1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/thread.h" 37 #include "qom/object.h" 38 39 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 40 void *opaque); 41 42 /** 43 * SECTION:cpu 44 * @section_id: QEMU-cpu 45 * @title: CPU Class 46 * @short_description: Base class for all CPUs 47 */ 48 49 #define TYPE_CPU "cpu" 50 51 /* Since this macro is used a lot in hot code paths and in conjunction with 52 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 53 * an unchecked cast. 54 */ 55 #define CPU(obj) ((CPUState *)(obj)) 56 57 /* 58 * The class checkers bring in CPU_GET_CLASS() which is potentially 59 * expensive given the eventual call to 60 * object_class_dynamic_cast_assert(). Because of this the CPUState 61 * has a cached value for the class in cs->cc which is set up in 62 * cpu_exec_realizefn() for use in hot code paths. 63 */ 64 typedef struct CPUClass CPUClass; 65 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 66 TYPE_CPU) 67 68 /** 69 * OBJECT_DECLARE_CPU_TYPE: 70 * @CpuInstanceType: instance struct name 71 * @CpuClassType: class struct name 72 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 73 * 74 * This macro is typically used in "cpu-qom.h" header file, and will: 75 * 76 * - create the typedefs for the CPU object and class structs 77 * - register the type for use with g_autoptr 78 * - provide three standard type cast functions 79 * 80 * The object struct and class struct need to be declared manually. 81 */ 82 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 83 typedef struct ArchCPU CpuInstanceType; \ 84 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 85 86 typedef struct CPUWatchpoint CPUWatchpoint; 87 88 /* see physmem.c */ 89 struct CPUAddressSpace; 90 91 /* see accel/tcg/tb-jmp-cache.h */ 92 struct CPUJumpCache; 93 94 /* see accel-cpu.h */ 95 struct AccelCPUClass; 96 97 /* see sysemu-cpu-ops.h */ 98 struct SysemuCPUOps; 99 100 /** 101 * CPUClass: 102 * @class_by_name: Callback to map -cpu command line model name to an 103 * instantiatable CPU type. 104 * @parse_features: Callback to parse command line arguments. 105 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 106 * @has_work: Callback for checking if there is work to do. 107 * @mmu_index: Callback for choosing softmmu mmu index; 108 * may be used internally by memory_rw_debug without TCG. 109 * @memory_rw_debug: Callback for GDB memory access. 110 * @dump_state: Callback for dumping state. 111 * @query_cpu_fast: 112 * Fill in target specific information for the "query-cpus-fast" 113 * QAPI call. 114 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 115 * @set_pc: Callback for setting the Program Counter register. This 116 * should have the semantics used by the target architecture when 117 * setting the PC from a source such as an ELF file entry point; 118 * for example on Arm it will also set the Thumb mode bit based 119 * on the least significant bit of the new PC value. 120 * If the target behaviour here is anything other than "set 121 * the PC register to the value passed in" then the target must 122 * also implement the synchronize_from_tb hook. 123 * @get_pc: Callback for getting the Program Counter register. 124 * As above, with the semantics of the target architecture. 125 * @gdb_read_register: Callback for letting GDB read a register. 126 * @gdb_write_register: Callback for letting GDB write a register. 127 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 128 * breakpoint. Used by AVR to handle a gdb mis-feature with 129 * its Harvard architecture split code and data. 130 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 131 * from @gdb_core_xml_file. 132 * @gdb_core_xml_file: File name for core registers GDB XML description. 133 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 134 * before the insn which triggers a watchpoint rather than after it. 135 * @gdb_arch_name: Optional callback that returns the architecture name known 136 * to GDB. The caller must free the returned string with g_free. 137 * @disas_set_info: Setup architecture specific components of disassembly info 138 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 139 * address before attempting to match it against watchpoints. 140 * @deprecation_note: If this CPUClass is deprecated, this field provides 141 * related information. 142 * 143 * Represents a CPU family or model. 144 */ 145 struct CPUClass { 146 /*< private >*/ 147 DeviceClass parent_class; 148 /*< public >*/ 149 150 ObjectClass *(*class_by_name)(const char *cpu_model); 151 void (*parse_features)(const char *typename, char *str, Error **errp); 152 153 bool (*has_work)(CPUState *cpu); 154 int (*mmu_index)(CPUState *cpu, bool ifetch); 155 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 156 uint8_t *buf, int len, bool is_write); 157 void (*dump_state)(CPUState *cpu, FILE *, int flags); 158 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 159 int64_t (*get_arch_id)(CPUState *cpu); 160 void (*set_pc)(CPUState *cpu, vaddr value); 161 vaddr (*get_pc)(CPUState *cpu); 162 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 163 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 164 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 165 166 const char *gdb_core_xml_file; 167 const gchar * (*gdb_arch_name)(CPUState *cpu); 168 169 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 170 171 const char *deprecation_note; 172 struct AccelCPUClass *accel_cpu; 173 174 /* when system emulation is not available, this pointer is NULL */ 175 const struct SysemuCPUOps *sysemu_ops; 176 177 /* when TCG is not available, this pointer is NULL */ 178 const TCGCPUOps *tcg_ops; 179 180 /* 181 * if not NULL, this is called in order for the CPUClass to initialize 182 * class data that depends on the accelerator, see accel/accel-common.c. 183 */ 184 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 185 186 /* 187 * Keep non-pointer data at the end to minimize holes. 188 */ 189 int reset_dump_flags; 190 int gdb_num_core_regs; 191 bool gdb_stop_before_watchpoint; 192 }; 193 194 /* 195 * Fix the number of mmu modes to 16, which is also the maximum 196 * supported by the softmmu tlb api. 197 */ 198 #define NB_MMU_MODES 16 199 200 /* Use a fully associative victim tlb of 8 entries. */ 201 #define CPU_VTLB_SIZE 8 202 203 /* 204 * The full TLB entry, which is not accessed by generated TCG code, 205 * so the layout is not as critical as that of CPUTLBEntry. This is 206 * also why we don't want to combine the two structs. 207 */ 208 typedef struct CPUTLBEntryFull { 209 /* 210 * @xlat_section contains: 211 * - in the lower TARGET_PAGE_BITS, a physical section number 212 * - with the lower TARGET_PAGE_BITS masked off, an offset which 213 * must be added to the virtual address to obtain: 214 * + the ram_addr_t of the target RAM (if the physical section 215 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 216 * + the offset within the target MemoryRegion (otherwise) 217 */ 218 hwaddr xlat_section; 219 220 /* 221 * @phys_addr contains the physical address in the address space 222 * given by cpu_asidx_from_attrs(cpu, @attrs). 223 */ 224 hwaddr phys_addr; 225 226 /* @attrs contains the memory transaction attributes for the page. */ 227 MemTxAttrs attrs; 228 229 /* @prot contains the complete protections for the page. */ 230 uint8_t prot; 231 232 /* @lg_page_size contains the log2 of the page size. */ 233 uint8_t lg_page_size; 234 235 /* Additional tlb flags requested by tlb_fill. */ 236 uint8_t tlb_fill_flags; 237 238 /* 239 * Additional tlb flags for use by the slow path. If non-zero, 240 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 241 */ 242 uint8_t slow_flags[MMU_ACCESS_COUNT]; 243 244 /* 245 * Allow target-specific additions to this structure. 246 * This may be used to cache items from the guest cpu 247 * page tables for later use by the implementation. 248 */ 249 union { 250 /* 251 * Cache the attrs and shareability fields from the page table entry. 252 * 253 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 254 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 255 * For shareability and guarded, as in the SH and GP fields respectively 256 * of the VMSAv8-64 PTEs. 257 */ 258 struct { 259 uint8_t pte_attrs; 260 uint8_t shareability; 261 bool guarded; 262 } arm; 263 } extra; 264 } CPUTLBEntryFull; 265 266 /* 267 * Data elements that are per MMU mode, minus the bits accessed by 268 * the TCG fast path. 269 */ 270 typedef struct CPUTLBDesc { 271 /* 272 * Describe a region covering all of the large pages allocated 273 * into the tlb. When any page within this region is flushed, 274 * we must flush the entire tlb. The region is matched if 275 * (addr & large_page_mask) == large_page_addr. 276 */ 277 vaddr large_page_addr; 278 vaddr large_page_mask; 279 /* host time (in ns) at the beginning of the time window */ 280 int64_t window_begin_ns; 281 /* maximum number of entries observed in the window */ 282 size_t window_max_entries; 283 size_t n_used_entries; 284 /* The next index to use in the tlb victim table. */ 285 size_t vindex; 286 /* The tlb victim table, in two parts. */ 287 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 288 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 289 CPUTLBEntryFull *fulltlb; 290 } CPUTLBDesc; 291 292 /* 293 * Data elements that are shared between all MMU modes. 294 */ 295 typedef struct CPUTLBCommon { 296 /* Serialize updates to f.table and d.vtable, and others as noted. */ 297 QemuSpin lock; 298 /* 299 * Within dirty, for each bit N, modifications have been made to 300 * mmu_idx N since the last time that mmu_idx was flushed. 301 * Protected by tlb_c.lock. 302 */ 303 uint16_t dirty; 304 /* 305 * Statistics. These are not lock protected, but are read and 306 * written atomically. This allows the monitor to print a snapshot 307 * of the stats without interfering with the cpu. 308 */ 309 size_t full_flush_count; 310 size_t part_flush_count; 311 size_t elide_flush_count; 312 } CPUTLBCommon; 313 314 /* 315 * The entire softmmu tlb, for all MMU modes. 316 * The meaning of each of the MMU modes is defined in the target code. 317 * Since this is placed within CPUNegativeOffsetState, the smallest 318 * negative offsets are at the end of the struct. 319 */ 320 typedef struct CPUTLB { 321 #ifdef CONFIG_TCG 322 CPUTLBCommon c; 323 CPUTLBDesc d[NB_MMU_MODES]; 324 CPUTLBDescFast f[NB_MMU_MODES]; 325 #endif 326 } CPUTLB; 327 328 /* 329 * Low 16 bits: number of cycles left, used only in icount mode. 330 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 331 * for this CPU and return to its top level loop (even in non-icount mode). 332 * This allows a single read-compare-cbranch-write sequence to test 333 * for both decrementer underflow and exceptions. 334 */ 335 typedef union IcountDecr { 336 uint32_t u32; 337 struct { 338 #if HOST_BIG_ENDIAN 339 uint16_t high; 340 uint16_t low; 341 #else 342 uint16_t low; 343 uint16_t high; 344 #endif 345 } u16; 346 } IcountDecr; 347 348 /** 349 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed 350 * from CPUArchState, via small negative offsets. 351 * @can_do_io: True if memory-mapped IO is allowed. 352 * @plugin_mem_cbs: active plugin memory callbacks 353 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value. 354 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value. 355 */ 356 typedef struct CPUNegativeOffsetState { 357 CPUTLB tlb; 358 #ifdef CONFIG_PLUGIN 359 /* 360 * The callback pointer are accessed via TCG (see gen_empty_mem_helper). 361 */ 362 GArray *plugin_mem_cbs; 363 uint64_t plugin_mem_value_low; 364 uint64_t plugin_mem_value_high; 365 #endif 366 IcountDecr icount_decr; 367 bool can_do_io; 368 } CPUNegativeOffsetState; 369 370 struct KVMState; 371 struct kvm_run; 372 373 /* work queue */ 374 375 /* The union type allows passing of 64 bit target pointers on 32 bit 376 * hosts in a single parameter 377 */ 378 typedef union { 379 int host_int; 380 unsigned long host_ulong; 381 void *host_ptr; 382 vaddr target_ptr; 383 } run_on_cpu_data; 384 385 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 386 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 387 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 388 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 389 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 390 391 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 392 393 struct qemu_work_item; 394 395 #define CPU_UNSET_NUMA_NODE_ID -1 396 397 /** 398 * struct CPUState - common state of one CPU core or thread. 399 * 400 * @cpu_index: CPU index (informative). 401 * @cluster_index: Identifies which cluster this CPU is in. 402 * For boards which don't define clusters or for "loose" CPUs not assigned 403 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 404 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 405 * QOM parent. 406 * Under TCG this value is propagated to @tcg_cflags. 407 * See TranslationBlock::TCG CF_CLUSTER_MASK. 408 * @tcg_cflags: Pre-computed cflags for this cpu. 409 * @nr_cores: Number of cores within this CPU package. 410 * @nr_threads: Number of threads within this CPU core. 411 * @thread: Host thread details, only live once @created is #true 412 * @sem: WIN32 only semaphore used only for qtest 413 * @thread_id: native thread id of vCPU, only live once @created is #true 414 * @running: #true if CPU is currently running (lockless). 415 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 416 * valid under cpu_list_lock. 417 * @created: Indicates whether the CPU thread has been successfully created. 418 * @halt_cond: condition variable sleeping threads can wait on. 419 * @interrupt_request: Indicates a pending interrupt request. 420 * @halted: Nonzero if the CPU is in suspended state. 421 * @stop: Indicates a pending stop request. 422 * @stopped: Indicates the CPU has been artificially stopped. 423 * @unplug: Indicates a pending CPU unplug request. 424 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 425 * @singlestep_enabled: Flags for single-stepping. 426 * @icount_extra: Instructions until next timer event. 427 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 428 * AddressSpaces this CPU has) 429 * @num_ases: number of CPUAddressSpaces in @cpu_ases 430 * @as: Pointer to the first AddressSpace, for the convenience of targets which 431 * only have a single AddressSpace 432 * @gdb_regs: Additional GDB registers. 433 * @gdb_num_regs: Number of total registers accessible to GDB. 434 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 435 * @node: QTAILQ of CPUs sharing TB cache. 436 * @opaque: User data. 437 * @mem_io_pc: Host Program Counter at which the memory was accessed. 438 * @accel: Pointer to accelerator specific state. 439 * @kvm_fd: vCPU file descriptor for KVM. 440 * @work_mutex: Lock to prevent multiple access to @work_list. 441 * @work_list: List of pending asynchronous work. 442 * @plugin_state: per-CPU plugin state 443 * @ignore_memory_transaction_failures: Cached copy of the MachineState 444 * flag of the same name: allows the board to suppress calling of the 445 * CPU do_transaction_failed hook function. 446 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 447 * ring is enabled. 448 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 449 * dirty ring structure. 450 * 451 * @neg_align: The CPUState is the common part of a concrete ArchCPU 452 * which is allocated when an individual CPU instance is created. As 453 * such care is taken is ensure there is no gap between between 454 * CPUState and CPUArchState within ArchCPU. 455 * 456 * @neg: The architectural register state ("cpu_env") immediately follows 457 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds 458 * some common TCG CPU variables which are accessed with a negative offset 459 * from cpu_env. 460 */ 461 struct CPUState { 462 /*< private >*/ 463 DeviceState parent_obj; 464 /* cache to avoid expensive CPU_GET_CLASS */ 465 CPUClass *cc; 466 /*< public >*/ 467 468 int nr_cores; 469 int nr_threads; 470 471 struct QemuThread *thread; 472 #ifdef _WIN32 473 QemuSemaphore sem; 474 #endif 475 int thread_id; 476 bool running, has_waiter; 477 struct QemuCond *halt_cond; 478 bool thread_kicked; 479 bool created; 480 bool stop; 481 bool stopped; 482 483 /* Should CPU start in powered-off state? */ 484 bool start_powered_off; 485 486 bool unplug; 487 bool crash_occurred; 488 bool exit_request; 489 int exclusive_context_count; 490 uint32_t cflags_next_tb; 491 /* updates protected by BQL */ 492 uint32_t interrupt_request; 493 int singlestep_enabled; 494 int64_t icount_budget; 495 int64_t icount_extra; 496 uint64_t random_seed; 497 sigjmp_buf jmp_env; 498 499 QemuMutex work_mutex; 500 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 501 502 struct CPUAddressSpace *cpu_ases; 503 int cpu_ases_count; 504 int num_ases; 505 AddressSpace *as; 506 MemoryRegion *memory; 507 508 struct CPUJumpCache *tb_jmp_cache; 509 510 GArray *gdb_regs; 511 int gdb_num_regs; 512 int gdb_num_g_regs; 513 QTAILQ_ENTRY(CPUState) node; 514 515 /* ice debug support */ 516 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 517 518 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 519 CPUWatchpoint *watchpoint_hit; 520 521 void *opaque; 522 523 /* In order to avoid passing too many arguments to the MMIO helpers, 524 * we store some rarely used information in the CPU context. 525 */ 526 uintptr_t mem_io_pc; 527 528 /* Only used in KVM */ 529 int kvm_fd; 530 struct KVMState *kvm_state; 531 struct kvm_run *kvm_run; 532 struct kvm_dirty_gfn *kvm_dirty_gfns; 533 uint32_t kvm_fetch_index; 534 uint64_t dirty_pages; 535 int kvm_vcpu_stats_fd; 536 bool vcpu_dirty; 537 538 /* Use by accel-block: CPU is executing an ioctl() */ 539 QemuLockCnt in_ioctl_lock; 540 541 #ifdef CONFIG_PLUGIN 542 CPUPluginState *plugin_state; 543 #endif 544 545 /* TODO Move common fields from CPUArchState here. */ 546 int cpu_index; 547 int cluster_index; 548 uint32_t tcg_cflags; 549 uint32_t halted; 550 int32_t exception_index; 551 552 AccelCPUState *accel; 553 554 /* Used to keep track of an outstanding cpu throttle thread for migration 555 * autoconverge 556 */ 557 bool throttle_thread_scheduled; 558 559 /* 560 * Sleep throttle_us_per_full microseconds once dirty ring is full 561 * if dirty page rate limit is enabled. 562 */ 563 int64_t throttle_us_per_full; 564 565 bool ignore_memory_transaction_failures; 566 567 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 568 bool prctl_unalign_sigbus; 569 570 /* track IOMMUs whose translations we've cached in the TCG TLB */ 571 GArray *iommu_notifiers; 572 573 /* 574 * MUST BE LAST in order to minimize the displacement to CPUArchState. 575 */ 576 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 577 CPUNegativeOffsetState neg; 578 }; 579 580 /* Validate placement of CPUNegativeOffsetState. */ 581 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 582 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 583 584 static inline CPUArchState *cpu_env(CPUState *cpu) 585 { 586 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 587 return (CPUArchState *)(cpu + 1); 588 } 589 590 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 591 extern CPUTailQ cpus_queue; 592 593 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 594 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 595 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 596 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 597 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 598 599 extern __thread CPUState *current_cpu; 600 601 /** 602 * qemu_tcg_mttcg_enabled: 603 * Check whether we are running MultiThread TCG or not. 604 * 605 * Returns: %true if we are in MTTCG mode %false otherwise. 606 */ 607 extern bool mttcg_enabled; 608 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 609 610 /** 611 * cpu_paging_enabled: 612 * @cpu: The CPU whose state is to be inspected. 613 * 614 * Returns: %true if paging is enabled, %false otherwise. 615 */ 616 bool cpu_paging_enabled(const CPUState *cpu); 617 618 /** 619 * cpu_get_memory_mapping: 620 * @cpu: The CPU whose memory mappings are to be obtained. 621 * @list: Where to write the memory mappings to. 622 * @errp: Pointer for reporting an #Error. 623 * 624 * Returns: %true on success, %false otherwise. 625 */ 626 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 627 Error **errp); 628 629 #if !defined(CONFIG_USER_ONLY) 630 631 /** 632 * cpu_write_elf64_note: 633 * @f: pointer to a function that writes memory to a file 634 * @cpu: The CPU whose memory is to be dumped 635 * @cpuid: ID number of the CPU 636 * @opaque: pointer to the CPUState struct 637 */ 638 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 639 int cpuid, void *opaque); 640 641 /** 642 * cpu_write_elf64_qemunote: 643 * @f: pointer to a function that writes memory to a file 644 * @cpu: The CPU whose memory is to be dumped 645 * @cpuid: ID number of the CPU 646 * @opaque: pointer to the CPUState struct 647 */ 648 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 649 void *opaque); 650 651 /** 652 * cpu_write_elf32_note: 653 * @f: pointer to a function that writes memory to a file 654 * @cpu: The CPU whose memory is to be dumped 655 * @cpuid: ID number of the CPU 656 * @opaque: pointer to the CPUState struct 657 */ 658 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 659 int cpuid, void *opaque); 660 661 /** 662 * cpu_write_elf32_qemunote: 663 * @f: pointer to a function that writes memory to a file 664 * @cpu: The CPU whose memory is to be dumped 665 * @cpuid: ID number of the CPU 666 * @opaque: pointer to the CPUState struct 667 */ 668 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 669 void *opaque); 670 671 /** 672 * cpu_get_crash_info: 673 * @cpu: The CPU to get crash information for 674 * 675 * Gets the previously saved crash information. 676 * Caller is responsible for freeing the data. 677 */ 678 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 679 680 #endif /* !CONFIG_USER_ONLY */ 681 682 /** 683 * CPUDumpFlags: 684 * @CPU_DUMP_CODE: 685 * @CPU_DUMP_FPU: dump FPU register state, not just integer 686 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 687 * @CPU_DUMP_VPU: dump VPU registers 688 */ 689 enum CPUDumpFlags { 690 CPU_DUMP_CODE = 0x00010000, 691 CPU_DUMP_FPU = 0x00020000, 692 CPU_DUMP_CCOP = 0x00040000, 693 CPU_DUMP_VPU = 0x00080000, 694 }; 695 696 /** 697 * cpu_dump_state: 698 * @cpu: The CPU whose state is to be dumped. 699 * @f: If non-null, dump to this stream, else to current print sink. 700 * 701 * Dumps CPU state. 702 */ 703 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 704 705 #ifndef CONFIG_USER_ONLY 706 /** 707 * cpu_get_phys_page_attrs_debug: 708 * @cpu: The CPU to obtain the physical page address for. 709 * @addr: The virtual address. 710 * @attrs: Updated on return with the memory transaction attributes to use 711 * for this access. 712 * 713 * Obtains the physical page corresponding to a virtual one, together 714 * with the corresponding memory transaction attributes to use for the access. 715 * Use it only for debugging because no protection checks are done. 716 * 717 * Returns: Corresponding physical page address or -1 if no page found. 718 */ 719 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 720 MemTxAttrs *attrs); 721 722 /** 723 * cpu_get_phys_page_debug: 724 * @cpu: The CPU to obtain the physical page address for. 725 * @addr: The virtual address. 726 * 727 * Obtains the physical page corresponding to a virtual one. 728 * Use it only for debugging because no protection checks are done. 729 * 730 * Returns: Corresponding physical page address or -1 if no page found. 731 */ 732 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 733 734 /** cpu_asidx_from_attrs: 735 * @cpu: CPU 736 * @attrs: memory transaction attributes 737 * 738 * Returns the address space index specifying the CPU AddressSpace 739 * to use for a memory access with the given transaction attributes. 740 */ 741 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 742 743 /** 744 * cpu_virtio_is_big_endian: 745 * @cpu: CPU 746 747 * Returns %true if a CPU which supports runtime configurable endianness 748 * is currently big-endian. 749 */ 750 bool cpu_virtio_is_big_endian(CPUState *cpu); 751 752 #endif /* CONFIG_USER_ONLY */ 753 754 /** 755 * cpu_list_add: 756 * @cpu: The CPU to be added to the list of CPUs. 757 */ 758 void cpu_list_add(CPUState *cpu); 759 760 /** 761 * cpu_list_remove: 762 * @cpu: The CPU to be removed from the list of CPUs. 763 */ 764 void cpu_list_remove(CPUState *cpu); 765 766 /** 767 * cpu_reset: 768 * @cpu: The CPU whose state is to be reset. 769 */ 770 void cpu_reset(CPUState *cpu); 771 772 /** 773 * cpu_class_by_name: 774 * @typename: The CPU base type. 775 * @cpu_model: The model string without any parameters. 776 * 777 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 778 * 779 * Returns: A concrete #CPUClass or %NULL if no matching class is found 780 * or if the matching class is abstract. 781 */ 782 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 783 784 /** 785 * cpu_model_from_type: 786 * @typename: The CPU type name 787 * 788 * Extract the CPU model name from the CPU type name. The 789 * CPU type name is either the combination of the CPU model 790 * name and suffix, or same to the CPU model name. 791 * 792 * Returns: CPU model name or NULL if the CPU class doesn't exist 793 * The user should g_free() the string once no longer needed. 794 */ 795 char *cpu_model_from_type(const char *typename); 796 797 /** 798 * cpu_create: 799 * @typename: The CPU type. 800 * 801 * Instantiates a CPU and realizes the CPU. 802 * 803 * Returns: A #CPUState or %NULL if an error occurred. 804 */ 805 CPUState *cpu_create(const char *typename); 806 807 /** 808 * parse_cpu_option: 809 * @cpu_option: The -cpu option including optional parameters. 810 * 811 * processes optional parameters and registers them as global properties 812 * 813 * Returns: type of CPU to create or prints error and terminates process 814 * if an error occurred. 815 */ 816 const char *parse_cpu_option(const char *cpu_option); 817 818 /** 819 * cpu_has_work: 820 * @cpu: The vCPU to check. 821 * 822 * Checks whether the CPU has work to do. 823 * 824 * Returns: %true if the CPU has work, %false otherwise. 825 */ 826 static inline bool cpu_has_work(CPUState *cpu) 827 { 828 CPUClass *cc = CPU_GET_CLASS(cpu); 829 830 g_assert(cc->has_work); 831 return cc->has_work(cpu); 832 } 833 834 /** 835 * qemu_cpu_is_self: 836 * @cpu: The vCPU to check against. 837 * 838 * Checks whether the caller is executing on the vCPU thread. 839 * 840 * Returns: %true if called from @cpu's thread, %false otherwise. 841 */ 842 bool qemu_cpu_is_self(CPUState *cpu); 843 844 /** 845 * qemu_cpu_kick: 846 * @cpu: The vCPU to kick. 847 * 848 * Kicks @cpu's thread. 849 */ 850 void qemu_cpu_kick(CPUState *cpu); 851 852 /** 853 * cpu_is_stopped: 854 * @cpu: The CPU to check. 855 * 856 * Checks whether the CPU is stopped. 857 * 858 * Returns: %true if run state is not running or if artificially stopped; 859 * %false otherwise. 860 */ 861 bool cpu_is_stopped(CPUState *cpu); 862 863 /** 864 * do_run_on_cpu: 865 * @cpu: The vCPU to run on. 866 * @func: The function to be executed. 867 * @data: Data to pass to the function. 868 * @mutex: Mutex to release while waiting for @func to run. 869 * 870 * Used internally in the implementation of run_on_cpu. 871 */ 872 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 873 QemuMutex *mutex); 874 875 /** 876 * run_on_cpu: 877 * @cpu: The vCPU to run on. 878 * @func: The function to be executed. 879 * @data: Data to pass to the function. 880 * 881 * Schedules the function @func for execution on the vCPU @cpu. 882 */ 883 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 884 885 /** 886 * async_run_on_cpu: 887 * @cpu: The vCPU to run on. 888 * @func: The function to be executed. 889 * @data: Data to pass to the function. 890 * 891 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 892 */ 893 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 894 895 /** 896 * async_safe_run_on_cpu: 897 * @cpu: The vCPU to run on. 898 * @func: The function to be executed. 899 * @data: Data to pass to the function. 900 * 901 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 902 * while all other vCPUs are sleeping. 903 * 904 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 905 * BQL. 906 */ 907 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 908 909 /** 910 * cpu_in_exclusive_context() 911 * @cpu: The vCPU to check 912 * 913 * Returns true if @cpu is an exclusive context, for example running 914 * something which has previously been queued via async_safe_run_on_cpu(). 915 */ 916 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 917 { 918 return cpu->exclusive_context_count; 919 } 920 921 /** 922 * qemu_get_cpu: 923 * @index: The CPUState@cpu_index value of the CPU to obtain. 924 * 925 * Gets a CPU matching @index. 926 * 927 * Returns: The CPU or %NULL if there is no matching CPU. 928 */ 929 CPUState *qemu_get_cpu(int index); 930 931 /** 932 * cpu_exists: 933 * @id: Guest-exposed CPU ID to lookup. 934 * 935 * Search for CPU with specified ID. 936 * 937 * Returns: %true - CPU is found, %false - CPU isn't found. 938 */ 939 bool cpu_exists(int64_t id); 940 941 /** 942 * cpu_by_arch_id: 943 * @id: Guest-exposed CPU ID of the CPU to obtain. 944 * 945 * Get a CPU with matching @id. 946 * 947 * Returns: The CPU or %NULL if there is no matching CPU. 948 */ 949 CPUState *cpu_by_arch_id(int64_t id); 950 951 /** 952 * cpu_interrupt: 953 * @cpu: The CPU to set an interrupt on. 954 * @mask: The interrupts to set. 955 * 956 * Invokes the interrupt handler. 957 */ 958 959 void cpu_interrupt(CPUState *cpu, int mask); 960 961 /** 962 * cpu_set_pc: 963 * @cpu: The CPU to set the program counter for. 964 * @addr: Program counter value. 965 * 966 * Sets the program counter for a CPU. 967 */ 968 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 969 { 970 CPUClass *cc = CPU_GET_CLASS(cpu); 971 972 cc->set_pc(cpu, addr); 973 } 974 975 /** 976 * cpu_reset_interrupt: 977 * @cpu: The CPU to clear the interrupt on. 978 * @mask: The interrupt mask to clear. 979 * 980 * Resets interrupts on the vCPU @cpu. 981 */ 982 void cpu_reset_interrupt(CPUState *cpu, int mask); 983 984 /** 985 * cpu_exit: 986 * @cpu: The CPU to exit. 987 * 988 * Requests the CPU @cpu to exit execution. 989 */ 990 void cpu_exit(CPUState *cpu); 991 992 /** 993 * cpu_pause: 994 * @cpu: The CPU to pause. 995 * 996 * Pauses CPU, i.e. puts CPU into stopped state. 997 */ 998 void cpu_pause(CPUState *cpu); 999 1000 /** 1001 * cpu_resume: 1002 * @cpu: The CPU to resume. 1003 * 1004 * Resumes CPU, i.e. puts CPU into runnable state. 1005 */ 1006 void cpu_resume(CPUState *cpu); 1007 1008 /** 1009 * cpu_remove_sync: 1010 * @cpu: The CPU to remove. 1011 * 1012 * Requests the CPU to be removed and waits till it is removed. 1013 */ 1014 void cpu_remove_sync(CPUState *cpu); 1015 1016 /** 1017 * free_queued_cpu_work() - free all items on CPU work queue 1018 * @cpu: The CPU which work queue to free. 1019 */ 1020 void free_queued_cpu_work(CPUState *cpu); 1021 1022 /** 1023 * process_queued_cpu_work() - process all items on CPU work queue 1024 * @cpu: The CPU which work queue to process. 1025 */ 1026 void process_queued_cpu_work(CPUState *cpu); 1027 1028 /** 1029 * cpu_exec_start: 1030 * @cpu: The CPU for the current thread. 1031 * 1032 * Record that a CPU has started execution and can be interrupted with 1033 * cpu_exit. 1034 */ 1035 void cpu_exec_start(CPUState *cpu); 1036 1037 /** 1038 * cpu_exec_end: 1039 * @cpu: The CPU for the current thread. 1040 * 1041 * Record that a CPU has stopped execution and exclusive sections 1042 * can be executed without interrupting it. 1043 */ 1044 void cpu_exec_end(CPUState *cpu); 1045 1046 /** 1047 * start_exclusive: 1048 * 1049 * Wait for a concurrent exclusive section to end, and then start 1050 * a section of work that is run while other CPUs are not running 1051 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1052 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1053 * during the exclusive section go to sleep until this CPU calls 1054 * end_exclusive. 1055 */ 1056 void start_exclusive(void); 1057 1058 /** 1059 * end_exclusive: 1060 * 1061 * Concludes an exclusive execution section started by start_exclusive. 1062 */ 1063 void end_exclusive(void); 1064 1065 /** 1066 * qemu_init_vcpu: 1067 * @cpu: The vCPU to initialize. 1068 * 1069 * Initializes a vCPU. 1070 */ 1071 void qemu_init_vcpu(CPUState *cpu); 1072 1073 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1074 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1075 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1076 1077 /** 1078 * cpu_single_step: 1079 * @cpu: CPU to the flags for. 1080 * @enabled: Flags to enable. 1081 * 1082 * Enables or disables single-stepping for @cpu. 1083 */ 1084 void cpu_single_step(CPUState *cpu, int enabled); 1085 1086 /* Breakpoint/watchpoint flags */ 1087 #define BP_MEM_READ 0x01 1088 #define BP_MEM_WRITE 0x02 1089 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1090 #define BP_STOP_BEFORE_ACCESS 0x04 1091 /* 0x08 currently unused */ 1092 #define BP_GDB 0x10 1093 #define BP_CPU 0x20 1094 #define BP_ANY (BP_GDB | BP_CPU) 1095 #define BP_HIT_SHIFT 6 1096 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1097 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1098 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1099 1100 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1101 CPUBreakpoint **breakpoint); 1102 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1103 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1104 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1105 1106 /* Return true if PC matches an installed breakpoint. */ 1107 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1108 { 1109 CPUBreakpoint *bp; 1110 1111 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1112 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1113 if (bp->pc == pc && (bp->flags & mask)) { 1114 return true; 1115 } 1116 } 1117 } 1118 return false; 1119 } 1120 1121 #if defined(CONFIG_USER_ONLY) 1122 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1123 int flags, CPUWatchpoint **watchpoint) 1124 { 1125 return -ENOSYS; 1126 } 1127 1128 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1129 vaddr len, int flags) 1130 { 1131 return -ENOSYS; 1132 } 1133 1134 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1135 CPUWatchpoint *wp) 1136 { 1137 } 1138 1139 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1140 { 1141 } 1142 #else 1143 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1144 int flags, CPUWatchpoint **watchpoint); 1145 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1146 vaddr len, int flags); 1147 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1148 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1149 #endif 1150 1151 /** 1152 * cpu_get_address_space: 1153 * @cpu: CPU to get address space from 1154 * @asidx: index identifying which address space to get 1155 * 1156 * Return the requested address space of this CPU. @asidx 1157 * specifies which address space to read. 1158 */ 1159 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1160 1161 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1162 G_GNUC_PRINTF(2, 3); 1163 1164 /* $(top_srcdir)/cpu.c */ 1165 void cpu_class_init_props(DeviceClass *dc); 1166 void cpu_exec_initfn(CPUState *cpu); 1167 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1168 void cpu_exec_unrealizefn(CPUState *cpu); 1169 void cpu_exec_reset_hold(CPUState *cpu); 1170 1171 const char *target_name(void); 1172 1173 #ifdef COMPILING_PER_TARGET 1174 1175 #ifndef CONFIG_USER_ONLY 1176 1177 extern const VMStateDescription vmstate_cpu_common; 1178 1179 #define VMSTATE_CPU() { \ 1180 .name = "parent_obj", \ 1181 .size = sizeof(CPUState), \ 1182 .vmsd = &vmstate_cpu_common, \ 1183 .flags = VMS_STRUCT, \ 1184 .offset = 0, \ 1185 } 1186 #endif /* !CONFIG_USER_ONLY */ 1187 1188 #endif /* COMPILING_PER_TARGET */ 1189 1190 #define UNASSIGNED_CPU_INDEX -1 1191 #define UNASSIGNED_CLUSTER_INDEX -1 1192 1193 #endif 1194