: Pointer to the first AddressSpace, for the convenience of targets which 276 * only have a single AddressSpace 277 * @env_ptr: Pointer to subclass-specific CPUArchState field. 278 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 279 * @gdb_regs: Additional GDB registers. 280 * @gdb_num_regs: Number of total registers accessible to GDB. 281 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 282 * @next_cpu: Next CPU sharing TB cache. 283 * @opaque: User data. 284 * @mem_io_pc: Host Program Counter at which the memory was accessed. 285 * @kvm_fd: vCPU file descriptor for KVM. 286 * @work_mutex: Lock to prevent multiple access to @work_list. 287 * @work_list: List of pending asynchronous work. 288 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 289 * to @trace_dstate). 290 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 291 * @plugin_mask: Plugin event bitmap. Modified only via async work. 292 * @ignore_memory_transaction_failures: Cached copy of the MachineState 293 * flag of the same name: allows the board to suppress calling of the 294 * CPU do_transaction_failed hook function. 295 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 296 * ring is enabled. 297 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 298 * dirty ring structure. 299 * 300 * State of one CPU core or thread. 301 */ 302 struct CPUState { 303 /*< private >*/ 304 DeviceState parent_obj; 305 /*< public >*/ 306 307 int nr_cores; 308 int nr_threads; 309 310 struct QemuThread *thread; 311 #ifdef _WIN32 312 HANDLE hThread; 313 #endif 314 int thread_id; 315 bool running, has_waiter; 316 struct QemuCond *halt_cond; 317 bool thread_kicked; 318 bool created; 319 bool stop; 320 bool stopped; 321 322 /* Should CPU start in powered-off state? */ 323 bool start_powered_off; 324 325 bool unplug; 326 bool crash_occurred; 327 bool exit_request; 328 bool in_exclusive_context; 329 uint32_t cflags_next_tb; 330 /* updates protected by BQL */ 331 uint32_t interrupt_request; 332 int singlestep_enabled; 333 int64_t icount_budget; 334 int64_t icount_extra; 335 uint64_t random_seed; 336 sigjmp_buf jmp_env; 337 338 QemuMutex work_mutex; 339 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 340 341 CPUAddressSpace *cpu_ases; 342 int num_ases; 343 AddressSpace *as; 344 MemoryRegion *memory; 345 346 void *env_ptr; /* CPUArchState */ 347 IcountDecr *icount_decr_ptr; 348 349 /* Accessed in parallel; all accesses must be atomic */ 350 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 351 352 struct GDBRegisterState *gdb_regs; 353 int gdb_num_regs; 354 int gdb_num_g_regs; 355 QTAILQ_ENTRY(CPUState) node; 356 357 /* ice debug support */ 358 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 359 360 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 361 CPUWatchpoint *watchpoint_hit; 362 363 void *opaque; 364 365 /* In order to avoid passing too many arguments to the MMIO helpers, 366 * we store some rarely used information in the CPU context. 367 */ 368 uintptr_t mem_io_pc; 369 370 /* Only used in KVM */ 371 int kvm_fd; 372 struct KVMState *kvm_state; 373 struct kvm_run *kvm_run; 374 struct kvm_dirty_gfn *kvm_dirty_gfns; 375 uint32_t kvm_fetch_index; 376 377 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 378 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 379 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 380 381 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 382 383 #ifdef CONFIG_PLUGIN 384 GArray *plugin_mem_cbs; 385 /* saved iotlb data from io_writex */ 386 SavedIOTLB saved_iotlb; 387 #endif 388 389 /* TODO Move common fields from CPUArchState here. */ 390 int cpu_index; 391 int cluster_index; 392 uint32_t tcg_cflags; 393 uint32_t halted; 394 uint32_t can_do_io; 395 int32_t exception_index; 396 397 /* shared by kvm, hax and hvf */ 398 bool vcpu_dirty; 399 400 /* Used to keep track of an outstanding cpu throttle thread for migration 401 * autoconverge 402 */ 403 bool throttle_thread_scheduled; 404 405 bool ignore_memory_transaction_failures; 406 407 struct hax_vcpu_state *hax_vcpu; 408 409 int hvf_fd; 410 411 /* track IOMMUs whose translations we've cached in the TCG TLB */ 412 GArray *iommu_notifiers; 413 }; 414 415 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 416 extern CPUTailQ cpus; 417 418 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 419 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 420 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 421 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 422 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 423 424 extern __thread CPUState *current_cpu; 425 426 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 427 { 428 unsigned int i; 429 430 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 431 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 432 } 433 } 434 435 /** 436 * qemu_tcg_mttcg_enabled: 437 * Check whether we are running MultiThread TCG or not. 438 * 439 * Returns: %true if we are in MTTCG mode %false otherwise. 440 */ 441 extern bool mttcg_enabled; 442 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 443 444 /** 445 * cpu_paging_enabled: 446 * @cpu: The CPU whose state is to be inspected. 447 * 448 * Returns: %true if paging is enabled, %false otherwise. 449 */ 450 bool cpu_paging_enabled(const CPUState *cpu); 451 452 /** 453 * cpu_get_memory_mapping: 454 * @cpu: The CPU whose memory mappings are to be obtained. 455 * @list: Where to write the memory mappings to. 456 * @errp: Pointer for reporting an #Error. 457 */ 458 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 459 Error **errp); 460 461 #if !defined(CONFIG_USER_ONLY) 462 463 /** 464 * cpu_write_elf64_note: 465 * @f: pointer to a function that writes memory to a file 466 * @cpu: The CPU whose memory is to be dumped 467 * @cpuid: ID number of the CPU 468 * @opaque: pointer to the CPUState struct 469 */ 470 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 471 int cpuid, void *opaque); 472 473 /** 474 * cpu_write_elf64_qemunote: 475 * @f: pointer to a function that writes memory to a file 476 * @cpu: The CPU whose memory is to be dumped 477 * @cpuid: ID number of the CPU 478 * @opaque: pointer to the CPUState struct 479 */ 480 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 481 void *opaque); 482 483 /** 484 * cpu_write_elf32_note: 485 * @f: pointer to a function that writes memory to a file 486 * @cpu: The CPU whose memory is to be dumped 487 * @cpuid: ID number of the CPU 488 * @opaque: pointer to the CPUState struct 489 */ 490 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 491 int cpuid, void *opaque); 492 493 /** 494 * cpu_write_elf32_qemunote: 495 * @f: pointer to a function that writes memory to a file 496 * @cpu: The CPU whose memory is to be dumped 497 * @cpuid: ID number of the CPU 498 * @opaque: pointer to the CPUState struct 499 */ 500 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 501 void *opaque); 502 503 /** 504 * cpu_get_crash_info: 505 * @cpu: The CPU to get crash information for 506 * 507 * Gets the previously saved crash information. 508 * Caller is responsible for freeing the data. 509 */ 510 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 511 512 #endif /* !CONFIG_USER_ONLY */ 513 514 /** 515 * CPUDumpFlags: 516 * @CPU_DUMP_CODE: 517 * @CPU_DUMP_FPU: dump FPU register state, not just integer 518 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 519 */ 520 enum CPUDumpFlags { 521 CPU_DUMP_CODE = 0x00010000, 522 CPU_DUMP_FPU = 0x00020000, 523 CPU_DUMP_CCOP = 0x00040000, 524 }; 525 526 /** 527 * cpu_dump_state: 528 * @cpu: The CPU whose state is to be dumped. 529 * @f: If non-null, dump to this stream, else to current print sink. 530 * 531 * Dumps CPU state. 532 */ 533 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 534 535 #ifndef CONFIG_USER_ONLY 536 /** 537 * cpu_get_phys_page_attrs_debug: 538 * @cpu: The CPU to obtain the physical page address for. 539 * @addr: The virtual address. 540 * @attrs: Updated on return with the memory transaction attributes to use 541 * for this access. 542 * 543 * Obtains the physical page corresponding to a virtual one, together 544 * with the corresponding memory transaction attributes to use for the access. 545 * Use it only for debugging because no protection checks are done. 546 * 547 * Returns: Corresponding physical page address or -1 if no page found. 548 */ 549 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 550 MemTxAttrs *attrs); 551 552 /** 553 * cpu_get_phys_page_debug: 554 * @cpu: The CPU to obtain the physical page address for. 555 * @addr: The virtual address. 556 * 557 * Obtains the physical page corresponding to a virtual one. 558 * Use it only for debugging because no protection checks are done. 559 * 560 * Returns: Corresponding physical page address or -1 if no page found. 561 */ 562 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 563 564 /** cpu_asidx_from_attrs: 565 * @cpu: CPU 566 * @attrs: memory transaction attributes 567 * 568 * Returns the address space index specifying the CPU AddressSpace 569 * to use for a memory access with the given transaction attributes. 570 */ 571 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 572 573 /** 574 * cpu_virtio_is_big_endian: 575 * @cpu: CPU 576 577 * Returns %true if a CPU which supports runtime configurable endianness 578 * is currently big-endian. 579 */ 580 bool cpu_virtio_is_big_endian(CPUState *cpu); 581 582 #endif /* CONFIG_USER_ONLY */ 583 584 /** 585 * cpu_list_add: 586 * @cpu: The CPU to be added to the list of CPUs. 587 */ 588 void cpu_list_add(CPUState *cpu); 589 590 /** 591 * cpu_list_remove: 592 * @cpu: The CPU to be removed from the list of CPUs. 593 */ 594 void cpu_list_remove(CPUState *cpu); 595 596 /** 597 * cpu_reset: 598 * @cpu: The CPU whose state is to be reset. 599 */ 600 void cpu_reset(CPUState *cpu); 601 602 /** 603 * cpu_class_by_name: 604 * @typename: The CPU base type. 605 * @cpu_model: The model string without any parameters. 606 * 607 * Looks up a CPU #ObjectClass matching name @cpu_model. 608 * 609 * Returns: A #CPUClass or %NULL if not matching class is found. 610 */ 611 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 612 613 /** 614 * cpu_create: 615 * @typename: The CPU type. 616 * 617 * Instantiates a CPU and realizes the CPU. 618 * 619 * Returns: A #CPUState or %NULL if an error occurred. 620 */ 621 CPUState *cpu_create(const char *typename); 622 623 /** 624 * parse_cpu_option: 625 * @cpu_option: The -cpu option including optional parameters. 626 * 627 * processes optional parameters and registers them as global properties 628 * 629 * Returns: type of CPU to create or prints error and terminates process 630 * if an error occurred. 631 */ 632 const char *parse_cpu_option(const char *cpu_option); 633 634 /** 635 * cpu_has_work: 636 * @cpu: The vCPU to check. 637 * 638 * Checks whether the CPU has work to do. 639 * 640 * Returns: %true if the CPU has work, %false otherwise. 641 */ 642 static inline bool cpu_has_work(CPUState *cpu) 643 { 644 CPUClass *cc = CPU_GET_CLASS(cpu); 645 646 g_assert(cc->has_work); 647 return cc->has_work(cpu); 648 } 649 650 /** 651 * qemu_cpu_is_self: 652 * @cpu: The vCPU to check against. 653 * 654 * Checks whether the caller is executing on the vCPU thread. 655 * 656 * Returns: %true if called from @cpu's thread, %false otherwise. 657 */ 658 bool qemu_cpu_is_self(CPUState *cpu); 659 660 /** 661 * qemu_cpu_kick: 662 * @cpu: The vCPU to kick. 663 * 664 * Kicks @cpu's thread. 665 */ 666 void qemu_cpu_kick(CPUState *cpu); 667 668 /** 669 * cpu_is_stopped: 670 * @cpu: The CPU to check. 671 * 672 * Checks whether the CPU is stopped. 673 * 674 * Returns: %true if run state is not running or if artificially stopped; 675 * %false otherwise. 676 */ 677 bool cpu_is_stopped(CPUState *cpu); 678 679 /** 680 * do_run_on_cpu: 681 * @cpu: The vCPU to run on. 682 * @func: The function to be executed. 683 * @data: Data to pass to the function. 684 * @mutex: Mutex to release while waiting for @func to run. 685 * 686 * Used internally in the implementation of run_on_cpu. 687 */ 688 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 689 QemuMutex *mutex); 690 691 /** 692 * run_on_cpu: 693 * @cpu: The vCPU to run on. 694 * @func: The function to be executed. 695 * @data: Data to pass to the function. 696 * 697 * Schedules the function @func for execution on the vCPU @cpu. 698 */ 699 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 700 701 /** 702 * async_run_on_cpu: 703 * @cpu: The vCPU to run on. 704 * @func: The function to be executed. 705 * @data: Data to pass to the function. 706 * 707 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 708 */ 709 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 710 711 /** 712 * async_safe_run_on_cpu: 713 * @cpu: The vCPU to run on. 714 * @func: The function to be executed. 715 * @data: Data to pass to the function. 716 * 717 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 718 * while all other vCPUs are sleeping. 719 * 720 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 721 * BQL. 722 */ 723 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 724 725 /** 726 * cpu_in_exclusive_context() 727 * @cpu: The vCPU to check 728 * 729 * Returns true if @cpu is an exclusive context, for example running 730 * something which has previously been queued via async_safe_run_on_cpu(). 731 */ 732 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 733 { 734 return cpu->in_exclusive_context; 735 } 736 737 /** 738 * qemu_get_cpu: 739 * @index: The CPUState@cpu_index value of the CPU to obtain. 740 * 741 * Gets a CPU matching @index. 742 * 743 * Returns: The CPU or %NULL if there is no matching CPU. 744 */ 745 CPUState *qemu_get_cpu(int index); 746 747 /** 748 * cpu_exists: 749 * @id: Guest-exposed CPU ID to lookup. 750 * 751 * Search for CPU with specified ID. 752 * 753 * Returns: %true - CPU is found, %false - CPU isn't found. 754 */ 755 bool cpu_exists(int64_t id); 756 757 /** 758 * cpu_by_arch_id: 759 * @id: Guest-exposed CPU ID of the CPU to obtain. 760 * 761 * Get a CPU with matching @id. 762 * 763 * Returns: The CPU or %NULL if there is no matching CPU. 764 */ 765 CPUState *cpu_by_arch_id(int64_t id); 766 767 /** 768 * cpu_interrupt: 769 * @cpu: The CPU to set an interrupt on. 770 * @mask: The interrupts to set. 771 * 772 * Invokes the interrupt handler. 773 */ 774 775 void cpu_interrupt(CPUState *cpu, int mask); 776 777 /** 778 * cpu_set_pc: 779 * @cpu: The CPU to set the program counter for. 780 * @addr: Program counter value. 781 * 782 * Sets the program counter for a CPU. 783 */ 784 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 785 { 786 CPUClass *cc = CPU_GET_CLASS(cpu); 787 788 cc->set_pc(cpu, addr); 789 } 790 791 /** 792 * cpu_reset_interrupt: 793 * @cpu: The CPU to clear the interrupt on. 794 * @mask: The interrupt mask to clear. 795 * 796 * Resets interrupts on the vCPU @cpu. 797 */ 798 void cpu_reset_interrupt(CPUState *cpu, int mask); 799 800 /** 801 * cpu_exit: 802 * @cpu: The CPU to exit. 803 * 804 * Requests the CPU @cpu to exit execution. 805 */ 806 void cpu_exit(CPUState *cpu); 807 808 /** 809 * cpu_resume: 810 * @cpu: The CPU to resume. 811 * 812 * Resumes CPU, i.e. puts CPU into runnable state. 813 */ 814 void cpu_resume(CPUState *cpu); 815 816 /** 817 * cpu_remove_sync: 818 * @cpu: The CPU to remove. 819 * 820 * Requests the CPU to be removed and waits till it is removed. 821 */ 822 void cpu_remove_sync(CPUState *cpu); 823 824 /** 825 * process_queued_cpu_work() - process all items on CPU work queue 826 * @cpu: The CPU which work queue to process. 827 */ 828 void process_queued_cpu_work(CPUState *cpu); 829 830 /** 831 * cpu_exec_start: 832 * @cpu: The CPU for the current thread. 833 * 834 * Record that a CPU has started execution and can be interrupted with 835 * cpu_exit. 836 */ 837 void cpu_exec_start(CPUState *cpu); 838 839 /** 840 * cpu_exec_end: 841 * @cpu: The CPU for the current thread. 842 * 843 * Record that a CPU has stopped execution and exclusive sections 844 * can be executed without interrupting it. 845 */ 846 void cpu_exec_end(CPUState *cpu); 847 848 /** 849 * start_exclusive: 850 * 851 * Wait for a concurrent exclusive section to end, and then start 852 * a section of work that is run while other CPUs are not running 853 * between cpu_exec_start and cpu_exec_end. CPUs that are running 854 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 855 * during the exclusive section go to sleep until this CPU calls 856 * end_exclusive. 857 */ 858 void start_exclusive(void); 859 860 /** 861 * end_exclusive: 862 * 863 * Concludes an exclusive execution section started by start_exclusive. 864 */ 865 void end_exclusive(void); 866 867 /** 868 * qemu_init_vcpu: 869 * @cpu: The vCPU to initialize. 870 * 871 * Initializes a vCPU. 872 */ 873 void qemu_init_vcpu(CPUState *cpu); 874 875 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 876 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 877 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 878 879 /** 880 * cpu_single_step: 881 * @cpu: CPU to the flags for. 882 * @enabled: Flags to enable. 883 * 884 * Enables or disables single-stepping for @cpu. 885 */ 886 void cpu_single_step(CPUState *cpu, int enabled); 887 888 /* Breakpoint/watchpoint flags */ 889 #define BP_MEM_READ 0x01 890 #define BP_MEM_WRITE 0x02 891 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 892 #define BP_STOP_BEFORE_ACCESS 0x04 893 /* 0x08 currently unused */ 894 #define BP_GDB 0x10 895 #define BP_CPU 0x20 896 #define BP_ANY (BP_GDB | BP_CPU) 897 #define BP_WATCHPOINT_HIT_READ 0x40 898 #define BP_WATCHPOINT_HIT_WRITE 0x80 899 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 900 901 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 902 CPUBreakpoint **breakpoint); 903 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 904 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 905 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 906 907 /* Return true if PC matches an installed breakpoint. */ 908 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 909 { 910 CPUBreakpoint *bp; 911 912 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 913 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 914 if (bp->pc == pc && (bp->flags & mask)) { 915 return true; 916 } 917 } 918 } 919 return false; 920 } 921 922 #ifdef CONFIG_USER_ONLY 923 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 924 int flags, CPUWatchpoint **watchpoint) 925 { 926 return -ENOSYS; 927 } 928 929 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 930 vaddr len, int flags) 931 { 932 return -ENOSYS; 933 } 934 935 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 936 CPUWatchpoint *wp) 937 { 938 } 939 940 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 941 { 942 } 943 944 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 945 MemTxAttrs atr, int fl, uintptr_t ra) 946 { 947 } 948 949 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 950 vaddr addr, vaddr len) 951 { 952 return 0; 953 } 954 #else 955 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 956 int flags, CPUWatchpoint **watchpoint); 957 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 958 vaddr len, int flags); 959 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 960 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 961 962 /** 963 * cpu_check_watchpoint: 964 * @cpu: cpu context 965 * @addr: guest virtual address 966 * @len: access length 967 * @attrs: memory access attributes 968 * @flags: watchpoint access type 969 * @ra: unwind return address 970 * 971 * Check for a watchpoint hit in [addr, addr+len) of the type 972 * specified by @flags. Exit via exception with a hit. 973 */ 974 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 975 MemTxAttrs attrs, int flags, uintptr_t ra); 976 977 /** 978 * cpu_watchpoint_address_matches: 979 * @cpu: cpu context 980 * @addr: guest virtual address 981 * @len: access length 982 * 983 * Return the watchpoint flags that apply to [addr, addr+len). 984 * If no watchpoint is registered for the range, the result is 0. 985 */ 986 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 987 #endif 988 989 /** 990 * cpu_get_address_space: 991 * @cpu: CPU to get address space from 992 * @asidx: index identifying which address space to get 993 * 994 * Return the requested address space of this CPU. @asidx 995 * specifies which address space to read. 996 */ 997 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 998 999 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1000 GCC_FMT_ATTR(2, 3); 1001 1002 /* $(top_srcdir)/cpu.c */ 1003 void cpu_exec_initfn(CPUState *cpu); 1004 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1005 void cpu_exec_unrealizefn(CPUState *cpu); 1006 1007 /** 1008 * target_words_bigendian: 1009 * Returns true if the (default) endianness of the target is big endian, 1010 * false otherwise. Note that in target-specific code, you can use 1011 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1012 * code should normally never need to know about the endianness of the 1013 * target, so please do *not* use this function unless you know very well 1014 * what you are doing! 1015 */ 1016 bool target_words_bigendian(void); 1017 1018 #ifdef NEED_CPU_H 1019 1020 #ifdef CONFIG_SOFTMMU 1021 1022 extern const VMStateDescription vmstate_cpu_common; 1023 1024 #define VMSTATE_CPU() { \ 1025 .name = "parent_obj", \ 1026 .size = sizeof(CPUState), \ 1027 .vmsd = &vmstate_cpu_common, \ 1028 .flags = VMS_STRUCT, \ 1029 .offset = 0, \ 1030 } 1031 #endif /* CONFIG_SOFTMMU */ 1032 1033 #endif /* NEED_CPU_H */ 1034 1035 #define UNASSIGNED_CPU_INDEX -1 1036 #define UNASSIGNED_CLUSTER_INDEX -1 1037 1038 #endif 1039