1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/cpu-common.h" 26 #include "exec/hwaddr.h" 27 #include "exec/memattrs.h" 28 #include "exec/tlb-common.h" 29 #include "qapi/qapi-types-run-state.h" 30 #include "qemu/bitmap.h" 31 #include "qemu/rcu_queue.h" 32 #include "qemu/queue.h" 33 #include "qemu/thread.h" 34 #include "qemu/plugin-event.h" 35 #include "qom/object.h" 36 37 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 38 void *opaque); 39 40 /** 41 * SECTION:cpu 42 * @section_id: QEMU-cpu 43 * @title: CPU Class 44 * @short_description: Base class for all CPUs 45 */ 46 47 #define TYPE_CPU "cpu" 48 49 /* Since this macro is used a lot in hot code paths and in conjunction with 50 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 51 * an unchecked cast. 52 */ 53 #define CPU(obj) ((CPUState *)(obj)) 54 55 /* 56 * The class checkers bring in CPU_GET_CLASS() which is potentially 57 * expensive given the eventual call to 58 * object_class_dynamic_cast_assert(). Because of this the CPUState 59 * has a cached value for the class in cs->cc which is set up in 60 * cpu_exec_realizefn() for use in hot code paths. 61 */ 62 typedef struct CPUClass CPUClass; 63 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 64 TYPE_CPU) 65 66 /** 67 * OBJECT_DECLARE_CPU_TYPE: 68 * @CpuInstanceType: instance struct name 69 * @CpuClassType: class struct name 70 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 71 * 72 * This macro is typically used in "cpu-qom.h" header file, and will: 73 * 74 * - create the typedefs for the CPU object and class structs 75 * - register the type for use with g_autoptr 76 * - provide three standard type cast functions 77 * 78 * The object struct and class struct need to be declared manually. 79 */ 80 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 81 typedef struct ArchCPU CpuInstanceType; \ 82 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 83 84 typedef enum MMUAccessType { 85 MMU_DATA_LOAD = 0, 86 MMU_DATA_STORE = 1, 87 MMU_INST_FETCH = 2 88 #define MMU_ACCESS_COUNT 3 89 } MMUAccessType; 90 91 typedef struct CPUWatchpoint CPUWatchpoint; 92 93 /* see tcg-cpu-ops.h */ 94 struct TCGCPUOps; 95 96 /* see accel-cpu.h */ 97 struct AccelCPUClass; 98 99 /* see sysemu-cpu-ops.h */ 100 struct SysemuCPUOps; 101 102 /** 103 * CPUClass: 104 * @class_by_name: Callback to map -cpu command line model name to an 105 * instantiatable CPU type. 106 * @parse_features: Callback to parse command line arguments. 107 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 108 * @has_work: Callback for checking if there is work to do. 109 * @memory_rw_debug: Callback for GDB memory access. 110 * @dump_state: Callback for dumping state. 111 * @query_cpu_fast: 112 * Fill in target specific information for the "query-cpus-fast" 113 * QAPI call. 114 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 115 * @set_pc: Callback for setting the Program Counter register. This 116 * should have the semantics used by the target architecture when 117 * setting the PC from a source such as an ELF file entry point; 118 * for example on Arm it will also set the Thumb mode bit based 119 * on the least significant bit of the new PC value. 120 * If the target behaviour here is anything other than "set 121 * the PC register to the value passed in" then the target must 122 * also implement the synchronize_from_tb hook. 123 * @get_pc: Callback for getting the Program Counter register. 124 * As above, with the semantics of the target architecture. 125 * @gdb_read_register: Callback for letting GDB read a register. 126 * @gdb_write_register: Callback for letting GDB write a register. 127 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 128 * breakpoint. Used by AVR to handle a gdb mis-feature with 129 * its Harvard architecture split code and data. 130 * @gdb_num_core_regs: Number of core registers accessible to GDB. 131 * @gdb_core_xml_file: File name for core registers GDB XML description. 132 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 133 * before the insn which triggers a watchpoint rather than after it. 134 * @gdb_arch_name: Optional callback that returns the architecture name known 135 * to GDB. The caller must free the returned string with g_free. 136 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 137 * gdb stub. Returns a pointer to the XML contents for the specified XML file 138 * or NULL if the CPU doesn't have a dynamically generated content for it. 139 * @disas_set_info: Setup architecture specific components of disassembly info 140 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 141 * address before attempting to match it against watchpoints. 142 * @deprecation_note: If this CPUClass is deprecated, this field provides 143 * related information. 144 * 145 * Represents a CPU family or model. 146 */ 147 struct CPUClass { 148 /*< private >*/ 149 DeviceClass parent_class; 150 /*< public >*/ 151 152 ObjectClass *(*class_by_name)(const char *cpu_model); 153 void (*parse_features)(const char *typename, char *str, Error **errp); 154 155 bool (*has_work)(CPUState *cpu); 156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 157 uint8_t *buf, int len, bool is_write); 158 void (*dump_state)(CPUState *cpu, FILE *, int flags); 159 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 160 int64_t (*get_arch_id)(CPUState *cpu); 161 void (*set_pc)(CPUState *cpu, vaddr value); 162 vaddr (*get_pc)(CPUState *cpu); 163 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 164 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 165 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 166 167 const char *gdb_core_xml_file; 168 const gchar * (*gdb_arch_name)(CPUState *cpu); 169 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 170 171 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 172 173 const char *deprecation_note; 174 struct AccelCPUClass *accel_cpu; 175 176 /* when system emulation is not available, this pointer is NULL */ 177 const struct SysemuCPUOps *sysemu_ops; 178 179 /* when TCG is not available, this pointer is NULL */ 180 const struct TCGCPUOps *tcg_ops; 181 182 /* 183 * if not NULL, this is called in order for the CPUClass to initialize 184 * class data that depends on the accelerator, see accel/accel-common.c. 185 */ 186 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 187 188 /* 189 * Keep non-pointer data at the end to minimize holes. 190 */ 191 int reset_dump_flags; 192 int gdb_num_core_regs; 193 bool gdb_stop_before_watchpoint; 194 }; 195 196 /* 197 * Fix the number of mmu modes to 16, which is also the maximum 198 * supported by the softmmu tlb api. 199 */ 200 #define NB_MMU_MODES 16 201 202 /* Use a fully associative victim tlb of 8 entries. */ 203 #define CPU_VTLB_SIZE 8 204 205 /* 206 * The full TLB entry, which is not accessed by generated TCG code, 207 * so the layout is not as critical as that of CPUTLBEntry. This is 208 * also why we don't want to combine the two structs. 209 */ 210 typedef struct CPUTLBEntryFull { 211 /* 212 * @xlat_section contains: 213 * - in the lower TARGET_PAGE_BITS, a physical section number 214 * - with the lower TARGET_PAGE_BITS masked off, an offset which 215 * must be added to the virtual address to obtain: 216 * + the ram_addr_t of the target RAM (if the physical section 217 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 218 * + the offset within the target MemoryRegion (otherwise) 219 */ 220 hwaddr xlat_section; 221 222 /* 223 * @phys_addr contains the physical address in the address space 224 * given by cpu_asidx_from_attrs(cpu, @attrs). 225 */ 226 hwaddr phys_addr; 227 228 /* @attrs contains the memory transaction attributes for the page. */ 229 MemTxAttrs attrs; 230 231 /* @prot contains the complete protections for the page. */ 232 uint8_t prot; 233 234 /* @lg_page_size contains the log2 of the page size. */ 235 uint8_t lg_page_size; 236 237 /* 238 * Additional tlb flags for use by the slow path. If non-zero, 239 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 240 */ 241 uint8_t slow_flags[MMU_ACCESS_COUNT]; 242 243 /* 244 * Allow target-specific additions to this structure. 245 * This may be used to cache items from the guest cpu 246 * page tables for later use by the implementation. 247 */ 248 union { 249 /* 250 * Cache the attrs and shareability fields from the page table entry. 251 * 252 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 253 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 254 * For shareability and guarded, as in the SH and GP fields respectively 255 * of the VMSAv8-64 PTEs. 256 */ 257 struct { 258 uint8_t pte_attrs; 259 uint8_t shareability; 260 bool guarded; 261 } arm; 262 } extra; 263 } CPUTLBEntryFull; 264 265 /* 266 * Data elements that are per MMU mode, minus the bits accessed by 267 * the TCG fast path. 268 */ 269 typedef struct CPUTLBDesc { 270 /* 271 * Describe a region covering all of the large pages allocated 272 * into the tlb. When any page within this region is flushed, 273 * we must flush the entire tlb. The region is matched if 274 * (addr & large_page_mask) == large_page_addr. 275 */ 276 vaddr large_page_addr; 277 vaddr large_page_mask; 278 /* host time (in ns) at the beginning of the time window */ 279 int64_t window_begin_ns; 280 /* maximum number of entries observed in the window */ 281 size_t window_max_entries; 282 size_t n_used_entries; 283 /* The next index to use in the tlb victim table. */ 284 size_t vindex; 285 /* The tlb victim table, in two parts. */ 286 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 287 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 288 CPUTLBEntryFull *fulltlb; 289 } CPUTLBDesc; 290 291 /* 292 * Data elements that are shared between all MMU modes. 293 */ 294 typedef struct CPUTLBCommon { 295 /* Serialize updates to f.table and d.vtable, and others as noted. */ 296 QemuSpin lock; 297 /* 298 * Within dirty, for each bit N, modifications have been made to 299 * mmu_idx N since the last time that mmu_idx was flushed. 300 * Protected by tlb_c.lock. 301 */ 302 uint16_t dirty; 303 /* 304 * Statistics. These are not lock protected, but are read and 305 * written atomically. This allows the monitor to print a snapshot 306 * of the stats without interfering with the cpu. 307 */ 308 size_t full_flush_count; 309 size_t part_flush_count; 310 size_t elide_flush_count; 311 } CPUTLBCommon; 312 313 /* 314 * The entire softmmu tlb, for all MMU modes. 315 * The meaning of each of the MMU modes is defined in the target code. 316 * Since this is placed within CPUNegativeOffsetState, the smallest 317 * negative offsets are at the end of the struct. 318 */ 319 typedef struct CPUTLB { 320 #ifdef CONFIG_TCG 321 CPUTLBCommon c; 322 CPUTLBDesc d[NB_MMU_MODES]; 323 CPUTLBDescFast f[NB_MMU_MODES]; 324 #endif 325 } CPUTLB; 326 327 /* 328 * Low 16 bits: number of cycles left, used only in icount mode. 329 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 330 * for this CPU and return to its top level loop (even in non-icount mode). 331 * This allows a single read-compare-cbranch-write sequence to test 332 * for both decrementer underflow and exceptions. 333 */ 334 typedef union IcountDecr { 335 uint32_t u32; 336 struct { 337 #if HOST_BIG_ENDIAN 338 uint16_t high; 339 uint16_t low; 340 #else 341 uint16_t low; 342 uint16_t high; 343 #endif 344 } u16; 345 } IcountDecr; 346 347 /* 348 * Elements of CPUState most efficiently accessed from CPUArchState, 349 * via small negative offsets. 350 */ 351 typedef struct CPUNegativeOffsetState { 352 CPUTLB tlb; 353 IcountDecr icount_decr; 354 bool can_do_io; 355 } CPUNegativeOffsetState; 356 357 typedef struct CPUBreakpoint { 358 vaddr pc; 359 int flags; /* BP_* */ 360 QTAILQ_ENTRY(CPUBreakpoint) entry; 361 } CPUBreakpoint; 362 363 struct CPUWatchpoint { 364 vaddr vaddr; 365 vaddr len; 366 vaddr hitaddr; 367 MemTxAttrs hitattrs; 368 int flags; /* BP_* */ 369 QTAILQ_ENTRY(CPUWatchpoint) entry; 370 }; 371 372 struct KVMState; 373 struct kvm_run; 374 375 /* work queue */ 376 377 /* The union type allows passing of 64 bit target pointers on 32 bit 378 * hosts in a single parameter 379 */ 380 typedef union { 381 int host_int; 382 unsigned long host_ulong; 383 void *host_ptr; 384 vaddr target_ptr; 385 } run_on_cpu_data; 386 387 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 388 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 389 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 390 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 391 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 392 393 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 394 395 struct qemu_work_item; 396 397 #define CPU_UNSET_NUMA_NODE_ID -1 398 399 /** 400 * CPUState: 401 * @cpu_index: CPU index (informative). 402 * @cluster_index: Identifies which cluster this CPU is in. 403 * For boards which don't define clusters or for "loose" CPUs not assigned 404 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 405 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 406 * QOM parent. 407 * Under TCG this value is propagated to @tcg_cflags. 408 * See TranslationBlock::TCG CF_CLUSTER_MASK. 409 * @tcg_cflags: Pre-computed cflags for this cpu. 410 * @nr_cores: Number of cores within this CPU package. 411 * @nr_threads: Number of threads within this CPU core. 412 * @running: #true if CPU is currently running (lockless). 413 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 414 * valid under cpu_list_lock. 415 * @created: Indicates whether the CPU thread has been successfully created. 416 * @interrupt_request: Indicates a pending interrupt request. 417 * @halted: Nonzero if the CPU is in suspended state. 418 * @stop: Indicates a pending stop request. 419 * @stopped: Indicates the CPU has been artificially stopped. 420 * @unplug: Indicates a pending CPU unplug request. 421 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 422 * @singlestep_enabled: Flags for single-stepping. 423 * @icount_extra: Instructions until next timer event. 424 * @neg.can_do_io: True if memory-mapped IO is allowed. 425 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 426 * AddressSpaces this CPU has) 427 * @num_ases: number of CPUAddressSpaces in @cpu_ases 428 * @as: Pointer to the first AddressSpace, for the convenience of targets which 429 * only have a single AddressSpace 430 * @gdb_regs: Additional GDB registers. 431 * @gdb_num_regs: Number of total registers accessible to GDB. 432 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 433 * @next_cpu: Next CPU sharing TB cache. 434 * @opaque: User data. 435 * @mem_io_pc: Host Program Counter at which the memory was accessed. 436 * @accel: Pointer to accelerator specific state. 437 * @kvm_fd: vCPU file descriptor for KVM. 438 * @work_mutex: Lock to prevent multiple access to @work_list. 439 * @work_list: List of pending asynchronous work. 440 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 441 * to @trace_dstate). 442 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 443 * @plugin_mask: Plugin event bitmap. Modified only via async work. 444 * @ignore_memory_transaction_failures: Cached copy of the MachineState 445 * flag of the same name: allows the board to suppress calling of the 446 * CPU do_transaction_failed hook function. 447 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 448 * ring is enabled. 449 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 450 * dirty ring structure. 451 * 452 * State of one CPU core or thread. 453 * 454 * Align, in order to match possible alignment required by CPUArchState, 455 * and eliminate a hole between CPUState and CPUArchState within ArchCPU. 456 */ 457 struct CPUState { 458 /*< private >*/ 459 DeviceState parent_obj; 460 /* cache to avoid expensive CPU_GET_CLASS */ 461 CPUClass *cc; 462 /*< public >*/ 463 464 int nr_cores; 465 int nr_threads; 466 467 struct QemuThread *thread; 468 #ifdef _WIN32 469 QemuSemaphore sem; 470 #endif 471 int thread_id; 472 bool running, has_waiter; 473 struct QemuCond *halt_cond; 474 bool thread_kicked; 475 bool created; 476 bool stop; 477 bool stopped; 478 479 /* Should CPU start in powered-off state? */ 480 bool start_powered_off; 481 482 bool unplug; 483 bool crash_occurred; 484 bool exit_request; 485 int exclusive_context_count; 486 uint32_t cflags_next_tb; 487 /* updates protected by BQL */ 488 uint32_t interrupt_request; 489 int singlestep_enabled; 490 int64_t icount_budget; 491 int64_t icount_extra; 492 uint64_t random_seed; 493 sigjmp_buf jmp_env; 494 495 QemuMutex work_mutex; 496 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 497 498 CPUAddressSpace *cpu_ases; 499 int num_ases; 500 AddressSpace *as; 501 MemoryRegion *memory; 502 503 CPUJumpCache *tb_jmp_cache; 504 505 GArray *gdb_regs; 506 int gdb_num_regs; 507 int gdb_num_g_regs; 508 QTAILQ_ENTRY(CPUState) node; 509 510 /* ice debug support */ 511 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 512 513 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 514 CPUWatchpoint *watchpoint_hit; 515 516 void *opaque; 517 518 /* In order to avoid passing too many arguments to the MMIO helpers, 519 * we store some rarely used information in the CPU context. 520 */ 521 uintptr_t mem_io_pc; 522 523 /* Only used in KVM */ 524 int kvm_fd; 525 struct KVMState *kvm_state; 526 struct kvm_run *kvm_run; 527 struct kvm_dirty_gfn *kvm_dirty_gfns; 528 uint32_t kvm_fetch_index; 529 uint64_t dirty_pages; 530 int kvm_vcpu_stats_fd; 531 532 /* Use by accel-block: CPU is executing an ioctl() */ 533 QemuLockCnt in_ioctl_lock; 534 535 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 536 537 #ifdef CONFIG_PLUGIN 538 GArray *plugin_mem_cbs; 539 #endif 540 541 /* TODO Move common fields from CPUArchState here. */ 542 int cpu_index; 543 int cluster_index; 544 uint32_t tcg_cflags; 545 uint32_t halted; 546 int32_t exception_index; 547 548 AccelCPUState *accel; 549 /* shared by kvm and hvf */ 550 bool vcpu_dirty; 551 552 /* Used to keep track of an outstanding cpu throttle thread for migration 553 * autoconverge 554 */ 555 bool throttle_thread_scheduled; 556 557 /* 558 * Sleep throttle_us_per_full microseconds once dirty ring is full 559 * if dirty page rate limit is enabled. 560 */ 561 int64_t throttle_us_per_full; 562 563 bool ignore_memory_transaction_failures; 564 565 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 566 bool prctl_unalign_sigbus; 567 568 /* track IOMMUs whose translations we've cached in the TCG TLB */ 569 GArray *iommu_notifiers; 570 571 /* 572 * MUST BE LAST in order to minimize the displacement to CPUArchState. 573 */ 574 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 575 CPUNegativeOffsetState neg; 576 }; 577 578 /* Validate placement of CPUNegativeOffsetState. */ 579 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 580 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 581 582 static inline CPUArchState *cpu_env(CPUState *cpu) 583 { 584 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 585 return (CPUArchState *)(cpu + 1); 586 } 587 588 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 589 extern CPUTailQ cpus_queue; 590 591 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 592 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 593 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 594 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 595 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 596 597 extern __thread CPUState *current_cpu; 598 599 /** 600 * qemu_tcg_mttcg_enabled: 601 * Check whether we are running MultiThread TCG or not. 602 * 603 * Returns: %true if we are in MTTCG mode %false otherwise. 604 */ 605 extern bool mttcg_enabled; 606 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 607 608 /** 609 * cpu_paging_enabled: 610 * @cpu: The CPU whose state is to be inspected. 611 * 612 * Returns: %true if paging is enabled, %false otherwise. 613 */ 614 bool cpu_paging_enabled(const CPUState *cpu); 615 616 /** 617 * cpu_get_memory_mapping: 618 * @cpu: The CPU whose memory mappings are to be obtained. 619 * @list: Where to write the memory mappings to. 620 * @errp: Pointer for reporting an #Error. 621 * 622 * Returns: %true on success, %false otherwise. 623 */ 624 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 625 Error **errp); 626 627 #if !defined(CONFIG_USER_ONLY) 628 629 /** 630 * cpu_write_elf64_note: 631 * @f: pointer to a function that writes memory to a file 632 * @cpu: The CPU whose memory is to be dumped 633 * @cpuid: ID number of the CPU 634 * @opaque: pointer to the CPUState struct 635 */ 636 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 637 int cpuid, void *opaque); 638 639 /** 640 * cpu_write_elf64_qemunote: 641 * @f: pointer to a function that writes memory to a file 642 * @cpu: The CPU whose memory is to be dumped 643 * @cpuid: ID number of the CPU 644 * @opaque: pointer to the CPUState struct 645 */ 646 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 647 void *opaque); 648 649 /** 650 * cpu_write_elf32_note: 651 * @f: pointer to a function that writes memory to a file 652 * @cpu: The CPU whose memory is to be dumped 653 * @cpuid: ID number of the CPU 654 * @opaque: pointer to the CPUState struct 655 */ 656 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 657 int cpuid, void *opaque); 658 659 /** 660 * cpu_write_elf32_qemunote: 661 * @f: pointer to a function that writes memory to a file 662 * @cpu: The CPU whose memory is to be dumped 663 * @cpuid: ID number of the CPU 664 * @opaque: pointer to the CPUState struct 665 */ 666 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 667 void *opaque); 668 669 /** 670 * cpu_get_crash_info: 671 * @cpu: The CPU to get crash information for 672 * 673 * Gets the previously saved crash information. 674 * Caller is responsible for freeing the data. 675 */ 676 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 677 678 #endif /* !CONFIG_USER_ONLY */ 679 680 /** 681 * CPUDumpFlags: 682 * @CPU_DUMP_CODE: 683 * @CPU_DUMP_FPU: dump FPU register state, not just integer 684 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 685 * @CPU_DUMP_VPU: dump VPU registers 686 */ 687 enum CPUDumpFlags { 688 CPU_DUMP_CODE = 0x00010000, 689 CPU_DUMP_FPU = 0x00020000, 690 CPU_DUMP_CCOP = 0x00040000, 691 CPU_DUMP_VPU = 0x00080000, 692 }; 693 694 /** 695 * cpu_dump_state: 696 * @cpu: The CPU whose state is to be dumped. 697 * @f: If non-null, dump to this stream, else to current print sink. 698 * 699 * Dumps CPU state. 700 */ 701 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 702 703 #ifndef CONFIG_USER_ONLY 704 /** 705 * cpu_get_phys_page_attrs_debug: 706 * @cpu: The CPU to obtain the physical page address for. 707 * @addr: The virtual address. 708 * @attrs: Updated on return with the memory transaction attributes to use 709 * for this access. 710 * 711 * Obtains the physical page corresponding to a virtual one, together 712 * with the corresponding memory transaction attributes to use for the access. 713 * Use it only for debugging because no protection checks are done. 714 * 715 * Returns: Corresponding physical page address or -1 if no page found. 716 */ 717 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 718 MemTxAttrs *attrs); 719 720 /** 721 * cpu_get_phys_page_debug: 722 * @cpu: The CPU to obtain the physical page address for. 723 * @addr: The virtual address. 724 * 725 * Obtains the physical page corresponding to a virtual one. 726 * Use it only for debugging because no protection checks are done. 727 * 728 * Returns: Corresponding physical page address or -1 if no page found. 729 */ 730 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 731 732 /** cpu_asidx_from_attrs: 733 * @cpu: CPU 734 * @attrs: memory transaction attributes 735 * 736 * Returns the address space index specifying the CPU AddressSpace 737 * to use for a memory access with the given transaction attributes. 738 */ 739 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 740 741 /** 742 * cpu_virtio_is_big_endian: 743 * @cpu: CPU 744 745 * Returns %true if a CPU which supports runtime configurable endianness 746 * is currently big-endian. 747 */ 748 bool cpu_virtio_is_big_endian(CPUState *cpu); 749 750 #endif /* CONFIG_USER_ONLY */ 751 752 /** 753 * cpu_list_add: 754 * @cpu: The CPU to be added to the list of CPUs. 755 */ 756 void cpu_list_add(CPUState *cpu); 757 758 /** 759 * cpu_list_remove: 760 * @cpu: The CPU to be removed from the list of CPUs. 761 */ 762 void cpu_list_remove(CPUState *cpu); 763 764 /** 765 * cpu_reset: 766 * @cpu: The CPU whose state is to be reset. 767 */ 768 void cpu_reset(CPUState *cpu); 769 770 /** 771 * cpu_class_by_name: 772 * @typename: The CPU base type. 773 * @cpu_model: The model string without any parameters. 774 * 775 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 776 * 777 * Returns: A concrete #CPUClass or %NULL if no matching class is found 778 * or if the matching class is abstract. 779 */ 780 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 781 782 /** 783 * cpu_create: 784 * @typename: The CPU type. 785 * 786 * Instantiates a CPU and realizes the CPU. 787 * 788 * Returns: A #CPUState or %NULL if an error occurred. 789 */ 790 CPUState *cpu_create(const char *typename); 791 792 /** 793 * parse_cpu_option: 794 * @cpu_option: The -cpu option including optional parameters. 795 * 796 * processes optional parameters and registers them as global properties 797 * 798 * Returns: type of CPU to create or prints error and terminates process 799 * if an error occurred. 800 */ 801 const char *parse_cpu_option(const char *cpu_option); 802 803 /** 804 * cpu_has_work: 805 * @cpu: The vCPU to check. 806 * 807 * Checks whether the CPU has work to do. 808 * 809 * Returns: %true if the CPU has work, %false otherwise. 810 */ 811 static inline bool cpu_has_work(CPUState *cpu) 812 { 813 CPUClass *cc = CPU_GET_CLASS(cpu); 814 815 g_assert(cc->has_work); 816 return cc->has_work(cpu); 817 } 818 819 /** 820 * qemu_cpu_is_self: 821 * @cpu: The vCPU to check against. 822 * 823 * Checks whether the caller is executing on the vCPU thread. 824 * 825 * Returns: %true if called from @cpu's thread, %false otherwise. 826 */ 827 bool qemu_cpu_is_self(CPUState *cpu); 828 829 /** 830 * qemu_cpu_kick: 831 * @cpu: The vCPU to kick. 832 * 833 * Kicks @cpu's thread. 834 */ 835 void qemu_cpu_kick(CPUState *cpu); 836 837 /** 838 * cpu_is_stopped: 839 * @cpu: The CPU to check. 840 * 841 * Checks whether the CPU is stopped. 842 * 843 * Returns: %true if run state is not running or if artificially stopped; 844 * %false otherwise. 845 */ 846 bool cpu_is_stopped(CPUState *cpu); 847 848 /** 849 * do_run_on_cpu: 850 * @cpu: The vCPU to run on. 851 * @func: The function to be executed. 852 * @data: Data to pass to the function. 853 * @mutex: Mutex to release while waiting for @func to run. 854 * 855 * Used internally in the implementation of run_on_cpu. 856 */ 857 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 858 QemuMutex *mutex); 859 860 /** 861 * run_on_cpu: 862 * @cpu: The vCPU to run on. 863 * @func: The function to be executed. 864 * @data: Data to pass to the function. 865 * 866 * Schedules the function @func for execution on the vCPU @cpu. 867 */ 868 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 869 870 /** 871 * async_run_on_cpu: 872 * @cpu: The vCPU to run on. 873 * @func: The function to be executed. 874 * @data: Data to pass to the function. 875 * 876 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 877 */ 878 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 879 880 /** 881 * async_safe_run_on_cpu: 882 * @cpu: The vCPU to run on. 883 * @func: The function to be executed. 884 * @data: Data to pass to the function. 885 * 886 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 887 * while all other vCPUs are sleeping. 888 * 889 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 890 * BQL. 891 */ 892 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 893 894 /** 895 * cpu_in_exclusive_context() 896 * @cpu: The vCPU to check 897 * 898 * Returns true if @cpu is an exclusive context, for example running 899 * something which has previously been queued via async_safe_run_on_cpu(). 900 */ 901 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 902 { 903 return cpu->exclusive_context_count; 904 } 905 906 /** 907 * qemu_get_cpu: 908 * @index: The CPUState@cpu_index value of the CPU to obtain. 909 * 910 * Gets a CPU matching @index. 911 * 912 * Returns: The CPU or %NULL if there is no matching CPU. 913 */ 914 CPUState *qemu_get_cpu(int index); 915 916 /** 917 * cpu_exists: 918 * @id: Guest-exposed CPU ID to lookup. 919 * 920 * Search for CPU with specified ID. 921 * 922 * Returns: %true - CPU is found, %false - CPU isn't found. 923 */ 924 bool cpu_exists(int64_t id); 925 926 /** 927 * cpu_by_arch_id: 928 * @id: Guest-exposed CPU ID of the CPU to obtain. 929 * 930 * Get a CPU with matching @id. 931 * 932 * Returns: The CPU or %NULL if there is no matching CPU. 933 */ 934 CPUState *cpu_by_arch_id(int64_t id); 935 936 /** 937 * cpu_interrupt: 938 * @cpu: The CPU to set an interrupt on. 939 * @mask: The interrupts to set. 940 * 941 * Invokes the interrupt handler. 942 */ 943 944 void cpu_interrupt(CPUState *cpu, int mask); 945 946 /** 947 * cpu_set_pc: 948 * @cpu: The CPU to set the program counter for. 949 * @addr: Program counter value. 950 * 951 * Sets the program counter for a CPU. 952 */ 953 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 954 { 955 CPUClass *cc = CPU_GET_CLASS(cpu); 956 957 cc->set_pc(cpu, addr); 958 } 959 960 /** 961 * cpu_reset_interrupt: 962 * @cpu: The CPU to clear the interrupt on. 963 * @mask: The interrupt mask to clear. 964 * 965 * Resets interrupts on the vCPU @cpu. 966 */ 967 void cpu_reset_interrupt(CPUState *cpu, int mask); 968 969 /** 970 * cpu_exit: 971 * @cpu: The CPU to exit. 972 * 973 * Requests the CPU @cpu to exit execution. 974 */ 975 void cpu_exit(CPUState *cpu); 976 977 /** 978 * cpu_resume: 979 * @cpu: The CPU to resume. 980 * 981 * Resumes CPU, i.e. puts CPU into runnable state. 982 */ 983 void cpu_resume(CPUState *cpu); 984 985 /** 986 * cpu_remove_sync: 987 * @cpu: The CPU to remove. 988 * 989 * Requests the CPU to be removed and waits till it is removed. 990 */ 991 void cpu_remove_sync(CPUState *cpu); 992 993 /** 994 * process_queued_cpu_work() - process all items on CPU work queue 995 * @cpu: The CPU which work queue to process. 996 */ 997 void process_queued_cpu_work(CPUState *cpu); 998 999 /** 1000 * cpu_exec_start: 1001 * @cpu: The CPU for the current thread. 1002 * 1003 * Record that a CPU has started execution and can be interrupted with 1004 * cpu_exit. 1005 */ 1006 void cpu_exec_start(CPUState *cpu); 1007 1008 /** 1009 * cpu_exec_end: 1010 * @cpu: The CPU for the current thread. 1011 * 1012 * Record that a CPU has stopped execution and exclusive sections 1013 * can be executed without interrupting it. 1014 */ 1015 void cpu_exec_end(CPUState *cpu); 1016 1017 /** 1018 * start_exclusive: 1019 * 1020 * Wait for a concurrent exclusive section to end, and then start 1021 * a section of work that is run while other CPUs are not running 1022 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1023 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1024 * during the exclusive section go to sleep until this CPU calls 1025 * end_exclusive. 1026 */ 1027 void start_exclusive(void); 1028 1029 /** 1030 * end_exclusive: 1031 * 1032 * Concludes an exclusive execution section started by start_exclusive. 1033 */ 1034 void end_exclusive(void); 1035 1036 /** 1037 * qemu_init_vcpu: 1038 * @cpu: The vCPU to initialize. 1039 * 1040 * Initializes a vCPU. 1041 */ 1042 void qemu_init_vcpu(CPUState *cpu); 1043 1044 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1045 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1046 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1047 1048 /** 1049 * cpu_single_step: 1050 * @cpu: CPU to the flags for. 1051 * @enabled: Flags to enable. 1052 * 1053 * Enables or disables single-stepping for @cpu. 1054 */ 1055 void cpu_single_step(CPUState *cpu, int enabled); 1056 1057 /* Breakpoint/watchpoint flags */ 1058 #define BP_MEM_READ 0x01 1059 #define BP_MEM_WRITE 0x02 1060 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1061 #define BP_STOP_BEFORE_ACCESS 0x04 1062 /* 0x08 currently unused */ 1063 #define BP_GDB 0x10 1064 #define BP_CPU 0x20 1065 #define BP_ANY (BP_GDB | BP_CPU) 1066 #define BP_HIT_SHIFT 6 1067 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1068 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1069 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1070 1071 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1072 CPUBreakpoint **breakpoint); 1073 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1074 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1075 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1076 1077 /* Return true if PC matches an installed breakpoint. */ 1078 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1079 { 1080 CPUBreakpoint *bp; 1081 1082 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1083 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1084 if (bp->pc == pc && (bp->flags & mask)) { 1085 return true; 1086 } 1087 } 1088 } 1089 return false; 1090 } 1091 1092 #if defined(CONFIG_USER_ONLY) 1093 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1094 int flags, CPUWatchpoint **watchpoint) 1095 { 1096 return -ENOSYS; 1097 } 1098 1099 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1100 vaddr len, int flags) 1101 { 1102 return -ENOSYS; 1103 } 1104 1105 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1106 CPUWatchpoint *wp) 1107 { 1108 } 1109 1110 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1111 { 1112 } 1113 #else 1114 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1115 int flags, CPUWatchpoint **watchpoint); 1116 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1117 vaddr len, int flags); 1118 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1119 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1120 #endif 1121 1122 /** 1123 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled? 1124 * @cs: CPUState pointer 1125 * 1126 * The memory callbacks are installed if a plugin has instrumented an 1127 * instruction for memory. This can be useful to know if you want to 1128 * force a slow path for a series of memory accesses. 1129 */ 1130 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu) 1131 { 1132 #ifdef CONFIG_PLUGIN 1133 return !!cpu->plugin_mem_cbs; 1134 #else 1135 return false; 1136 #endif 1137 } 1138 1139 /** 1140 * cpu_get_address_space: 1141 * @cpu: CPU to get address space from 1142 * @asidx: index identifying which address space to get 1143 * 1144 * Return the requested address space of this CPU. @asidx 1145 * specifies which address space to read. 1146 */ 1147 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1148 1149 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1150 G_GNUC_PRINTF(2, 3); 1151 1152 /* $(top_srcdir)/cpu.c */ 1153 void cpu_class_init_props(DeviceClass *dc); 1154 void cpu_exec_initfn(CPUState *cpu); 1155 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1156 void cpu_exec_unrealizefn(CPUState *cpu); 1157 void cpu_exec_reset_hold(CPUState *cpu); 1158 1159 /** 1160 * target_words_bigendian: 1161 * Returns true if the (default) endianness of the target is big endian, 1162 * false otherwise. Note that in target-specific code, you can use 1163 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1164 * code should normally never need to know about the endianness of the 1165 * target, so please do *not* use this function unless you know very well 1166 * what you are doing! 1167 */ 1168 bool target_words_bigendian(void); 1169 1170 const char *target_name(void); 1171 1172 void page_size_init(void); 1173 1174 #ifdef NEED_CPU_H 1175 1176 #ifndef CONFIG_USER_ONLY 1177 1178 extern const VMStateDescription vmstate_cpu_common; 1179 1180 #define VMSTATE_CPU() { \ 1181 .name = "parent_obj", \ 1182 .size = sizeof(CPUState), \ 1183 .vmsd = &vmstate_cpu_common, \ 1184 .flags = VMS_STRUCT, \ 1185 .offset = 0, \ 1186 } 1187 #endif /* !CONFIG_USER_ONLY */ 1188 1189 #endif /* NEED_CPU_H */ 1190 1191 #define UNASSIGNED_CPU_INDEX -1 1192 #define UNASSIGNED_CLUSTER_INDEX -1 1193 1194 #endif 1195