1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 struct TranslationBlock; 78 79 /* see tcg-cpu-ops.h */ 80 struct TCGCPUOps; 81 82 /** 83 * CPUClass: 84 * @class_by_name: Callback to map -cpu command line model name to an 85 * instantiatable CPU type. 86 * @parse_features: Callback to parse command line arguments. 87 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 88 * @has_work: Callback for checking if there is work to do. 89 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 90 * runtime configurable endianness is currently big-endian. Non-configurable 91 * CPUs can use the default implementation of this method. This method should 92 * not be used by any callers other than the pre-1.0 virtio devices. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @dump_statistics: Callback for dumping statistics. 96 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 97 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 98 * @get_memory_mapping: Callback for obtaining the memory mappings. 99 * @set_pc: Callback for setting the Program Counter register. This 100 * should have the semantics used by the target architecture when 101 * setting the PC from a source such as an ELF file entry point; 102 * for example on Arm it will also set the Thumb mode bit based 103 * on the least significant bit of the new PC value. 104 * If the target behaviour here is anything other than "set 105 * the PC register to the value passed in" then the target must 106 * also implement the synchronize_from_tb hook. 107 * @get_phys_page_debug: Callback for obtaining a physical address. 108 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 109 * associated memory transaction attributes to use for the access. 110 * CPUs which use memory transaction attributes should implement this 111 * instead of get_phys_page_debug. 112 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 113 * a memory access with the specified memory transaction attributes. 114 * @gdb_read_register: Callback for letting GDB read a register. 115 * @gdb_write_register: Callback for letting GDB write a register. 116 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 117 * 64-bit VM coredump. 118 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 119 * note to a 32-bit VM coredump. 120 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 121 * 32-bit VM coredump. 122 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 123 * note to a 32-bit VM coredump. 124 * @vmsd: State description for migration. 125 * @gdb_num_core_regs: Number of core registers accessible to GDB. 126 * @gdb_core_xml_file: File name for core registers GDB XML description. 127 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 128 * before the insn which triggers a watchpoint rather than after it. 129 * @gdb_arch_name: Optional callback that returns the architecture name known 130 * to GDB. The caller must free the returned string with g_free. 131 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 132 * gdb stub. Returns a pointer to the XML contents for the specified XML file 133 * or NULL if the CPU doesn't have a dynamically generated content for it. 134 * @disas_set_info: Setup architecture specific components of disassembly info 135 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 136 * address before attempting to match it against watchpoints. 137 * @deprecation_note: If this CPUClass is deprecated, this field provides 138 * related information. 139 * 140 * Represents a CPU family or model. 141 */ 142 struct CPUClass { 143 /*< private >*/ 144 DeviceClass parent_class; 145 /*< public >*/ 146 147 ObjectClass *(*class_by_name)(const char *cpu_model); 148 void (*parse_features)(const char *typename, char *str, Error **errp); 149 150 int reset_dump_flags; 151 bool (*has_work)(CPUState *cpu); 152 bool (*virtio_is_big_endian)(CPUState *cpu); 153 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 154 uint8_t *buf, int len, bool is_write); 155 void (*dump_state)(CPUState *cpu, FILE *, int flags); 156 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 157 void (*dump_statistics)(CPUState *cpu, int flags); 158 int64_t (*get_arch_id)(CPUState *cpu); 159 bool (*get_paging_enabled)(const CPUState *cpu); 160 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 161 Error **errp); 162 void (*set_pc)(CPUState *cpu, vaddr value); 163 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 164 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 165 MemTxAttrs *attrs); 166 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 167 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 168 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 169 170 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 171 int cpuid, void *opaque); 172 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 173 void *opaque); 174 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 175 int cpuid, void *opaque); 176 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 177 void *opaque); 178 179 const VMStateDescription *vmsd; 180 const char *gdb_core_xml_file; 181 gchar * (*gdb_arch_name)(CPUState *cpu); 182 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 183 184 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 185 186 const char *deprecation_note; 187 /* Keep non-pointer data at the end to minimize holes. */ 188 int gdb_num_core_regs; 189 bool gdb_stop_before_watchpoint; 190 191 /* when TCG is not available, this pointer is NULL */ 192 struct TCGCPUOps *tcg_ops; 193 }; 194 195 /* 196 * Low 16 bits: number of cycles left, used only in icount mode. 197 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 198 * for this CPU and return to its top level loop (even in non-icount mode). 199 * This allows a single read-compare-cbranch-write sequence to test 200 * for both decrementer underflow and exceptions. 201 */ 202 typedef union IcountDecr { 203 uint32_t u32; 204 struct { 205 #ifdef HOST_WORDS_BIGENDIAN 206 uint16_t high; 207 uint16_t low; 208 #else 209 uint16_t low; 210 uint16_t high; 211 #endif 212 } u16; 213 } IcountDecr; 214 215 typedef struct CPUBreakpoint { 216 vaddr pc; 217 int flags; /* BP_* */ 218 QTAILQ_ENTRY(CPUBreakpoint) entry; 219 } CPUBreakpoint; 220 221 struct CPUWatchpoint { 222 vaddr vaddr; 223 vaddr len; 224 vaddr hitaddr; 225 MemTxAttrs hitattrs; 226 int flags; /* BP_* */ 227 QTAILQ_ENTRY(CPUWatchpoint) entry; 228 }; 229 230 #ifdef CONFIG_PLUGIN 231 /* 232 * For plugins we sometime need to save the resolved iotlb data before 233 * the memory regions get moved around by io_writex. 234 */ 235 typedef struct SavedIOTLB { 236 hwaddr addr; 237 MemoryRegionSection *section; 238 hwaddr mr_offset; 239 } SavedIOTLB; 240 #endif 241 242 struct KVMState; 243 struct kvm_run; 244 245 struct hax_vcpu_state; 246 247 #define TB_JMP_CACHE_BITS 12 248 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 249 250 /* work queue */ 251 252 /* The union type allows passing of 64 bit target pointers on 32 bit 253 * hosts in a single parameter 254 */ 255 typedef union { 256 int host_int; 257 unsigned long host_ulong; 258 void *host_ptr; 259 vaddr target_ptr; 260 } run_on_cpu_data; 261 262 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 263 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 264 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 265 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 266 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 267 268 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 269 270 struct qemu_work_item; 271 272 #define CPU_UNSET_NUMA_NODE_ID -1 273 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 274 275 /** 276 * CPUState: 277 * @cpu_index: CPU index (informative). 278 * @cluster_index: Identifies which cluster this CPU is in. 279 * For boards which don't define clusters or for "loose" CPUs not assigned 280 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 281 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 282 * QOM parent. 283 * @nr_cores: Number of cores within this CPU package. 284 * @nr_threads: Number of threads within this CPU. 285 * @running: #true if CPU is currently running (lockless). 286 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 287 * valid under cpu_list_lock. 288 * @created: Indicates whether the CPU thread has been successfully created. 289 * @interrupt_request: Indicates a pending interrupt request. 290 * @halted: Nonzero if the CPU is in suspended state. 291 * @stop: Indicates a pending stop request. 292 * @stopped: Indicates the CPU has been artificially stopped. 293 * @unplug: Indicates a pending CPU unplug request. 294 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 295 * @singlestep_enabled: Flags for single-stepping. 296 * @icount_extra: Instructions until next timer event. 297 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 298 * requires that IO only be performed on the last instruction of a TB 299 * so that interrupts take effect immediately. 300 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 301 * AddressSpaces this CPU has) 302 * @num_ases: number of CPUAddressSpaces in @cpu_ases 303 * @as: Pointer to the first AddressSpace, for the convenience of targets which 304 * only have a single AddressSpace 305 * @env_ptr: Pointer to subclass-specific CPUArchState field. 306 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 307 * @gdb_regs: Additional GDB registers. 308 * @gdb_num_regs: Number of total registers accessible to GDB. 309 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 310 * @next_cpu: Next CPU sharing TB cache. 311 * @opaque: User data. 312 * @mem_io_pc: Host Program Counter at which the memory was accessed. 313 * @kvm_fd: vCPU file descriptor for KVM. 314 * @work_mutex: Lock to prevent multiple access to @work_list. 315 * @work_list: List of pending asynchronous work. 316 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 317 * to @trace_dstate). 318 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 319 * @plugin_mask: Plugin event bitmap. Modified only via async work. 320 * @ignore_memory_transaction_failures: Cached copy of the MachineState 321 * flag of the same name: allows the board to suppress calling of the 322 * CPU do_transaction_failed hook function. 323 * 324 * State of one CPU core or thread. 325 */ 326 struct CPUState { 327 /*< private >*/ 328 DeviceState parent_obj; 329 /*< public >*/ 330 331 int nr_cores; 332 int nr_threads; 333 334 struct QemuThread *thread; 335 #ifdef _WIN32 336 HANDLE hThread; 337 #endif 338 int thread_id; 339 bool running, has_waiter; 340 struct QemuCond *halt_cond; 341 bool thread_kicked; 342 bool created; 343 bool stop; 344 bool stopped; 345 346 /* Should CPU start in powered-off state? */ 347 bool start_powered_off; 348 349 bool unplug; 350 bool crash_occurred; 351 bool exit_request; 352 bool in_exclusive_context; 353 uint32_t cflags_next_tb; 354 /* updates protected by BQL */ 355 uint32_t interrupt_request; 356 int singlestep_enabled; 357 int64_t icount_budget; 358 int64_t icount_extra; 359 uint64_t random_seed; 360 sigjmp_buf jmp_env; 361 362 QemuMutex work_mutex; 363 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 364 365 CPUAddressSpace *cpu_ases; 366 int num_ases; 367 AddressSpace *as; 368 MemoryRegion *memory; 369 370 void *env_ptr; /* CPUArchState */ 371 IcountDecr *icount_decr_ptr; 372 373 /* Accessed in parallel; all accesses must be atomic */ 374 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 375 376 struct GDBRegisterState *gdb_regs; 377 int gdb_num_regs; 378 int gdb_num_g_regs; 379 QTAILQ_ENTRY(CPUState) node; 380 381 /* ice debug support */ 382 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 383 384 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 385 CPUWatchpoint *watchpoint_hit; 386 387 void *opaque; 388 389 /* In order to avoid passing too many arguments to the MMIO helpers, 390 * we store some rarely used information in the CPU context. 391 */ 392 uintptr_t mem_io_pc; 393 394 int kvm_fd; 395 struct KVMState *kvm_state; 396 struct kvm_run *kvm_run; 397 398 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 399 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 400 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 401 402 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 403 404 #ifdef CONFIG_PLUGIN 405 GArray *plugin_mem_cbs; 406 /* saved iotlb data from io_writex */ 407 SavedIOTLB saved_iotlb; 408 #endif 409 410 /* TODO Move common fields from CPUArchState here. */ 411 int cpu_index; 412 int cluster_index; 413 uint32_t halted; 414 uint32_t can_do_io; 415 int32_t exception_index; 416 417 /* shared by kvm, hax and hvf */ 418 bool vcpu_dirty; 419 420 /* Used to keep track of an outstanding cpu throttle thread for migration 421 * autoconverge 422 */ 423 bool throttle_thread_scheduled; 424 425 bool ignore_memory_transaction_failures; 426 427 struct hax_vcpu_state *hax_vcpu; 428 429 int hvf_fd; 430 431 /* track IOMMUs whose translations we've cached in the TCG TLB */ 432 GArray *iommu_notifiers; 433 }; 434 435 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 436 extern CPUTailQ cpus; 437 438 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 439 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 440 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 441 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 442 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 443 444 extern __thread CPUState *current_cpu; 445 446 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 447 { 448 unsigned int i; 449 450 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 451 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 452 } 453 } 454 455 /** 456 * qemu_tcg_mttcg_enabled: 457 * Check whether we are running MultiThread TCG or not. 458 * 459 * Returns: %true if we are in MTTCG mode %false otherwise. 460 */ 461 extern bool mttcg_enabled; 462 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 463 464 /** 465 * cpu_paging_enabled: 466 * @cpu: The CPU whose state is to be inspected. 467 * 468 * Returns: %true if paging is enabled, %false otherwise. 469 */ 470 bool cpu_paging_enabled(const CPUState *cpu); 471 472 /** 473 * cpu_get_memory_mapping: 474 * @cpu: The CPU whose memory mappings are to be obtained. 475 * @list: Where to write the memory mappings to. 476 * @errp: Pointer for reporting an #Error. 477 */ 478 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 479 Error **errp); 480 481 #if !defined(CONFIG_USER_ONLY) 482 483 /** 484 * cpu_write_elf64_note: 485 * @f: pointer to a function that writes memory to a file 486 * @cpu: The CPU whose memory is to be dumped 487 * @cpuid: ID number of the CPU 488 * @opaque: pointer to the CPUState struct 489 */ 490 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 491 int cpuid, void *opaque); 492 493 /** 494 * cpu_write_elf64_qemunote: 495 * @f: pointer to a function that writes memory to a file 496 * @cpu: The CPU whose memory is to be dumped 497 * @cpuid: ID number of the CPU 498 * @opaque: pointer to the CPUState struct 499 */ 500 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 501 void *opaque); 502 503 /** 504 * cpu_write_elf32_note: 505 * @f: pointer to a function that writes memory to a file 506 * @cpu: The CPU whose memory is to be dumped 507 * @cpuid: ID number of the CPU 508 * @opaque: pointer to the CPUState struct 509 */ 510 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 511 int cpuid, void *opaque); 512 513 /** 514 * cpu_write_elf32_qemunote: 515 * @f: pointer to a function that writes memory to a file 516 * @cpu: The CPU whose memory is to be dumped 517 * @cpuid: ID number of the CPU 518 * @opaque: pointer to the CPUState struct 519 */ 520 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 521 void *opaque); 522 523 /** 524 * cpu_get_crash_info: 525 * @cpu: The CPU to get crash information for 526 * 527 * Gets the previously saved crash information. 528 * Caller is responsible for freeing the data. 529 */ 530 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 531 532 #endif /* !CONFIG_USER_ONLY */ 533 534 /** 535 * CPUDumpFlags: 536 * @CPU_DUMP_CODE: 537 * @CPU_DUMP_FPU: dump FPU register state, not just integer 538 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 539 */ 540 enum CPUDumpFlags { 541 CPU_DUMP_CODE = 0x00010000, 542 CPU_DUMP_FPU = 0x00020000, 543 CPU_DUMP_CCOP = 0x00040000, 544 }; 545 546 /** 547 * cpu_dump_state: 548 * @cpu: The CPU whose state is to be dumped. 549 * @f: If non-null, dump to this stream, else to current print sink. 550 * 551 * Dumps CPU state. 552 */ 553 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 554 555 /** 556 * cpu_dump_statistics: 557 * @cpu: The CPU whose state is to be dumped. 558 * @flags: Flags what to dump. 559 * 560 * Dump CPU statistics to the current monitor if we have one, else to 561 * stdout. 562 */ 563 void cpu_dump_statistics(CPUState *cpu, int flags); 564 565 #ifndef CONFIG_USER_ONLY 566 /** 567 * cpu_get_phys_page_attrs_debug: 568 * @cpu: The CPU to obtain the physical page address for. 569 * @addr: The virtual address. 570 * @attrs: Updated on return with the memory transaction attributes to use 571 * for this access. 572 * 573 * Obtains the physical page corresponding to a virtual one, together 574 * with the corresponding memory transaction attributes to use for the access. 575 * Use it only for debugging because no protection checks are done. 576 * 577 * Returns: Corresponding physical page address or -1 if no page found. 578 */ 579 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 580 MemTxAttrs *attrs) 581 { 582 CPUClass *cc = CPU_GET_CLASS(cpu); 583 584 if (cc->get_phys_page_attrs_debug) { 585 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 586 } 587 /* Fallback for CPUs which don't implement the _attrs_ hook */ 588 *attrs = MEMTXATTRS_UNSPECIFIED; 589 return cc->get_phys_page_debug(cpu, addr); 590 } 591 592 /** 593 * cpu_get_phys_page_debug: 594 * @cpu: The CPU to obtain the physical page address for. 595 * @addr: The virtual address. 596 * 597 * Obtains the physical page corresponding to a virtual one. 598 * Use it only for debugging because no protection checks are done. 599 * 600 * Returns: Corresponding physical page address or -1 if no page found. 601 */ 602 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 603 { 604 MemTxAttrs attrs = {}; 605 606 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 607 } 608 609 /** cpu_asidx_from_attrs: 610 * @cpu: CPU 611 * @attrs: memory transaction attributes 612 * 613 * Returns the address space index specifying the CPU AddressSpace 614 * to use for a memory access with the given transaction attributes. 615 */ 616 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 617 { 618 CPUClass *cc = CPU_GET_CLASS(cpu); 619 int ret = 0; 620 621 if (cc->asidx_from_attrs) { 622 ret = cc->asidx_from_attrs(cpu, attrs); 623 assert(ret < cpu->num_ases && ret >= 0); 624 } 625 return ret; 626 } 627 628 #endif /* CONFIG_USER_ONLY */ 629 630 /** 631 * cpu_list_add: 632 * @cpu: The CPU to be added to the list of CPUs. 633 */ 634 void cpu_list_add(CPUState *cpu); 635 636 /** 637 * cpu_list_remove: 638 * @cpu: The CPU to be removed from the list of CPUs. 639 */ 640 void cpu_list_remove(CPUState *cpu); 641 642 /** 643 * cpu_reset: 644 * @cpu: The CPU whose state is to be reset. 645 */ 646 void cpu_reset(CPUState *cpu); 647 648 /** 649 * cpu_class_by_name: 650 * @typename: The CPU base type. 651 * @cpu_model: The model string without any parameters. 652 * 653 * Looks up a CPU #ObjectClass matching name @cpu_model. 654 * 655 * Returns: A #CPUClass or %NULL if not matching class is found. 656 */ 657 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 658 659 /** 660 * cpu_create: 661 * @typename: The CPU type. 662 * 663 * Instantiates a CPU and realizes the CPU. 664 * 665 * Returns: A #CPUState or %NULL if an error occurred. 666 */ 667 CPUState *cpu_create(const char *typename); 668 669 /** 670 * parse_cpu_option: 671 * @cpu_option: The -cpu option including optional parameters. 672 * 673 * processes optional parameters and registers them as global properties 674 * 675 * Returns: type of CPU to create or prints error and terminates process 676 * if an error occurred. 677 */ 678 const char *parse_cpu_option(const char *cpu_option); 679 680 /** 681 * cpu_has_work: 682 * @cpu: The vCPU to check. 683 * 684 * Checks whether the CPU has work to do. 685 * 686 * Returns: %true if the CPU has work, %false otherwise. 687 */ 688 static inline bool cpu_has_work(CPUState *cpu) 689 { 690 CPUClass *cc = CPU_GET_CLASS(cpu); 691 692 g_assert(cc->has_work); 693 return cc->has_work(cpu); 694 } 695 696 /** 697 * qemu_cpu_is_self: 698 * @cpu: The vCPU to check against. 699 * 700 * Checks whether the caller is executing on the vCPU thread. 701 * 702 * Returns: %true if called from @cpu's thread, %false otherwise. 703 */ 704 bool qemu_cpu_is_self(CPUState *cpu); 705 706 /** 707 * qemu_cpu_kick: 708 * @cpu: The vCPU to kick. 709 * 710 * Kicks @cpu's thread. 711 */ 712 void qemu_cpu_kick(CPUState *cpu); 713 714 /** 715 * cpu_is_stopped: 716 * @cpu: The CPU to check. 717 * 718 * Checks whether the CPU is stopped. 719 * 720 * Returns: %true if run state is not running or if artificially stopped; 721 * %false otherwise. 722 */ 723 bool cpu_is_stopped(CPUState *cpu); 724 725 /** 726 * do_run_on_cpu: 727 * @cpu: The vCPU to run on. 728 * @func: The function to be executed. 729 * @data: Data to pass to the function. 730 * @mutex: Mutex to release while waiting for @func to run. 731 * 732 * Used internally in the implementation of run_on_cpu. 733 */ 734 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 735 QemuMutex *mutex); 736 737 /** 738 * run_on_cpu: 739 * @cpu: The vCPU to run on. 740 * @func: The function to be executed. 741 * @data: Data to pass to the function. 742 * 743 * Schedules the function @func for execution on the vCPU @cpu. 744 */ 745 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 746 747 /** 748 * async_run_on_cpu: 749 * @cpu: The vCPU to run on. 750 * @func: The function to be executed. 751 * @data: Data to pass to the function. 752 * 753 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 754 */ 755 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 756 757 /** 758 * async_safe_run_on_cpu: 759 * @cpu: The vCPU to run on. 760 * @func: The function to be executed. 761 * @data: Data to pass to the function. 762 * 763 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 764 * while all other vCPUs are sleeping. 765 * 766 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 767 * BQL. 768 */ 769 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 770 771 /** 772 * cpu_in_exclusive_context() 773 * @cpu: The vCPU to check 774 * 775 * Returns true if @cpu is an exclusive context, for example running 776 * something which has previously been queued via async_safe_run_on_cpu(). 777 */ 778 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 779 { 780 return cpu->in_exclusive_context; 781 } 782 783 /** 784 * qemu_get_cpu: 785 * @index: The CPUState@cpu_index value of the CPU to obtain. 786 * 787 * Gets a CPU matching @index. 788 * 789 * Returns: The CPU or %NULL if there is no matching CPU. 790 */ 791 CPUState *qemu_get_cpu(int index); 792 793 /** 794 * cpu_exists: 795 * @id: Guest-exposed CPU ID to lookup. 796 * 797 * Search for CPU with specified ID. 798 * 799 * Returns: %true - CPU is found, %false - CPU isn't found. 800 */ 801 bool cpu_exists(int64_t id); 802 803 /** 804 * cpu_by_arch_id: 805 * @id: Guest-exposed CPU ID of the CPU to obtain. 806 * 807 * Get a CPU with matching @id. 808 * 809 * Returns: The CPU or %NULL if there is no matching CPU. 810 */ 811 CPUState *cpu_by_arch_id(int64_t id); 812 813 /** 814 * cpu_interrupt: 815 * @cpu: The CPU to set an interrupt on. 816 * @mask: The interrupts to set. 817 * 818 * Invokes the interrupt handler. 819 */ 820 821 void cpu_interrupt(CPUState *cpu, int mask); 822 823 /** 824 * cpu_set_pc: 825 * @cpu: The CPU to set the program counter for. 826 * @addr: Program counter value. 827 * 828 * Sets the program counter for a CPU. 829 */ 830 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 831 { 832 CPUClass *cc = CPU_GET_CLASS(cpu); 833 834 cc->set_pc(cpu, addr); 835 } 836 837 /** 838 * cpu_reset_interrupt: 839 * @cpu: The CPU to clear the interrupt on. 840 * @mask: The interrupt mask to clear. 841 * 842 * Resets interrupts on the vCPU @cpu. 843 */ 844 void cpu_reset_interrupt(CPUState *cpu, int mask); 845 846 /** 847 * cpu_exit: 848 * @cpu: The CPU to exit. 849 * 850 * Requests the CPU @cpu to exit execution. 851 */ 852 void cpu_exit(CPUState *cpu); 853 854 /** 855 * cpu_resume: 856 * @cpu: The CPU to resume. 857 * 858 * Resumes CPU, i.e. puts CPU into runnable state. 859 */ 860 void cpu_resume(CPUState *cpu); 861 862 /** 863 * cpu_remove_sync: 864 * @cpu: The CPU to remove. 865 * 866 * Requests the CPU to be removed and waits till it is removed. 867 */ 868 void cpu_remove_sync(CPUState *cpu); 869 870 /** 871 * process_queued_cpu_work() - process all items on CPU work queue 872 * @cpu: The CPU which work queue to process. 873 */ 874 void process_queued_cpu_work(CPUState *cpu); 875 876 /** 877 * cpu_exec_start: 878 * @cpu: The CPU for the current thread. 879 * 880 * Record that a CPU has started execution and can be interrupted with 881 * cpu_exit. 882 */ 883 void cpu_exec_start(CPUState *cpu); 884 885 /** 886 * cpu_exec_end: 887 * @cpu: The CPU for the current thread. 888 * 889 * Record that a CPU has stopped execution and exclusive sections 890 * can be executed without interrupting it. 891 */ 892 void cpu_exec_end(CPUState *cpu); 893 894 /** 895 * start_exclusive: 896 * 897 * Wait for a concurrent exclusive section to end, and then start 898 * a section of work that is run while other CPUs are not running 899 * between cpu_exec_start and cpu_exec_end. CPUs that are running 900 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 901 * during the exclusive section go to sleep until this CPU calls 902 * end_exclusive. 903 */ 904 void start_exclusive(void); 905 906 /** 907 * end_exclusive: 908 * 909 * Concludes an exclusive execution section started by start_exclusive. 910 */ 911 void end_exclusive(void); 912 913 /** 914 * qemu_init_vcpu: 915 * @cpu: The vCPU to initialize. 916 * 917 * Initializes a vCPU. 918 */ 919 void qemu_init_vcpu(CPUState *cpu); 920 921 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 922 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 923 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 924 925 /** 926 * cpu_single_step: 927 * @cpu: CPU to the flags for. 928 * @enabled: Flags to enable. 929 * 930 * Enables or disables single-stepping for @cpu. 931 */ 932 void cpu_single_step(CPUState *cpu, int enabled); 933 934 /* Breakpoint/watchpoint flags */ 935 #define BP_MEM_READ 0x01 936 #define BP_MEM_WRITE 0x02 937 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 938 #define BP_STOP_BEFORE_ACCESS 0x04 939 /* 0x08 currently unused */ 940 #define BP_GDB 0x10 941 #define BP_CPU 0x20 942 #define BP_ANY (BP_GDB | BP_CPU) 943 #define BP_WATCHPOINT_HIT_READ 0x40 944 #define BP_WATCHPOINT_HIT_WRITE 0x80 945 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 946 947 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 948 CPUBreakpoint **breakpoint); 949 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 950 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 951 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 952 953 /* Return true if PC matches an installed breakpoint. */ 954 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 955 { 956 CPUBreakpoint *bp; 957 958 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 959 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 960 if (bp->pc == pc && (bp->flags & mask)) { 961 return true; 962 } 963 } 964 } 965 return false; 966 } 967 968 #ifdef CONFIG_USER_ONLY 969 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 970 int flags, CPUWatchpoint **watchpoint) 971 { 972 return -ENOSYS; 973 } 974 975 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 976 vaddr len, int flags) 977 { 978 return -ENOSYS; 979 } 980 981 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 982 CPUWatchpoint *wp) 983 { 984 } 985 986 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 987 { 988 } 989 990 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 991 MemTxAttrs atr, int fl, uintptr_t ra) 992 { 993 } 994 995 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 996 vaddr addr, vaddr len) 997 { 998 return 0; 999 } 1000 #else 1001 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1002 int flags, CPUWatchpoint **watchpoint); 1003 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1004 vaddr len, int flags); 1005 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1006 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1007 1008 /** 1009 * cpu_check_watchpoint: 1010 * @cpu: cpu context 1011 * @addr: guest virtual address 1012 * @len: access length 1013 * @attrs: memory access attributes 1014 * @flags: watchpoint access type 1015 * @ra: unwind return address 1016 * 1017 * Check for a watchpoint hit in [addr, addr+len) of the type 1018 * specified by @flags. Exit via exception with a hit. 1019 */ 1020 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1021 MemTxAttrs attrs, int flags, uintptr_t ra); 1022 1023 /** 1024 * cpu_watchpoint_address_matches: 1025 * @cpu: cpu context 1026 * @addr: guest virtual address 1027 * @len: access length 1028 * 1029 * Return the watchpoint flags that apply to [addr, addr+len). 1030 * If no watchpoint is registered for the range, the result is 0. 1031 */ 1032 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1033 #endif 1034 1035 /** 1036 * cpu_get_address_space: 1037 * @cpu: CPU to get address space from 1038 * @asidx: index identifying which address space to get 1039 * 1040 * Return the requested address space of this CPU. @asidx 1041 * specifies which address space to read. 1042 */ 1043 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1044 1045 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1046 GCC_FMT_ATTR(2, 3); 1047 1048 /* $(top_srcdir)/cpu.c */ 1049 void cpu_exec_initfn(CPUState *cpu); 1050 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1051 void cpu_exec_unrealizefn(CPUState *cpu); 1052 1053 /** 1054 * target_words_bigendian: 1055 * Returns true if the (default) endianness of the target is big endian, 1056 * false otherwise. Note that in target-specific code, you can use 1057 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1058 * code should normally never need to know about the endianness of the 1059 * target, so please do *not* use this function unless you know very well 1060 * what you are doing! 1061 */ 1062 bool target_words_bigendian(void); 1063 1064 #ifdef NEED_CPU_H 1065 1066 #ifdef CONFIG_SOFTMMU 1067 extern const VMStateDescription vmstate_cpu_common; 1068 #else 1069 #define vmstate_cpu_common vmstate_dummy 1070 #endif 1071 1072 #define VMSTATE_CPU() { \ 1073 .name = "parent_obj", \ 1074 .size = sizeof(CPUState), \ 1075 .vmsd = &vmstate_cpu_common, \ 1076 .flags = VMS_STRUCT, \ 1077 .offset = 0, \ 1078 } 1079 1080 #endif /* NEED_CPU_H */ 1081 1082 #define UNASSIGNED_CPU_INDEX -1 1083 #define UNASSIGNED_CLUSTER_INDEX -1 1084 1085 #endif 1086