1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /** 84 * CPUClass: 85 * @class_by_name: Callback to map -cpu command line model name to an 86 * instantiatable CPU type. 87 * @parse_features: Callback to parse command line arguments. 88 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 89 * @has_work: Callback for checking if there is work to do. 90 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 91 * runtime configurable endianness is currently big-endian. Non-configurable 92 * CPUs can use the default implementation of this method. This method should 93 * not be used by any callers other than the pre-1.0 virtio devices. 94 * @memory_rw_debug: Callback for GDB memory access. 95 * @dump_state: Callback for dumping state. 96 * @dump_statistics: Callback for dumping statistics. 97 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 98 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 99 * @get_memory_mapping: Callback for obtaining the memory mappings. 100 * @set_pc: Callback for setting the Program Counter register. This 101 * should have the semantics used by the target architecture when 102 * setting the PC from a source such as an ELF file entry point; 103 * for example on Arm it will also set the Thumb mode bit based 104 * on the least significant bit of the new PC value. 105 * If the target behaviour here is anything other than "set 106 * the PC register to the value passed in" then the target must 107 * also implement the synchronize_from_tb hook. 108 * @get_phys_page_debug: Callback for obtaining a physical address. 109 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 110 * associated memory transaction attributes to use for the access. 111 * CPUs which use memory transaction attributes should implement this 112 * instead of get_phys_page_debug. 113 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 114 * a memory access with the specified memory transaction attributes. 115 * @gdb_read_register: Callback for letting GDB read a register. 116 * @gdb_write_register: Callback for letting GDB write a register. 117 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 118 * 64-bit VM coredump. 119 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 120 * note to a 32-bit VM coredump. 121 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 122 * 32-bit VM coredump. 123 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 124 * note to a 32-bit VM coredump. 125 * @legacy_vmsd: Legacy state description for migration. 126 * Do not use in new targets, use #DeviceClass::vmsd instead. 127 * @gdb_num_core_regs: Number of core registers accessible to GDB. 128 * @gdb_core_xml_file: File name for core registers GDB XML description. 129 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 130 * before the insn which triggers a watchpoint rather than after it. 131 * @gdb_arch_name: Optional callback that returns the architecture name known 132 * to GDB. The caller must free the returned string with g_free. 133 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 134 * gdb stub. Returns a pointer to the XML contents for the specified XML file 135 * or NULL if the CPU doesn't have a dynamically generated content for it. 136 * @disas_set_info: Setup architecture specific components of disassembly info 137 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 138 * address before attempting to match it against watchpoints. 139 * @deprecation_note: If this CPUClass is deprecated, this field provides 140 * related information. 141 * 142 * Represents a CPU family or model. 143 */ 144 struct CPUClass { 145 /*< private >*/ 146 DeviceClass parent_class; 147 /*< public >*/ 148 149 ObjectClass *(*class_by_name)(const char *cpu_model); 150 void (*parse_features)(const char *typename, char *str, Error **errp); 151 152 int reset_dump_flags; 153 bool (*has_work)(CPUState *cpu); 154 bool (*virtio_is_big_endian)(CPUState *cpu); 155 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 156 uint8_t *buf, int len, bool is_write); 157 void (*dump_state)(CPUState *cpu, FILE *, int flags); 158 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 159 void (*dump_statistics)(CPUState *cpu, int flags); 160 int64_t (*get_arch_id)(CPUState *cpu); 161 bool (*get_paging_enabled)(const CPUState *cpu); 162 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 163 Error **errp); 164 void (*set_pc)(CPUState *cpu, vaddr value); 165 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 166 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 167 MemTxAttrs *attrs); 168 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 169 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 170 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 171 172 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 173 int cpuid, void *opaque); 174 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 175 void *opaque); 176 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 177 int cpuid, void *opaque); 178 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 179 void *opaque); 180 181 const VMStateDescription *legacy_vmsd; 182 const char *gdb_core_xml_file; 183 gchar * (*gdb_arch_name)(CPUState *cpu); 184 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 185 186 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 187 188 const char *deprecation_note; 189 /* Keep non-pointer data at the end to minimize holes. */ 190 int gdb_num_core_regs; 191 bool gdb_stop_before_watchpoint; 192 struct AccelCPUClass *accel_cpu; 193 194 /* when TCG is not available, this pointer is NULL */ 195 struct TCGCPUOps *tcg_ops; 196 197 /* 198 * if not NULL, this is called in order for the CPUClass to initialize 199 * class data that depends on the accelerator, see accel/accel-common.c. 200 */ 201 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 202 }; 203 204 /* 205 * Low 16 bits: number of cycles left, used only in icount mode. 206 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 207 * for this CPU and return to its top level loop (even in non-icount mode). 208 * This allows a single read-compare-cbranch-write sequence to test 209 * for both decrementer underflow and exceptions. 210 */ 211 typedef union IcountDecr { 212 uint32_t u32; 213 struct { 214 #ifdef HOST_WORDS_BIGENDIAN 215 uint16_t high; 216 uint16_t low; 217 #else 218 uint16_t low; 219 uint16_t high; 220 #endif 221 } u16; 222 } IcountDecr; 223 224 typedef struct CPUBreakpoint { 225 vaddr pc; 226 int flags; /* BP_* */ 227 QTAILQ_ENTRY(CPUBreakpoint) entry; 228 } CPUBreakpoint; 229 230 struct CPUWatchpoint { 231 vaddr vaddr; 232 vaddr len; 233 vaddr hitaddr; 234 MemTxAttrs hitattrs; 235 int flags; /* BP_* */ 236 QTAILQ_ENTRY(CPUWatchpoint) entry; 237 }; 238 239 #ifdef CONFIG_PLUGIN 240 /* 241 * For plugins we sometime need to save the resolved iotlb data before 242 * the memory regions get moved around by io_writex. 243 */ 244 typedef struct SavedIOTLB { 245 hwaddr addr; 246 MemoryRegionSection *section; 247 hwaddr mr_offset; 248 } SavedIOTLB; 249 #endif 250 251 struct KVMState; 252 struct kvm_run; 253 254 struct hax_vcpu_state; 255 256 #define TB_JMP_CACHE_BITS 12 257 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 258 259 /* work queue */ 260 261 /* The union type allows passing of 64 bit target pointers on 32 bit 262 * hosts in a single parameter 263 */ 264 typedef union { 265 int host_int; 266 unsigned long host_ulong; 267 void *host_ptr; 268 vaddr target_ptr; 269 } run_on_cpu_data; 270 271 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 272 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 273 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 274 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 275 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 276 277 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 278 279 struct qemu_work_item; 280 281 #define CPU_UNSET_NUMA_NODE_ID -1 282 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 283 284 /** 285 * CPUState: 286 * @cpu_index: CPU index (informative). 287 * @cluster_index: Identifies which cluster this CPU is in. 288 * For boards which don't define clusters or for "loose" CPUs not assigned 289 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 290 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 291 * QOM parent. 292 * @tcg_cflags: Pre-computed cflags for this cpu. 293 * @nr_cores: Number of cores within this CPU package. 294 * @nr_threads: Number of threads within this CPU. 295 * @running: #true if CPU is currently running (lockless). 296 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 297 * valid under cpu_list_lock. 298 * @created: Indicates whether the CPU thread has been successfully created. 299 * @interrupt_request: Indicates a pending interrupt request. 300 * @halted: Nonzero if the CPU is in suspended state. 301 * @stop: Indicates a pending stop request. 302 * @stopped: Indicates the CPU has been artificially stopped. 303 * @unplug: Indicates a pending CPU unplug request. 304 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 305 * @singlestep_enabled: Flags for single-stepping. 306 * @icount_extra: Instructions until next timer event. 307 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 308 * requires that IO only be performed on the last instruction of a TB 309 * so that interrupts take effect immediately. 310 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 311 * AddressSpaces this CPU has) 312 * @num_ases: number of CPUAddressSpaces in @cpu_ases 313 * @as: Pointer to the first AddressSpace, for the convenience of targets which 314 * only have a single AddressSpace 315 * @env_ptr: Pointer to subclass-specific CPUArchState field. 316 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 317 * @gdb_regs: Additional GDB registers. 318 * @gdb_num_regs: Number of total registers accessible to GDB. 319 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 320 * @next_cpu: Next CPU sharing TB cache. 321 * @opaque: User data. 322 * @mem_io_pc: Host Program Counter at which the memory was accessed. 323 * @kvm_fd: vCPU file descriptor for KVM. 324 * @work_mutex: Lock to prevent multiple access to @work_list. 325 * @work_list: List of pending asynchronous work. 326 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 327 * to @trace_dstate). 328 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 329 * @plugin_mask: Plugin event bitmap. Modified only via async work. 330 * @ignore_memory_transaction_failures: Cached copy of the MachineState 331 * flag of the same name: allows the board to suppress calling of the 332 * CPU do_transaction_failed hook function. 333 * 334 * State of one CPU core or thread. 335 */ 336 struct CPUState { 337 /*< private >*/ 338 DeviceState parent_obj; 339 /*< public >*/ 340 341 int nr_cores; 342 int nr_threads; 343 344 struct QemuThread *thread; 345 #ifdef _WIN32 346 HANDLE hThread; 347 #endif 348 int thread_id; 349 bool running, has_waiter; 350 struct QemuCond *halt_cond; 351 bool thread_kicked; 352 bool created; 353 bool stop; 354 bool stopped; 355 356 /* Should CPU start in powered-off state? */ 357 bool start_powered_off; 358 359 bool unplug; 360 bool crash_occurred; 361 bool exit_request; 362 bool in_exclusive_context; 363 uint32_t cflags_next_tb; 364 /* updates protected by BQL */ 365 uint32_t interrupt_request; 366 int singlestep_enabled; 367 int64_t icount_budget; 368 int64_t icount_extra; 369 uint64_t random_seed; 370 sigjmp_buf jmp_env; 371 372 QemuMutex work_mutex; 373 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 374 375 CPUAddressSpace *cpu_ases; 376 int num_ases; 377 AddressSpace *as; 378 MemoryRegion *memory; 379 380 void *env_ptr; /* CPUArchState */ 381 IcountDecr *icount_decr_ptr; 382 383 /* Accessed in parallel; all accesses must be atomic */ 384 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 385 386 struct GDBRegisterState *gdb_regs; 387 int gdb_num_regs; 388 int gdb_num_g_regs; 389 QTAILQ_ENTRY(CPUState) node; 390 391 /* ice debug support */ 392 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 393 394 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 395 CPUWatchpoint *watchpoint_hit; 396 397 void *opaque; 398 399 /* In order to avoid passing too many arguments to the MMIO helpers, 400 * we store some rarely used information in the CPU context. 401 */ 402 uintptr_t mem_io_pc; 403 404 int kvm_fd; 405 struct KVMState *kvm_state; 406 struct kvm_run *kvm_run; 407 408 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 409 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 410 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 411 412 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 413 414 #ifdef CONFIG_PLUGIN 415 GArray *plugin_mem_cbs; 416 /* saved iotlb data from io_writex */ 417 SavedIOTLB saved_iotlb; 418 #endif 419 420 /* TODO Move common fields from CPUArchState here. */ 421 int cpu_index; 422 int cluster_index; 423 uint32_t tcg_cflags; 424 uint32_t halted; 425 uint32_t can_do_io; 426 int32_t exception_index; 427 428 /* shared by kvm, hax and hvf */ 429 bool vcpu_dirty; 430 431 /* Used to keep track of an outstanding cpu throttle thread for migration 432 * autoconverge 433 */ 434 bool throttle_thread_scheduled; 435 436 bool ignore_memory_transaction_failures; 437 438 struct hax_vcpu_state *hax_vcpu; 439 440 int hvf_fd; 441 442 /* track IOMMUs whose translations we've cached in the TCG TLB */ 443 GArray *iommu_notifiers; 444 }; 445 446 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 447 extern CPUTailQ cpus; 448 449 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 450 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 451 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 452 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 453 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 454 455 extern __thread CPUState *current_cpu; 456 457 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 458 { 459 unsigned int i; 460 461 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 462 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 463 } 464 } 465 466 /** 467 * qemu_tcg_mttcg_enabled: 468 * Check whether we are running MultiThread TCG or not. 469 * 470 * Returns: %true if we are in MTTCG mode %false otherwise. 471 */ 472 extern bool mttcg_enabled; 473 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 474 475 /** 476 * cpu_paging_enabled: 477 * @cpu: The CPU whose state is to be inspected. 478 * 479 * Returns: %true if paging is enabled, %false otherwise. 480 */ 481 bool cpu_paging_enabled(const CPUState *cpu); 482 483 /** 484 * cpu_get_memory_mapping: 485 * @cpu: The CPU whose memory mappings are to be obtained. 486 * @list: Where to write the memory mappings to. 487 * @errp: Pointer for reporting an #Error. 488 */ 489 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 490 Error **errp); 491 492 #if !defined(CONFIG_USER_ONLY) 493 494 /** 495 * cpu_write_elf64_note: 496 * @f: pointer to a function that writes memory to a file 497 * @cpu: The CPU whose memory is to be dumped 498 * @cpuid: ID number of the CPU 499 * @opaque: pointer to the CPUState struct 500 */ 501 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 502 int cpuid, void *opaque); 503 504 /** 505 * cpu_write_elf64_qemunote: 506 * @f: pointer to a function that writes memory to a file 507 * @cpu: The CPU whose memory is to be dumped 508 * @cpuid: ID number of the CPU 509 * @opaque: pointer to the CPUState struct 510 */ 511 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 512 void *opaque); 513 514 /** 515 * cpu_write_elf32_note: 516 * @f: pointer to a function that writes memory to a file 517 * @cpu: The CPU whose memory is to be dumped 518 * @cpuid: ID number of the CPU 519 * @opaque: pointer to the CPUState struct 520 */ 521 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 522 int cpuid, void *opaque); 523 524 /** 525 * cpu_write_elf32_qemunote: 526 * @f: pointer to a function that writes memory to a file 527 * @cpu: The CPU whose memory is to be dumped 528 * @cpuid: ID number of the CPU 529 * @opaque: pointer to the CPUState struct 530 */ 531 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 532 void *opaque); 533 534 /** 535 * cpu_get_crash_info: 536 * @cpu: The CPU to get crash information for 537 * 538 * Gets the previously saved crash information. 539 * Caller is responsible for freeing the data. 540 */ 541 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 542 543 #endif /* !CONFIG_USER_ONLY */ 544 545 /** 546 * CPUDumpFlags: 547 * @CPU_DUMP_CODE: 548 * @CPU_DUMP_FPU: dump FPU register state, not just integer 549 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 550 */ 551 enum CPUDumpFlags { 552 CPU_DUMP_CODE = 0x00010000, 553 CPU_DUMP_FPU = 0x00020000, 554 CPU_DUMP_CCOP = 0x00040000, 555 }; 556 557 /** 558 * cpu_dump_state: 559 * @cpu: The CPU whose state is to be dumped. 560 * @f: If non-null, dump to this stream, else to current print sink. 561 * 562 * Dumps CPU state. 563 */ 564 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 565 566 /** 567 * cpu_dump_statistics: 568 * @cpu: The CPU whose state is to be dumped. 569 * @flags: Flags what to dump. 570 * 571 * Dump CPU statistics to the current monitor if we have one, else to 572 * stdout. 573 */ 574 void cpu_dump_statistics(CPUState *cpu, int flags); 575 576 #ifndef CONFIG_USER_ONLY 577 /** 578 * cpu_get_phys_page_attrs_debug: 579 * @cpu: The CPU to obtain the physical page address for. 580 * @addr: The virtual address. 581 * @attrs: Updated on return with the memory transaction attributes to use 582 * for this access. 583 * 584 * Obtains the physical page corresponding to a virtual one, together 585 * with the corresponding memory transaction attributes to use for the access. 586 * Use it only for debugging because no protection checks are done. 587 * 588 * Returns: Corresponding physical page address or -1 if no page found. 589 */ 590 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 591 MemTxAttrs *attrs); 592 593 /** 594 * cpu_get_phys_page_debug: 595 * @cpu: The CPU to obtain the physical page address for. 596 * @addr: The virtual address. 597 * 598 * Obtains the physical page corresponding to a virtual one. 599 * Use it only for debugging because no protection checks are done. 600 * 601 * Returns: Corresponding physical page address or -1 if no page found. 602 */ 603 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 604 605 /** cpu_asidx_from_attrs: 606 * @cpu: CPU 607 * @attrs: memory transaction attributes 608 * 609 * Returns the address space index specifying the CPU AddressSpace 610 * to use for a memory access with the given transaction attributes. 611 */ 612 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 613 614 /** 615 * cpu_virtio_is_big_endian: 616 * @cpu: CPU 617 618 * Returns %true if a CPU which supports runtime configurable endianness 619 * is currently big-endian. 620 */ 621 bool cpu_virtio_is_big_endian(CPUState *cpu); 622 623 #endif /* CONFIG_USER_ONLY */ 624 625 /** 626 * cpu_list_add: 627 * @cpu: The CPU to be added to the list of CPUs. 628 */ 629 void cpu_list_add(CPUState *cpu); 630 631 /** 632 * cpu_list_remove: 633 * @cpu: The CPU to be removed from the list of CPUs. 634 */ 635 void cpu_list_remove(CPUState *cpu); 636 637 /** 638 * cpu_reset: 639 * @cpu: The CPU whose state is to be reset. 640 */ 641 void cpu_reset(CPUState *cpu); 642 643 /** 644 * cpu_class_by_name: 645 * @typename: The CPU base type. 646 * @cpu_model: The model string without any parameters. 647 * 648 * Looks up a CPU #ObjectClass matching name @cpu_model. 649 * 650 * Returns: A #CPUClass or %NULL if not matching class is found. 651 */ 652 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 653 654 /** 655 * cpu_create: 656 * @typename: The CPU type. 657 * 658 * Instantiates a CPU and realizes the CPU. 659 * 660 * Returns: A #CPUState or %NULL if an error occurred. 661 */ 662 CPUState *cpu_create(const char *typename); 663 664 /** 665 * parse_cpu_option: 666 * @cpu_option: The -cpu option including optional parameters. 667 * 668 * processes optional parameters and registers them as global properties 669 * 670 * Returns: type of CPU to create or prints error and terminates process 671 * if an error occurred. 672 */ 673 const char *parse_cpu_option(const char *cpu_option); 674 675 /** 676 * cpu_has_work: 677 * @cpu: The vCPU to check. 678 * 679 * Checks whether the CPU has work to do. 680 * 681 * Returns: %true if the CPU has work, %false otherwise. 682 */ 683 static inline bool cpu_has_work(CPUState *cpu) 684 { 685 CPUClass *cc = CPU_GET_CLASS(cpu); 686 687 g_assert(cc->has_work); 688 return cc->has_work(cpu); 689 } 690 691 /** 692 * qemu_cpu_is_self: 693 * @cpu: The vCPU to check against. 694 * 695 * Checks whether the caller is executing on the vCPU thread. 696 * 697 * Returns: %true if called from @cpu's thread, %false otherwise. 698 */ 699 bool qemu_cpu_is_self(CPUState *cpu); 700 701 /** 702 * qemu_cpu_kick: 703 * @cpu: The vCPU to kick. 704 * 705 * Kicks @cpu's thread. 706 */ 707 void qemu_cpu_kick(CPUState *cpu); 708 709 /** 710 * cpu_is_stopped: 711 * @cpu: The CPU to check. 712 * 713 * Checks whether the CPU is stopped. 714 * 715 * Returns: %true if run state is not running or if artificially stopped; 716 * %false otherwise. 717 */ 718 bool cpu_is_stopped(CPUState *cpu); 719 720 /** 721 * do_run_on_cpu: 722 * @cpu: The vCPU to run on. 723 * @func: The function to be executed. 724 * @data: Data to pass to the function. 725 * @mutex: Mutex to release while waiting for @func to run. 726 * 727 * Used internally in the implementation of run_on_cpu. 728 */ 729 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 730 QemuMutex *mutex); 731 732 /** 733 * run_on_cpu: 734 * @cpu: The vCPU to run on. 735 * @func: The function to be executed. 736 * @data: Data to pass to the function. 737 * 738 * Schedules the function @func for execution on the vCPU @cpu. 739 */ 740 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 741 742 /** 743 * async_run_on_cpu: 744 * @cpu: The vCPU to run on. 745 * @func: The function to be executed. 746 * @data: Data to pass to the function. 747 * 748 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 749 */ 750 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 751 752 /** 753 * async_safe_run_on_cpu: 754 * @cpu: The vCPU to run on. 755 * @func: The function to be executed. 756 * @data: Data to pass to the function. 757 * 758 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 759 * while all other vCPUs are sleeping. 760 * 761 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 762 * BQL. 763 */ 764 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 765 766 /** 767 * cpu_in_exclusive_context() 768 * @cpu: The vCPU to check 769 * 770 * Returns true if @cpu is an exclusive context, for example running 771 * something which has previously been queued via async_safe_run_on_cpu(). 772 */ 773 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 774 { 775 return cpu->in_exclusive_context; 776 } 777 778 /** 779 * qemu_get_cpu: 780 * @index: The CPUState@cpu_index value of the CPU to obtain. 781 * 782 * Gets a CPU matching @index. 783 * 784 * Returns: The CPU or %NULL if there is no matching CPU. 785 */ 786 CPUState *qemu_get_cpu(int index); 787 788 /** 789 * cpu_exists: 790 * @id: Guest-exposed CPU ID to lookup. 791 * 792 * Search for CPU with specified ID. 793 * 794 * Returns: %true - CPU is found, %false - CPU isn't found. 795 */ 796 bool cpu_exists(int64_t id); 797 798 /** 799 * cpu_by_arch_id: 800 * @id: Guest-exposed CPU ID of the CPU to obtain. 801 * 802 * Get a CPU with matching @id. 803 * 804 * Returns: The CPU or %NULL if there is no matching CPU. 805 */ 806 CPUState *cpu_by_arch_id(int64_t id); 807 808 /** 809 * cpu_interrupt: 810 * @cpu: The CPU to set an interrupt on. 811 * @mask: The interrupts to set. 812 * 813 * Invokes the interrupt handler. 814 */ 815 816 void cpu_interrupt(CPUState *cpu, int mask); 817 818 /** 819 * cpu_set_pc: 820 * @cpu: The CPU to set the program counter for. 821 * @addr: Program counter value. 822 * 823 * Sets the program counter for a CPU. 824 */ 825 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 826 { 827 CPUClass *cc = CPU_GET_CLASS(cpu); 828 829 cc->set_pc(cpu, addr); 830 } 831 832 /** 833 * cpu_reset_interrupt: 834 * @cpu: The CPU to clear the interrupt on. 835 * @mask: The interrupt mask to clear. 836 * 837 * Resets interrupts on the vCPU @cpu. 838 */ 839 void cpu_reset_interrupt(CPUState *cpu, int mask); 840 841 /** 842 * cpu_exit: 843 * @cpu: The CPU to exit. 844 * 845 * Requests the CPU @cpu to exit execution. 846 */ 847 void cpu_exit(CPUState *cpu); 848 849 /** 850 * cpu_resume: 851 * @cpu: The CPU to resume. 852 * 853 * Resumes CPU, i.e. puts CPU into runnable state. 854 */ 855 void cpu_resume(CPUState *cpu); 856 857 /** 858 * cpu_remove_sync: 859 * @cpu: The CPU to remove. 860 * 861 * Requests the CPU to be removed and waits till it is removed. 862 */ 863 void cpu_remove_sync(CPUState *cpu); 864 865 /** 866 * process_queued_cpu_work() - process all items on CPU work queue 867 * @cpu: The CPU which work queue to process. 868 */ 869 void process_queued_cpu_work(CPUState *cpu); 870 871 /** 872 * cpu_exec_start: 873 * @cpu: The CPU for the current thread. 874 * 875 * Record that a CPU has started execution and can be interrupted with 876 * cpu_exit. 877 */ 878 void cpu_exec_start(CPUState *cpu); 879 880 /** 881 * cpu_exec_end: 882 * @cpu: The CPU for the current thread. 883 * 884 * Record that a CPU has stopped execution and exclusive sections 885 * can be executed without interrupting it. 886 */ 887 void cpu_exec_end(CPUState *cpu); 888 889 /** 890 * start_exclusive: 891 * 892 * Wait for a concurrent exclusive section to end, and then start 893 * a section of work that is run while other CPUs are not running 894 * between cpu_exec_start and cpu_exec_end. CPUs that are running 895 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 896 * during the exclusive section go to sleep until this CPU calls 897 * end_exclusive. 898 */ 899 void start_exclusive(void); 900 901 /** 902 * end_exclusive: 903 * 904 * Concludes an exclusive execution section started by start_exclusive. 905 */ 906 void end_exclusive(void); 907 908 /** 909 * qemu_init_vcpu: 910 * @cpu: The vCPU to initialize. 911 * 912 * Initializes a vCPU. 913 */ 914 void qemu_init_vcpu(CPUState *cpu); 915 916 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 917 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 918 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 919 920 /** 921 * cpu_single_step: 922 * @cpu: CPU to the flags for. 923 * @enabled: Flags to enable. 924 * 925 * Enables or disables single-stepping for @cpu. 926 */ 927 void cpu_single_step(CPUState *cpu, int enabled); 928 929 /* Breakpoint/watchpoint flags */ 930 #define BP_MEM_READ 0x01 931 #define BP_MEM_WRITE 0x02 932 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 933 #define BP_STOP_BEFORE_ACCESS 0x04 934 /* 0x08 currently unused */ 935 #define BP_GDB 0x10 936 #define BP_CPU 0x20 937 #define BP_ANY (BP_GDB | BP_CPU) 938 #define BP_WATCHPOINT_HIT_READ 0x40 939 #define BP_WATCHPOINT_HIT_WRITE 0x80 940 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 941 942 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 943 CPUBreakpoint **breakpoint); 944 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 945 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 946 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 947 948 /* Return true if PC matches an installed breakpoint. */ 949 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 950 { 951 CPUBreakpoint *bp; 952 953 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 954 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 955 if (bp->pc == pc && (bp->flags & mask)) { 956 return true; 957 } 958 } 959 } 960 return false; 961 } 962 963 #ifdef CONFIG_USER_ONLY 964 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 965 int flags, CPUWatchpoint **watchpoint) 966 { 967 return -ENOSYS; 968 } 969 970 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 971 vaddr len, int flags) 972 { 973 return -ENOSYS; 974 } 975 976 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 977 CPUWatchpoint *wp) 978 { 979 } 980 981 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 982 { 983 } 984 985 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 986 MemTxAttrs atr, int fl, uintptr_t ra) 987 { 988 } 989 990 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 991 vaddr addr, vaddr len) 992 { 993 return 0; 994 } 995 #else 996 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 997 int flags, CPUWatchpoint **watchpoint); 998 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 999 vaddr len, int flags); 1000 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1001 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1002 1003 /** 1004 * cpu_check_watchpoint: 1005 * @cpu: cpu context 1006 * @addr: guest virtual address 1007 * @len: access length 1008 * @attrs: memory access attributes 1009 * @flags: watchpoint access type 1010 * @ra: unwind return address 1011 * 1012 * Check for a watchpoint hit in [addr, addr+len) of the type 1013 * specified by @flags. Exit via exception with a hit. 1014 */ 1015 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1016 MemTxAttrs attrs, int flags, uintptr_t ra); 1017 1018 /** 1019 * cpu_watchpoint_address_matches: 1020 * @cpu: cpu context 1021 * @addr: guest virtual address 1022 * @len: access length 1023 * 1024 * Return the watchpoint flags that apply to [addr, addr+len). 1025 * If no watchpoint is registered for the range, the result is 0. 1026 */ 1027 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1028 #endif 1029 1030 /** 1031 * cpu_get_address_space: 1032 * @cpu: CPU to get address space from 1033 * @asidx: index identifying which address space to get 1034 * 1035 * Return the requested address space of this CPU. @asidx 1036 * specifies which address space to read. 1037 */ 1038 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1039 1040 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1041 GCC_FMT_ATTR(2, 3); 1042 1043 /* $(top_srcdir)/cpu.c */ 1044 void cpu_exec_initfn(CPUState *cpu); 1045 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1046 void cpu_exec_unrealizefn(CPUState *cpu); 1047 1048 /** 1049 * target_words_bigendian: 1050 * Returns true if the (default) endianness of the target is big endian, 1051 * false otherwise. Note that in target-specific code, you can use 1052 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1053 * code should normally never need to know about the endianness of the 1054 * target, so please do *not* use this function unless you know very well 1055 * what you are doing! 1056 */ 1057 bool target_words_bigendian(void); 1058 1059 #ifdef NEED_CPU_H 1060 1061 #ifdef CONFIG_SOFTMMU 1062 extern const VMStateDescription vmstate_cpu_common; 1063 #else 1064 #define vmstate_cpu_common vmstate_dummy 1065 #endif 1066 1067 #define VMSTATE_CPU() { \ 1068 .name = "parent_obj", \ 1069 .size = sizeof(CPUState), \ 1070 .vmsd = &vmstate_cpu_common, \ 1071 .flags = VMS_STRUCT, \ 1072 .offset = 0, \ 1073 } 1074 1075 #endif /* NEED_CPU_H */ 1076 1077 #define UNASSIGNED_CPU_INDEX -1 1078 #define UNASSIGNED_CLUSTER_INDEX -1 1079 1080 #endif 1081