1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/cpu-common.h" 26 #include "exec/hwaddr.h" 27 #include "exec/memattrs.h" 28 #include "qapi/qapi-types-run-state.h" 29 #include "qemu/bitmap.h" 30 #include "qemu/rcu_queue.h" 31 #include "qemu/queue.h" 32 #include "qemu/thread.h" 33 #include "qemu/plugin.h" 34 #include "qom/object.h" 35 36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 37 void *opaque); 38 39 /** 40 * SECTION:cpu 41 * @section_id: QEMU-cpu 42 * @title: CPU Class 43 * @short_description: Base class for all CPUs 44 */ 45 46 #define TYPE_CPU "cpu" 47 48 /* Since this macro is used a lot in hot code paths and in conjunction with 49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 50 * an unchecked cast. 51 */ 52 #define CPU(obj) ((CPUState *)(obj)) 53 54 /* 55 * The class checkers bring in CPU_GET_CLASS() which is potentially 56 * expensive given the eventual call to 57 * object_class_dynamic_cast_assert(). Because of this the CPUState 58 * has a cached value for the class in cs->cc which is set up in 59 * cpu_exec_realizefn() for use in hot code paths. 60 */ 61 typedef struct CPUClass CPUClass; 62 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 63 TYPE_CPU) 64 65 /** 66 * OBJECT_DECLARE_CPU_TYPE: 67 * @CpuInstanceType: instance struct name 68 * @CpuClassType: class struct name 69 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 70 * 71 * This macro is typically used in "cpu-qom.h" header file, and will: 72 * 73 * - create the typedefs for the CPU object and class structs 74 * - register the type for use with g_autoptr 75 * - provide three standard type cast functions 76 * 77 * The object struct and class struct need to be declared manually. 78 */ 79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 80 typedef struct ArchCPU CpuInstanceType; \ 81 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 82 83 typedef enum MMUAccessType { 84 MMU_DATA_LOAD = 0, 85 MMU_DATA_STORE = 1, 86 MMU_INST_FETCH = 2 87 } MMUAccessType; 88 89 typedef struct CPUWatchpoint CPUWatchpoint; 90 91 /* see tcg-cpu-ops.h */ 92 struct TCGCPUOps; 93 94 /* see accel-cpu.h */ 95 struct AccelCPUClass; 96 97 /* see sysemu-cpu-ops.h */ 98 struct SysemuCPUOps; 99 100 /** 101 * CPUClass: 102 * @class_by_name: Callback to map -cpu command line model name to an 103 * instantiatable CPU type. 104 * @parse_features: Callback to parse command line arguments. 105 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 106 * @has_work: Callback for checking if there is work to do. 107 * @memory_rw_debug: Callback for GDB memory access. 108 * @dump_state: Callback for dumping state. 109 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 110 * @set_pc: Callback for setting the Program Counter register. This 111 * should have the semantics used by the target architecture when 112 * setting the PC from a source such as an ELF file entry point; 113 * for example on Arm it will also set the Thumb mode bit based 114 * on the least significant bit of the new PC value. 115 * If the target behaviour here is anything other than "set 116 * the PC register to the value passed in" then the target must 117 * also implement the synchronize_from_tb hook. 118 * @gdb_read_register: Callback for letting GDB read a register. 119 * @gdb_write_register: Callback for letting GDB write a register. 120 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 121 * breakpoint. Used by AVR to handle a gdb mis-feature with 122 * its Harvard architecture split code and data. 123 * @gdb_num_core_regs: Number of core registers accessible to GDB. 124 * @gdb_core_xml_file: File name for core registers GDB XML description. 125 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 126 * before the insn which triggers a watchpoint rather than after it. 127 * @gdb_arch_name: Optional callback that returns the architecture name known 128 * to GDB. The caller must free the returned string with g_free. 129 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 130 * gdb stub. Returns a pointer to the XML contents for the specified XML file 131 * or NULL if the CPU doesn't have a dynamically generated content for it. 132 * @disas_set_info: Setup architecture specific components of disassembly info 133 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 134 * address before attempting to match it against watchpoints. 135 * @deprecation_note: If this CPUClass is deprecated, this field provides 136 * related information. 137 * 138 * Represents a CPU family or model. 139 */ 140 struct CPUClass { 141 /*< private >*/ 142 DeviceClass parent_class; 143 /*< public >*/ 144 145 ObjectClass *(*class_by_name)(const char *cpu_model); 146 void (*parse_features)(const char *typename, char *str, Error **errp); 147 148 bool (*has_work)(CPUState *cpu); 149 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 150 uint8_t *buf, int len, bool is_write); 151 void (*dump_state)(CPUState *cpu, FILE *, int flags); 152 int64_t (*get_arch_id)(CPUState *cpu); 153 void (*set_pc)(CPUState *cpu, vaddr value); 154 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 155 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 156 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 157 158 const char *gdb_core_xml_file; 159 gchar * (*gdb_arch_name)(CPUState *cpu); 160 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 161 162 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 163 164 const char *deprecation_note; 165 struct AccelCPUClass *accel_cpu; 166 167 /* when system emulation is not available, this pointer is NULL */ 168 const struct SysemuCPUOps *sysemu_ops; 169 170 /* when TCG is not available, this pointer is NULL */ 171 const struct TCGCPUOps *tcg_ops; 172 173 /* 174 * if not NULL, this is called in order for the CPUClass to initialize 175 * class data that depends on the accelerator, see accel/accel-common.c. 176 */ 177 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 178 179 /* 180 * Keep non-pointer data at the end to minimize holes. 181 */ 182 int reset_dump_flags; 183 int gdb_num_core_regs; 184 bool gdb_stop_before_watchpoint; 185 }; 186 187 /* 188 * Low 16 bits: number of cycles left, used only in icount mode. 189 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 190 * for this CPU and return to its top level loop (even in non-icount mode). 191 * This allows a single read-compare-cbranch-write sequence to test 192 * for both decrementer underflow and exceptions. 193 */ 194 typedef union IcountDecr { 195 uint32_t u32; 196 struct { 197 #if HOST_BIG_ENDIAN 198 uint16_t high; 199 uint16_t low; 200 #else 201 uint16_t low; 202 uint16_t high; 203 #endif 204 } u16; 205 } IcountDecr; 206 207 typedef struct CPUBreakpoint { 208 vaddr pc; 209 int flags; /* BP_* */ 210 QTAILQ_ENTRY(CPUBreakpoint) entry; 211 } CPUBreakpoint; 212 213 struct CPUWatchpoint { 214 vaddr vaddr; 215 vaddr len; 216 vaddr hitaddr; 217 MemTxAttrs hitattrs; 218 int flags; /* BP_* */ 219 QTAILQ_ENTRY(CPUWatchpoint) entry; 220 }; 221 222 #ifdef CONFIG_PLUGIN 223 /* 224 * For plugins we sometime need to save the resolved iotlb data before 225 * the memory regions get moved around by io_writex. 226 */ 227 typedef struct SavedIOTLB { 228 hwaddr addr; 229 MemoryRegionSection *section; 230 hwaddr mr_offset; 231 } SavedIOTLB; 232 #endif 233 234 struct KVMState; 235 struct kvm_run; 236 237 struct hax_vcpu_state; 238 struct hvf_vcpu_state; 239 240 #define TB_JMP_CACHE_BITS 12 241 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 242 243 /* work queue */ 244 245 /* The union type allows passing of 64 bit target pointers on 32 bit 246 * hosts in a single parameter 247 */ 248 typedef union { 249 int host_int; 250 unsigned long host_ulong; 251 void *host_ptr; 252 vaddr target_ptr; 253 } run_on_cpu_data; 254 255 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 256 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 257 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 258 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 259 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 260 261 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 262 263 struct qemu_work_item; 264 265 #define CPU_UNSET_NUMA_NODE_ID -1 266 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 267 268 /** 269 * CPUState: 270 * @cpu_index: CPU index (informative). 271 * @cluster_index: Identifies which cluster this CPU is in. 272 * For boards which don't define clusters or for "loose" CPUs not assigned 273 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 274 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 275 * QOM parent. 276 * @tcg_cflags: Pre-computed cflags for this cpu. 277 * @nr_cores: Number of cores within this CPU package. 278 * @nr_threads: Number of threads within this CPU. 279 * @running: #true if CPU is currently running (lockless). 280 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 281 * valid under cpu_list_lock. 282 * @created: Indicates whether the CPU thread has been successfully created. 283 * @interrupt_request: Indicates a pending interrupt request. 284 * @halted: Nonzero if the CPU is in suspended state. 285 * @stop: Indicates a pending stop request. 286 * @stopped: Indicates the CPU has been artificially stopped. 287 * @unplug: Indicates a pending CPU unplug request. 288 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 289 * @singlestep_enabled: Flags for single-stepping. 290 * @icount_extra: Instructions until next timer event. 291 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 292 * requires that IO only be performed on the last instruction of a TB 293 * so that interrupts take effect immediately. 294 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 295 * AddressSpaces this CPU has) 296 * @num_ases: number of CPUAddressSpaces in @cpu_ases 297 * @as: Pointer to the first AddressSpace, for the convenience of targets which 298 * only have a single AddressSpace 299 * @env_ptr: Pointer to subclass-specific CPUArchState field. 300 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 301 * @gdb_regs: Additional GDB registers. 302 * @gdb_num_regs: Number of total registers accessible to GDB. 303 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 304 * @next_cpu: Next CPU sharing TB cache. 305 * @opaque: User data. 306 * @mem_io_pc: Host Program Counter at which the memory was accessed. 307 * @kvm_fd: vCPU file descriptor for KVM. 308 * @work_mutex: Lock to prevent multiple access to @work_list. 309 * @work_list: List of pending asynchronous work. 310 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 311 * to @trace_dstate). 312 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 313 * @plugin_mask: Plugin event bitmap. Modified only via async work. 314 * @ignore_memory_transaction_failures: Cached copy of the MachineState 315 * flag of the same name: allows the board to suppress calling of the 316 * CPU do_transaction_failed hook function. 317 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 318 * ring is enabled. 319 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 320 * dirty ring structure. 321 * 322 * State of one CPU core or thread. 323 */ 324 struct CPUState { 325 /*< private >*/ 326 DeviceState parent_obj; 327 /* cache to avoid expensive CPU_GET_CLASS */ 328 CPUClass *cc; 329 /*< public >*/ 330 331 int nr_cores; 332 int nr_threads; 333 334 struct QemuThread *thread; 335 #ifdef _WIN32 336 HANDLE hThread; 337 #endif 338 int thread_id; 339 bool running, has_waiter; 340 struct QemuCond *halt_cond; 341 bool thread_kicked; 342 bool created; 343 bool stop; 344 bool stopped; 345 346 /* Should CPU start in powered-off state? */ 347 bool start_powered_off; 348 349 bool unplug; 350 bool crash_occurred; 351 bool exit_request; 352 bool in_exclusive_context; 353 uint32_t cflags_next_tb; 354 /* updates protected by BQL */ 355 uint32_t interrupt_request; 356 int singlestep_enabled; 357 int64_t icount_budget; 358 int64_t icount_extra; 359 uint64_t random_seed; 360 sigjmp_buf jmp_env; 361 362 QemuMutex work_mutex; 363 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 364 365 CPUAddressSpace *cpu_ases; 366 int num_ases; 367 AddressSpace *as; 368 MemoryRegion *memory; 369 370 CPUArchState *env_ptr; 371 IcountDecr *icount_decr_ptr; 372 373 /* Accessed in parallel; all accesses must be atomic */ 374 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 375 376 struct GDBRegisterState *gdb_regs; 377 int gdb_num_regs; 378 int gdb_num_g_regs; 379 QTAILQ_ENTRY(CPUState) node; 380 381 /* ice debug support */ 382 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 383 384 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 385 CPUWatchpoint *watchpoint_hit; 386 387 void *opaque; 388 389 /* In order to avoid passing too many arguments to the MMIO helpers, 390 * we store some rarely used information in the CPU context. 391 */ 392 uintptr_t mem_io_pc; 393 394 /* Only used in KVM */ 395 int kvm_fd; 396 struct KVMState *kvm_state; 397 struct kvm_run *kvm_run; 398 struct kvm_dirty_gfn *kvm_dirty_gfns; 399 uint32_t kvm_fetch_index; 400 uint64_t dirty_pages; 401 402 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 403 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 404 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 405 406 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 407 408 #ifdef CONFIG_PLUGIN 409 GArray *plugin_mem_cbs; 410 /* saved iotlb data from io_writex */ 411 SavedIOTLB saved_iotlb; 412 #endif 413 414 /* TODO Move common fields from CPUArchState here. */ 415 int cpu_index; 416 int cluster_index; 417 uint32_t tcg_cflags; 418 uint32_t halted; 419 uint32_t can_do_io; 420 int32_t exception_index; 421 422 /* shared by kvm, hax and hvf */ 423 bool vcpu_dirty; 424 425 /* Used to keep track of an outstanding cpu throttle thread for migration 426 * autoconverge 427 */ 428 bool throttle_thread_scheduled; 429 430 /* 431 * Sleep throttle_us_per_full microseconds once dirty ring is full 432 * if dirty page rate limit is enabled. 433 */ 434 int64_t throttle_us_per_full; 435 436 bool ignore_memory_transaction_failures; 437 438 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 439 bool prctl_unalign_sigbus; 440 441 struct hax_vcpu_state *hax_vcpu; 442 443 struct hvf_vcpu_state *hvf; 444 445 /* track IOMMUs whose translations we've cached in the TCG TLB */ 446 GArray *iommu_notifiers; 447 }; 448 449 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 450 extern CPUTailQ cpus; 451 452 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 453 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 454 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 455 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 456 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 457 458 extern __thread CPUState *current_cpu; 459 460 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 461 { 462 unsigned int i; 463 464 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 465 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 466 } 467 } 468 469 /** 470 * qemu_tcg_mttcg_enabled: 471 * Check whether we are running MultiThread TCG or not. 472 * 473 * Returns: %true if we are in MTTCG mode %false otherwise. 474 */ 475 extern bool mttcg_enabled; 476 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 477 478 /** 479 * cpu_paging_enabled: 480 * @cpu: The CPU whose state is to be inspected. 481 * 482 * Returns: %true if paging is enabled, %false otherwise. 483 */ 484 bool cpu_paging_enabled(const CPUState *cpu); 485 486 /** 487 * cpu_get_memory_mapping: 488 * @cpu: The CPU whose memory mappings are to be obtained. 489 * @list: Where to write the memory mappings to. 490 * @errp: Pointer for reporting an #Error. 491 */ 492 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 493 Error **errp); 494 495 #if !defined(CONFIG_USER_ONLY) 496 497 /** 498 * cpu_write_elf64_note: 499 * @f: pointer to a function that writes memory to a file 500 * @cpu: The CPU whose memory is to be dumped 501 * @cpuid: ID number of the CPU 502 * @opaque: pointer to the CPUState struct 503 */ 504 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 505 int cpuid, void *opaque); 506 507 /** 508 * cpu_write_elf64_qemunote: 509 * @f: pointer to a function that writes memory to a file 510 * @cpu: The CPU whose memory is to be dumped 511 * @cpuid: ID number of the CPU 512 * @opaque: pointer to the CPUState struct 513 */ 514 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 515 void *opaque); 516 517 /** 518 * cpu_write_elf32_note: 519 * @f: pointer to a function that writes memory to a file 520 * @cpu: The CPU whose memory is to be dumped 521 * @cpuid: ID number of the CPU 522 * @opaque: pointer to the CPUState struct 523 */ 524 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 525 int cpuid, void *opaque); 526 527 /** 528 * cpu_write_elf32_qemunote: 529 * @f: pointer to a function that writes memory to a file 530 * @cpu: The CPU whose memory is to be dumped 531 * @cpuid: ID number of the CPU 532 * @opaque: pointer to the CPUState struct 533 */ 534 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 535 void *opaque); 536 537 /** 538 * cpu_get_crash_info: 539 * @cpu: The CPU to get crash information for 540 * 541 * Gets the previously saved crash information. 542 * Caller is responsible for freeing the data. 543 */ 544 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 545 546 #endif /* !CONFIG_USER_ONLY */ 547 548 /** 549 * CPUDumpFlags: 550 * @CPU_DUMP_CODE: 551 * @CPU_DUMP_FPU: dump FPU register state, not just integer 552 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 553 */ 554 enum CPUDumpFlags { 555 CPU_DUMP_CODE = 0x00010000, 556 CPU_DUMP_FPU = 0x00020000, 557 CPU_DUMP_CCOP = 0x00040000, 558 }; 559 560 /** 561 * cpu_dump_state: 562 * @cpu: The CPU whose state is to be dumped. 563 * @f: If non-null, dump to this stream, else to current print sink. 564 * 565 * Dumps CPU state. 566 */ 567 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 568 569 #ifndef CONFIG_USER_ONLY 570 /** 571 * cpu_get_phys_page_attrs_debug: 572 * @cpu: The CPU to obtain the physical page address for. 573 * @addr: The virtual address. 574 * @attrs: Updated on return with the memory transaction attributes to use 575 * for this access. 576 * 577 * Obtains the physical page corresponding to a virtual one, together 578 * with the corresponding memory transaction attributes to use for the access. 579 * Use it only for debugging because no protection checks are done. 580 * 581 * Returns: Corresponding physical page address or -1 if no page found. 582 */ 583 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 584 MemTxAttrs *attrs); 585 586 /** 587 * cpu_get_phys_page_debug: 588 * @cpu: The CPU to obtain the physical page address for. 589 * @addr: The virtual address. 590 * 591 * Obtains the physical page corresponding to a virtual one. 592 * Use it only for debugging because no protection checks are done. 593 * 594 * Returns: Corresponding physical page address or -1 if no page found. 595 */ 596 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 597 598 /** cpu_asidx_from_attrs: 599 * @cpu: CPU 600 * @attrs: memory transaction attributes 601 * 602 * Returns the address space index specifying the CPU AddressSpace 603 * to use for a memory access with the given transaction attributes. 604 */ 605 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 606 607 /** 608 * cpu_virtio_is_big_endian: 609 * @cpu: CPU 610 611 * Returns %true if a CPU which supports runtime configurable endianness 612 * is currently big-endian. 613 */ 614 bool cpu_virtio_is_big_endian(CPUState *cpu); 615 616 #endif /* CONFIG_USER_ONLY */ 617 618 /** 619 * cpu_list_add: 620 * @cpu: The CPU to be added to the list of CPUs. 621 */ 622 void cpu_list_add(CPUState *cpu); 623 624 /** 625 * cpu_list_remove: 626 * @cpu: The CPU to be removed from the list of CPUs. 627 */ 628 void cpu_list_remove(CPUState *cpu); 629 630 /** 631 * cpu_reset: 632 * @cpu: The CPU whose state is to be reset. 633 */ 634 void cpu_reset(CPUState *cpu); 635 636 /** 637 * cpu_class_by_name: 638 * @typename: The CPU base type. 639 * @cpu_model: The model string without any parameters. 640 * 641 * Looks up a CPU #ObjectClass matching name @cpu_model. 642 * 643 * Returns: A #CPUClass or %NULL if not matching class is found. 644 */ 645 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 646 647 /** 648 * cpu_create: 649 * @typename: The CPU type. 650 * 651 * Instantiates a CPU and realizes the CPU. 652 * 653 * Returns: A #CPUState or %NULL if an error occurred. 654 */ 655 CPUState *cpu_create(const char *typename); 656 657 /** 658 * parse_cpu_option: 659 * @cpu_option: The -cpu option including optional parameters. 660 * 661 * processes optional parameters and registers them as global properties 662 * 663 * Returns: type of CPU to create or prints error and terminates process 664 * if an error occurred. 665 */ 666 const char *parse_cpu_option(const char *cpu_option); 667 668 /** 669 * cpu_has_work: 670 * @cpu: The vCPU to check. 671 * 672 * Checks whether the CPU has work to do. 673 * 674 * Returns: %true if the CPU has work, %false otherwise. 675 */ 676 static inline bool cpu_has_work(CPUState *cpu) 677 { 678 CPUClass *cc = CPU_GET_CLASS(cpu); 679 680 g_assert(cc->has_work); 681 return cc->has_work(cpu); 682 } 683 684 /** 685 * qemu_cpu_is_self: 686 * @cpu: The vCPU to check against. 687 * 688 * Checks whether the caller is executing on the vCPU thread. 689 * 690 * Returns: %true if called from @cpu's thread, %false otherwise. 691 */ 692 bool qemu_cpu_is_self(CPUState *cpu); 693 694 /** 695 * qemu_cpu_kick: 696 * @cpu: The vCPU to kick. 697 * 698 * Kicks @cpu's thread. 699 */ 700 void qemu_cpu_kick(CPUState *cpu); 701 702 /** 703 * cpu_is_stopped: 704 * @cpu: The CPU to check. 705 * 706 * Checks whether the CPU is stopped. 707 * 708 * Returns: %true if run state is not running or if artificially stopped; 709 * %false otherwise. 710 */ 711 bool cpu_is_stopped(CPUState *cpu); 712 713 /** 714 * do_run_on_cpu: 715 * @cpu: The vCPU to run on. 716 * @func: The function to be executed. 717 * @data: Data to pass to the function. 718 * @mutex: Mutex to release while waiting for @func to run. 719 * 720 * Used internally in the implementation of run_on_cpu. 721 */ 722 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 723 QemuMutex *mutex); 724 725 /** 726 * run_on_cpu: 727 * @cpu: The vCPU to run on. 728 * @func: The function to be executed. 729 * @data: Data to pass to the function. 730 * 731 * Schedules the function @func for execution on the vCPU @cpu. 732 */ 733 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 734 735 /** 736 * async_run_on_cpu: 737 * @cpu: The vCPU to run on. 738 * @func: The function to be executed. 739 * @data: Data to pass to the function. 740 * 741 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 742 */ 743 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 744 745 /** 746 * async_safe_run_on_cpu: 747 * @cpu: The vCPU to run on. 748 * @func: The function to be executed. 749 * @data: Data to pass to the function. 750 * 751 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 752 * while all other vCPUs are sleeping. 753 * 754 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 755 * BQL. 756 */ 757 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 758 759 /** 760 * cpu_in_exclusive_context() 761 * @cpu: The vCPU to check 762 * 763 * Returns true if @cpu is an exclusive context, for example running 764 * something which has previously been queued via async_safe_run_on_cpu(). 765 */ 766 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 767 { 768 return cpu->in_exclusive_context; 769 } 770 771 /** 772 * qemu_get_cpu: 773 * @index: The CPUState@cpu_index value of the CPU to obtain. 774 * 775 * Gets a CPU matching @index. 776 * 777 * Returns: The CPU or %NULL if there is no matching CPU. 778 */ 779 CPUState *qemu_get_cpu(int index); 780 781 /** 782 * cpu_exists: 783 * @id: Guest-exposed CPU ID to lookup. 784 * 785 * Search for CPU with specified ID. 786 * 787 * Returns: %true - CPU is found, %false - CPU isn't found. 788 */ 789 bool cpu_exists(int64_t id); 790 791 /** 792 * cpu_by_arch_id: 793 * @id: Guest-exposed CPU ID of the CPU to obtain. 794 * 795 * Get a CPU with matching @id. 796 * 797 * Returns: The CPU or %NULL if there is no matching CPU. 798 */ 799 CPUState *cpu_by_arch_id(int64_t id); 800 801 /** 802 * cpu_interrupt: 803 * @cpu: The CPU to set an interrupt on. 804 * @mask: The interrupts to set. 805 * 806 * Invokes the interrupt handler. 807 */ 808 809 void cpu_interrupt(CPUState *cpu, int mask); 810 811 /** 812 * cpu_set_pc: 813 * @cpu: The CPU to set the program counter for. 814 * @addr: Program counter value. 815 * 816 * Sets the program counter for a CPU. 817 */ 818 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 819 { 820 CPUClass *cc = CPU_GET_CLASS(cpu); 821 822 cc->set_pc(cpu, addr); 823 } 824 825 /** 826 * cpu_reset_interrupt: 827 * @cpu: The CPU to clear the interrupt on. 828 * @mask: The interrupt mask to clear. 829 * 830 * Resets interrupts on the vCPU @cpu. 831 */ 832 void cpu_reset_interrupt(CPUState *cpu, int mask); 833 834 /** 835 * cpu_exit: 836 * @cpu: The CPU to exit. 837 * 838 * Requests the CPU @cpu to exit execution. 839 */ 840 void cpu_exit(CPUState *cpu); 841 842 /** 843 * cpu_resume: 844 * @cpu: The CPU to resume. 845 * 846 * Resumes CPU, i.e. puts CPU into runnable state. 847 */ 848 void cpu_resume(CPUState *cpu); 849 850 /** 851 * cpu_remove_sync: 852 * @cpu: The CPU to remove. 853 * 854 * Requests the CPU to be removed and waits till it is removed. 855 */ 856 void cpu_remove_sync(CPUState *cpu); 857 858 /** 859 * process_queued_cpu_work() - process all items on CPU work queue 860 * @cpu: The CPU which work queue to process. 861 */ 862 void process_queued_cpu_work(CPUState *cpu); 863 864 /** 865 * cpu_exec_start: 866 * @cpu: The CPU for the current thread. 867 * 868 * Record that a CPU has started execution and can be interrupted with 869 * cpu_exit. 870 */ 871 void cpu_exec_start(CPUState *cpu); 872 873 /** 874 * cpu_exec_end: 875 * @cpu: The CPU for the current thread. 876 * 877 * Record that a CPU has stopped execution and exclusive sections 878 * can be executed without interrupting it. 879 */ 880 void cpu_exec_end(CPUState *cpu); 881 882 /** 883 * start_exclusive: 884 * 885 * Wait for a concurrent exclusive section to end, and then start 886 * a section of work that is run while other CPUs are not running 887 * between cpu_exec_start and cpu_exec_end. CPUs that are running 888 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 889 * during the exclusive section go to sleep until this CPU calls 890 * end_exclusive. 891 */ 892 void start_exclusive(void); 893 894 /** 895 * end_exclusive: 896 * 897 * Concludes an exclusive execution section started by start_exclusive. 898 */ 899 void end_exclusive(void); 900 901 /** 902 * qemu_init_vcpu: 903 * @cpu: The vCPU to initialize. 904 * 905 * Initializes a vCPU. 906 */ 907 void qemu_init_vcpu(CPUState *cpu); 908 909 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 910 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 911 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 912 913 /** 914 * cpu_single_step: 915 * @cpu: CPU to the flags for. 916 * @enabled: Flags to enable. 917 * 918 * Enables or disables single-stepping for @cpu. 919 */ 920 void cpu_single_step(CPUState *cpu, int enabled); 921 922 /* Breakpoint/watchpoint flags */ 923 #define BP_MEM_READ 0x01 924 #define BP_MEM_WRITE 0x02 925 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 926 #define BP_STOP_BEFORE_ACCESS 0x04 927 /* 0x08 currently unused */ 928 #define BP_GDB 0x10 929 #define BP_CPU 0x20 930 #define BP_ANY (BP_GDB | BP_CPU) 931 #define BP_WATCHPOINT_HIT_READ 0x40 932 #define BP_WATCHPOINT_HIT_WRITE 0x80 933 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 934 935 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 936 CPUBreakpoint **breakpoint); 937 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 938 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 939 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 940 941 /* Return true if PC matches an installed breakpoint. */ 942 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 943 { 944 CPUBreakpoint *bp; 945 946 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 947 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 948 if (bp->pc == pc && (bp->flags & mask)) { 949 return true; 950 } 951 } 952 } 953 return false; 954 } 955 956 #ifdef CONFIG_USER_ONLY 957 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 958 int flags, CPUWatchpoint **watchpoint) 959 { 960 return -ENOSYS; 961 } 962 963 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 964 vaddr len, int flags) 965 { 966 return -ENOSYS; 967 } 968 969 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 970 CPUWatchpoint *wp) 971 { 972 } 973 974 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 975 { 976 } 977 978 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 979 MemTxAttrs atr, int fl, uintptr_t ra) 980 { 981 } 982 983 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 984 vaddr addr, vaddr len) 985 { 986 return 0; 987 } 988 #else 989 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 990 int flags, CPUWatchpoint **watchpoint); 991 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 992 vaddr len, int flags); 993 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 994 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 995 996 /** 997 * cpu_check_watchpoint: 998 * @cpu: cpu context 999 * @addr: guest virtual address 1000 * @len: access length 1001 * @attrs: memory access attributes 1002 * @flags: watchpoint access type 1003 * @ra: unwind return address 1004 * 1005 * Check for a watchpoint hit in [addr, addr+len) of the type 1006 * specified by @flags. Exit via exception with a hit. 1007 */ 1008 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1009 MemTxAttrs attrs, int flags, uintptr_t ra); 1010 1011 /** 1012 * cpu_watchpoint_address_matches: 1013 * @cpu: cpu context 1014 * @addr: guest virtual address 1015 * @len: access length 1016 * 1017 * Return the watchpoint flags that apply to [addr, addr+len). 1018 * If no watchpoint is registered for the range, the result is 0. 1019 */ 1020 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1021 #endif 1022 1023 /** 1024 * cpu_get_address_space: 1025 * @cpu: CPU to get address space from 1026 * @asidx: index identifying which address space to get 1027 * 1028 * Return the requested address space of this CPU. @asidx 1029 * specifies which address space to read. 1030 */ 1031 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1032 1033 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1034 G_GNUC_PRINTF(2, 3); 1035 1036 /* $(top_srcdir)/cpu.c */ 1037 void cpu_class_init_props(DeviceClass *dc); 1038 void cpu_exec_initfn(CPUState *cpu); 1039 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1040 void cpu_exec_unrealizefn(CPUState *cpu); 1041 1042 /** 1043 * target_words_bigendian: 1044 * Returns true if the (default) endianness of the target is big endian, 1045 * false otherwise. Note that in target-specific code, you can use 1046 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1047 * code should normally never need to know about the endianness of the 1048 * target, so please do *not* use this function unless you know very well 1049 * what you are doing! 1050 */ 1051 bool target_words_bigendian(void); 1052 1053 void page_size_init(void); 1054 1055 #ifdef NEED_CPU_H 1056 1057 #ifdef CONFIG_SOFTMMU 1058 1059 extern const VMStateDescription vmstate_cpu_common; 1060 1061 #define VMSTATE_CPU() { \ 1062 .name = "parent_obj", \ 1063 .size = sizeof(CPUState), \ 1064 .vmsd = &vmstate_cpu_common, \ 1065 .flags = VMS_STRUCT, \ 1066 .offset = 0, \ 1067 } 1068 #endif /* CONFIG_SOFTMMU */ 1069 1070 #endif /* NEED_CPU_H */ 1071 1072 #define UNASSIGNED_CPU_INDEX -1 1073 #define UNASSIGNED_CLUSTER_INDEX -1 1074 1075 #endif 1076