1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /** 84 * CPUClass: 85 * @class_by_name: Callback to map -cpu command line model name to an 86 * instantiatable CPU type. 87 * @parse_features: Callback to parse command line arguments. 88 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 89 * @has_work: Callback for checking if there is work to do. 90 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 91 * runtime configurable endianness is currently big-endian. Non-configurable 92 * CPUs can use the default implementation of this method. This method should 93 * not be used by any callers other than the pre-1.0 virtio devices. 94 * @memory_rw_debug: Callback for GDB memory access. 95 * @dump_state: Callback for dumping state. 96 * @dump_statistics: Callback for dumping statistics. 97 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 98 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 99 * @get_memory_mapping: Callback for obtaining the memory mappings. 100 * @set_pc: Callback for setting the Program Counter register. This 101 * should have the semantics used by the target architecture when 102 * setting the PC from a source such as an ELF file entry point; 103 * for example on Arm it will also set the Thumb mode bit based 104 * on the least significant bit of the new PC value. 105 * If the target behaviour here is anything other than "set 106 * the PC register to the value passed in" then the target must 107 * also implement the synchronize_from_tb hook. 108 * @get_phys_page_debug: Callback for obtaining a physical address. 109 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 110 * associated memory transaction attributes to use for the access. 111 * CPUs which use memory transaction attributes should implement this 112 * instead of get_phys_page_debug. 113 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 114 * a memory access with the specified memory transaction attributes. 115 * @gdb_read_register: Callback for letting GDB read a register. 116 * @gdb_write_register: Callback for letting GDB write a register. 117 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 118 * 64-bit VM coredump. 119 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 120 * note to a 32-bit VM coredump. 121 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 122 * 32-bit VM coredump. 123 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 124 * note to a 32-bit VM coredump. 125 * @vmsd: State description for migration. 126 * @gdb_num_core_regs: Number of core registers accessible to GDB. 127 * @gdb_core_xml_file: File name for core registers GDB XML description. 128 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 129 * before the insn which triggers a watchpoint rather than after it. 130 * @gdb_arch_name: Optional callback that returns the architecture name known 131 * to GDB. The caller must free the returned string with g_free. 132 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 133 * gdb stub. Returns a pointer to the XML contents for the specified XML file 134 * or NULL if the CPU doesn't have a dynamically generated content for it. 135 * @disas_set_info: Setup architecture specific components of disassembly info 136 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 137 * address before attempting to match it against watchpoints. 138 * @deprecation_note: If this CPUClass is deprecated, this field provides 139 * related information. 140 * 141 * Represents a CPU family or model. 142 */ 143 struct CPUClass { 144 /*< private >*/ 145 DeviceClass parent_class; 146 /*< public >*/ 147 148 ObjectClass *(*class_by_name)(const char *cpu_model); 149 void (*parse_features)(const char *typename, char *str, Error **errp); 150 151 int reset_dump_flags; 152 bool (*has_work)(CPUState *cpu); 153 bool (*virtio_is_big_endian)(CPUState *cpu); 154 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 155 uint8_t *buf, int len, bool is_write); 156 void (*dump_state)(CPUState *cpu, FILE *, int flags); 157 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 158 void (*dump_statistics)(CPUState *cpu, int flags); 159 int64_t (*get_arch_id)(CPUState *cpu); 160 bool (*get_paging_enabled)(const CPUState *cpu); 161 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 162 Error **errp); 163 void (*set_pc)(CPUState *cpu, vaddr value); 164 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 165 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 166 MemTxAttrs *attrs); 167 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 168 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 169 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 170 171 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 172 int cpuid, void *opaque); 173 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 174 void *opaque); 175 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 176 int cpuid, void *opaque); 177 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 178 void *opaque); 179 180 const VMStateDescription *vmsd; 181 const char *gdb_core_xml_file; 182 gchar * (*gdb_arch_name)(CPUState *cpu); 183 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 184 185 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 186 187 const char *deprecation_note; 188 /* Keep non-pointer data at the end to minimize holes. */ 189 int gdb_num_core_regs; 190 bool gdb_stop_before_watchpoint; 191 struct AccelCPUClass *accel_cpu; 192 193 /* when TCG is not available, this pointer is NULL */ 194 struct TCGCPUOps *tcg_ops; 195 }; 196 197 /* 198 * Low 16 bits: number of cycles left, used only in icount mode. 199 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 200 * for this CPU and return to its top level loop (even in non-icount mode). 201 * This allows a single read-compare-cbranch-write sequence to test 202 * for both decrementer underflow and exceptions. 203 */ 204 typedef union IcountDecr { 205 uint32_t u32; 206 struct { 207 #ifdef HOST_WORDS_BIGENDIAN 208 uint16_t high; 209 uint16_t low; 210 #else 211 uint16_t low; 212 uint16_t high; 213 #endif 214 } u16; 215 } IcountDecr; 216 217 typedef struct CPUBreakpoint { 218 vaddr pc; 219 int flags; /* BP_* */ 220 QTAILQ_ENTRY(CPUBreakpoint) entry; 221 } CPUBreakpoint; 222 223 struct CPUWatchpoint { 224 vaddr vaddr; 225 vaddr len; 226 vaddr hitaddr; 227 MemTxAttrs hitattrs; 228 int flags; /* BP_* */ 229 QTAILQ_ENTRY(CPUWatchpoint) entry; 230 }; 231 232 #ifdef CONFIG_PLUGIN 233 /* 234 * For plugins we sometime need to save the resolved iotlb data before 235 * the memory regions get moved around by io_writex. 236 */ 237 typedef struct SavedIOTLB { 238 hwaddr addr; 239 MemoryRegionSection *section; 240 hwaddr mr_offset; 241 } SavedIOTLB; 242 #endif 243 244 struct KVMState; 245 struct kvm_run; 246 247 struct hax_vcpu_state; 248 249 #define TB_JMP_CACHE_BITS 12 250 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 251 252 /* work queue */ 253 254 /* The union type allows passing of 64 bit target pointers on 32 bit 255 * hosts in a single parameter 256 */ 257 typedef union { 258 int host_int; 259 unsigned long host_ulong; 260 void *host_ptr; 261 vaddr target_ptr; 262 } run_on_cpu_data; 263 264 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 265 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 266 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 267 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 268 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 269 270 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 271 272 struct qemu_work_item; 273 274 #define CPU_UNSET_NUMA_NODE_ID -1 275 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 276 277 /** 278 * CPUState: 279 * @cpu_index: CPU index (informative). 280 * @cluster_index: Identifies which cluster this CPU is in. 281 * For boards which don't define clusters or for "loose" CPUs not assigned 282 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 283 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 284 * QOM parent. 285 * @tcg_cflags: Pre-computed cflags for this cpu. 286 * @nr_cores: Number of cores within this CPU package. 287 * @nr_threads: Number of threads within this CPU. 288 * @running: #true if CPU is currently running (lockless). 289 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 290 * valid under cpu_list_lock. 291 * @created: Indicates whether the CPU thread has been successfully created. 292 * @interrupt_request: Indicates a pending interrupt request. 293 * @halted: Nonzero if the CPU is in suspended state. 294 * @stop: Indicates a pending stop request. 295 * @stopped: Indicates the CPU has been artificially stopped. 296 * @unplug: Indicates a pending CPU unplug request. 297 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 298 * @singlestep_enabled: Flags for single-stepping. 299 * @icount_extra: Instructions until next timer event. 300 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 301 * requires that IO only be performed on the last instruction of a TB 302 * so that interrupts take effect immediately. 303 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 304 * AddressSpaces this CPU has) 305 * @num_ases: number of CPUAddressSpaces in @cpu_ases 306 * @as: Pointer to the first AddressSpace, for the convenience of targets which 307 * only have a single AddressSpace 308 * @env_ptr: Pointer to subclass-specific CPUArchState field. 309 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 310 * @gdb_regs: Additional GDB registers. 311 * @gdb_num_regs: Number of total registers accessible to GDB. 312 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 313 * @next_cpu: Next CPU sharing TB cache. 314 * @opaque: User data. 315 * @mem_io_pc: Host Program Counter at which the memory was accessed. 316 * @kvm_fd: vCPU file descriptor for KVM. 317 * @work_mutex: Lock to prevent multiple access to @work_list. 318 * @work_list: List of pending asynchronous work. 319 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 320 * to @trace_dstate). 321 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 322 * @plugin_mask: Plugin event bitmap. Modified only via async work. 323 * @ignore_memory_transaction_failures: Cached copy of the MachineState 324 * flag of the same name: allows the board to suppress calling of the 325 * CPU do_transaction_failed hook function. 326 * 327 * State of one CPU core or thread. 328 */ 329 struct CPUState { 330 /*< private >*/ 331 DeviceState parent_obj; 332 /*< public >*/ 333 334 int nr_cores; 335 int nr_threads; 336 337 struct QemuThread *thread; 338 #ifdef _WIN32 339 HANDLE hThread; 340 #endif 341 int thread_id; 342 bool running, has_waiter; 343 struct QemuCond *halt_cond; 344 bool thread_kicked; 345 bool created; 346 bool stop; 347 bool stopped; 348 349 /* Should CPU start in powered-off state? */ 350 bool start_powered_off; 351 352 bool unplug; 353 bool crash_occurred; 354 bool exit_request; 355 bool in_exclusive_context; 356 uint32_t cflags_next_tb; 357 /* updates protected by BQL */ 358 uint32_t interrupt_request; 359 int singlestep_enabled; 360 int64_t icount_budget; 361 int64_t icount_extra; 362 uint64_t random_seed; 363 sigjmp_buf jmp_env; 364 365 QemuMutex work_mutex; 366 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 367 368 CPUAddressSpace *cpu_ases; 369 int num_ases; 370 AddressSpace *as; 371 MemoryRegion *memory; 372 373 void *env_ptr; /* CPUArchState */ 374 IcountDecr *icount_decr_ptr; 375 376 /* Accessed in parallel; all accesses must be atomic */ 377 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 378 379 struct GDBRegisterState *gdb_regs; 380 int gdb_num_regs; 381 int gdb_num_g_regs; 382 QTAILQ_ENTRY(CPUState) node; 383 384 /* ice debug support */ 385 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 386 387 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 388 CPUWatchpoint *watchpoint_hit; 389 390 void *opaque; 391 392 /* In order to avoid passing too many arguments to the MMIO helpers, 393 * we store some rarely used information in the CPU context. 394 */ 395 uintptr_t mem_io_pc; 396 397 int kvm_fd; 398 struct KVMState *kvm_state; 399 struct kvm_run *kvm_run; 400 401 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 402 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 403 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 404 405 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 406 407 #ifdef CONFIG_PLUGIN 408 GArray *plugin_mem_cbs; 409 /* saved iotlb data from io_writex */ 410 SavedIOTLB saved_iotlb; 411 #endif 412 413 /* TODO Move common fields from CPUArchState here. */ 414 int cpu_index; 415 int cluster_index; 416 uint32_t tcg_cflags; 417 uint32_t halted; 418 uint32_t can_do_io; 419 int32_t exception_index; 420 421 /* shared by kvm, hax and hvf */ 422 bool vcpu_dirty; 423 424 /* Used to keep track of an outstanding cpu throttle thread for migration 425 * autoconverge 426 */ 427 bool throttle_thread_scheduled; 428 429 bool ignore_memory_transaction_failures; 430 431 struct hax_vcpu_state *hax_vcpu; 432 433 int hvf_fd; 434 435 /* track IOMMUs whose translations we've cached in the TCG TLB */ 436 GArray *iommu_notifiers; 437 }; 438 439 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 440 extern CPUTailQ cpus; 441 442 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 443 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 444 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 445 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 446 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 447 448 extern __thread CPUState *current_cpu; 449 450 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 451 { 452 unsigned int i; 453 454 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 455 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 456 } 457 } 458 459 /** 460 * qemu_tcg_mttcg_enabled: 461 * Check whether we are running MultiThread TCG or not. 462 * 463 * Returns: %true if we are in MTTCG mode %false otherwise. 464 */ 465 extern bool mttcg_enabled; 466 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 467 468 /** 469 * cpu_paging_enabled: 470 * @cpu: The CPU whose state is to be inspected. 471 * 472 * Returns: %true if paging is enabled, %false otherwise. 473 */ 474 bool cpu_paging_enabled(const CPUState *cpu); 475 476 /** 477 * cpu_get_memory_mapping: 478 * @cpu: The CPU whose memory mappings are to be obtained. 479 * @list: Where to write the memory mappings to. 480 * @errp: Pointer for reporting an #Error. 481 */ 482 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 483 Error **errp); 484 485 #if !defined(CONFIG_USER_ONLY) 486 487 /** 488 * cpu_write_elf64_note: 489 * @f: pointer to a function that writes memory to a file 490 * @cpu: The CPU whose memory is to be dumped 491 * @cpuid: ID number of the CPU 492 * @opaque: pointer to the CPUState struct 493 */ 494 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 495 int cpuid, void *opaque); 496 497 /** 498 * cpu_write_elf64_qemunote: 499 * @f: pointer to a function that writes memory to a file 500 * @cpu: The CPU whose memory is to be dumped 501 * @cpuid: ID number of the CPU 502 * @opaque: pointer to the CPUState struct 503 */ 504 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 505 void *opaque); 506 507 /** 508 * cpu_write_elf32_note: 509 * @f: pointer to a function that writes memory to a file 510 * @cpu: The CPU whose memory is to be dumped 511 * @cpuid: ID number of the CPU 512 * @opaque: pointer to the CPUState struct 513 */ 514 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 515 int cpuid, void *opaque); 516 517 /** 518 * cpu_write_elf32_qemunote: 519 * @f: pointer to a function that writes memory to a file 520 * @cpu: The CPU whose memory is to be dumped 521 * @cpuid: ID number of the CPU 522 * @opaque: pointer to the CPUState struct 523 */ 524 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 525 void *opaque); 526 527 /** 528 * cpu_get_crash_info: 529 * @cpu: The CPU to get crash information for 530 * 531 * Gets the previously saved crash information. 532 * Caller is responsible for freeing the data. 533 */ 534 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 535 536 #endif /* !CONFIG_USER_ONLY */ 537 538 /** 539 * CPUDumpFlags: 540 * @CPU_DUMP_CODE: 541 * @CPU_DUMP_FPU: dump FPU register state, not just integer 542 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 543 */ 544 enum CPUDumpFlags { 545 CPU_DUMP_CODE = 0x00010000, 546 CPU_DUMP_FPU = 0x00020000, 547 CPU_DUMP_CCOP = 0x00040000, 548 }; 549 550 /** 551 * cpu_dump_state: 552 * @cpu: The CPU whose state is to be dumped. 553 * @f: If non-null, dump to this stream, else to current print sink. 554 * 555 * Dumps CPU state. 556 */ 557 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 558 559 /** 560 * cpu_dump_statistics: 561 * @cpu: The CPU whose state is to be dumped. 562 * @flags: Flags what to dump. 563 * 564 * Dump CPU statistics to the current monitor if we have one, else to 565 * stdout. 566 */ 567 void cpu_dump_statistics(CPUState *cpu, int flags); 568 569 #ifndef CONFIG_USER_ONLY 570 /** 571 * cpu_get_phys_page_attrs_debug: 572 * @cpu: The CPU to obtain the physical page address for. 573 * @addr: The virtual address. 574 * @attrs: Updated on return with the memory transaction attributes to use 575 * for this access. 576 * 577 * Obtains the physical page corresponding to a virtual one, together 578 * with the corresponding memory transaction attributes to use for the access. 579 * Use it only for debugging because no protection checks are done. 580 * 581 * Returns: Corresponding physical page address or -1 if no page found. 582 */ 583 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 584 MemTxAttrs *attrs) 585 { 586 CPUClass *cc = CPU_GET_CLASS(cpu); 587 588 if (cc->get_phys_page_attrs_debug) { 589 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 590 } 591 /* Fallback for CPUs which don't implement the _attrs_ hook */ 592 *attrs = MEMTXATTRS_UNSPECIFIED; 593 return cc->get_phys_page_debug(cpu, addr); 594 } 595 596 /** 597 * cpu_get_phys_page_debug: 598 * @cpu: The CPU to obtain the physical page address for. 599 * @addr: The virtual address. 600 * 601 * Obtains the physical page corresponding to a virtual one. 602 * Use it only for debugging because no protection checks are done. 603 * 604 * Returns: Corresponding physical page address or -1 if no page found. 605 */ 606 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 607 { 608 MemTxAttrs attrs = {}; 609 610 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 611 } 612 613 /** cpu_asidx_from_attrs: 614 * @cpu: CPU 615 * @attrs: memory transaction attributes 616 * 617 * Returns the address space index specifying the CPU AddressSpace 618 * to use for a memory access with the given transaction attributes. 619 */ 620 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 621 { 622 CPUClass *cc = CPU_GET_CLASS(cpu); 623 int ret = 0; 624 625 if (cc->asidx_from_attrs) { 626 ret = cc->asidx_from_attrs(cpu, attrs); 627 assert(ret < cpu->num_ases && ret >= 0); 628 } 629 return ret; 630 } 631 632 #endif /* CONFIG_USER_ONLY */ 633 634 /** 635 * cpu_list_add: 636 * @cpu: The CPU to be added to the list of CPUs. 637 */ 638 void cpu_list_add(CPUState *cpu); 639 640 /** 641 * cpu_list_remove: 642 * @cpu: The CPU to be removed from the list of CPUs. 643 */ 644 void cpu_list_remove(CPUState *cpu); 645 646 /** 647 * cpu_reset: 648 * @cpu: The CPU whose state is to be reset. 649 */ 650 void cpu_reset(CPUState *cpu); 651 652 /** 653 * cpu_class_by_name: 654 * @typename: The CPU base type. 655 * @cpu_model: The model string without any parameters. 656 * 657 * Looks up a CPU #ObjectClass matching name @cpu_model. 658 * 659 * Returns: A #CPUClass or %NULL if not matching class is found. 660 */ 661 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 662 663 /** 664 * cpu_create: 665 * @typename: The CPU type. 666 * 667 * Instantiates a CPU and realizes the CPU. 668 * 669 * Returns: A #CPUState or %NULL if an error occurred. 670 */ 671 CPUState *cpu_create(const char *typename); 672 673 /** 674 * parse_cpu_option: 675 * @cpu_option: The -cpu option including optional parameters. 676 * 677 * processes optional parameters and registers them as global properties 678 * 679 * Returns: type of CPU to create or prints error and terminates process 680 * if an error occurred. 681 */ 682 const char *parse_cpu_option(const char *cpu_option); 683 684 /** 685 * cpu_has_work: 686 * @cpu: The vCPU to check. 687 * 688 * Checks whether the CPU has work to do. 689 * 690 * Returns: %true if the CPU has work, %false otherwise. 691 */ 692 static inline bool cpu_has_work(CPUState *cpu) 693 { 694 CPUClass *cc = CPU_GET_CLASS(cpu); 695 696 g_assert(cc->has_work); 697 return cc->has_work(cpu); 698 } 699 700 /** 701 * qemu_cpu_is_self: 702 * @cpu: The vCPU to check against. 703 * 704 * Checks whether the caller is executing on the vCPU thread. 705 * 706 * Returns: %true if called from @cpu's thread, %false otherwise. 707 */ 708 bool qemu_cpu_is_self(CPUState *cpu); 709 710 /** 711 * qemu_cpu_kick: 712 * @cpu: The vCPU to kick. 713 * 714 * Kicks @cpu's thread. 715 */ 716 void qemu_cpu_kick(CPUState *cpu); 717 718 /** 719 * cpu_is_stopped: 720 * @cpu: The CPU to check. 721 * 722 * Checks whether the CPU is stopped. 723 * 724 * Returns: %true if run state is not running or if artificially stopped; 725 * %false otherwise. 726 */ 727 bool cpu_is_stopped(CPUState *cpu); 728 729 /** 730 * do_run_on_cpu: 731 * @cpu: The vCPU to run on. 732 * @func: The function to be executed. 733 * @data: Data to pass to the function. 734 * @mutex: Mutex to release while waiting for @func to run. 735 * 736 * Used internally in the implementation of run_on_cpu. 737 */ 738 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 739 QemuMutex *mutex); 740 741 /** 742 * run_on_cpu: 743 * @cpu: The vCPU to run on. 744 * @func: The function to be executed. 745 * @data: Data to pass to the function. 746 * 747 * Schedules the function @func for execution on the vCPU @cpu. 748 */ 749 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 750 751 /** 752 * async_run_on_cpu: 753 * @cpu: The vCPU to run on. 754 * @func: The function to be executed. 755 * @data: Data to pass to the function. 756 * 757 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 758 */ 759 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 760 761 /** 762 * async_safe_run_on_cpu: 763 * @cpu: The vCPU to run on. 764 * @func: The function to be executed. 765 * @data: Data to pass to the function. 766 * 767 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 768 * while all other vCPUs are sleeping. 769 * 770 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 771 * BQL. 772 */ 773 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 774 775 /** 776 * cpu_in_exclusive_context() 777 * @cpu: The vCPU to check 778 * 779 * Returns true if @cpu is an exclusive context, for example running 780 * something which has previously been queued via async_safe_run_on_cpu(). 781 */ 782 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 783 { 784 return cpu->in_exclusive_context; 785 } 786 787 /** 788 * qemu_get_cpu: 789 * @index: The CPUState@cpu_index value of the CPU to obtain. 790 * 791 * Gets a CPU matching @index. 792 * 793 * Returns: The CPU or %NULL if there is no matching CPU. 794 */ 795 CPUState *qemu_get_cpu(int index); 796 797 /** 798 * cpu_exists: 799 * @id: Guest-exposed CPU ID to lookup. 800 * 801 * Search for CPU with specified ID. 802 * 803 * Returns: %true - CPU is found, %false - CPU isn't found. 804 */ 805 bool cpu_exists(int64_t id); 806 807 /** 808 * cpu_by_arch_id: 809 * @id: Guest-exposed CPU ID of the CPU to obtain. 810 * 811 * Get a CPU with matching @id. 812 * 813 * Returns: The CPU or %NULL if there is no matching CPU. 814 */ 815 CPUState *cpu_by_arch_id(int64_t id); 816 817 /** 818 * cpu_interrupt: 819 * @cpu: The CPU to set an interrupt on. 820 * @mask: The interrupts to set. 821 * 822 * Invokes the interrupt handler. 823 */ 824 825 void cpu_interrupt(CPUState *cpu, int mask); 826 827 /** 828 * cpu_set_pc: 829 * @cpu: The CPU to set the program counter for. 830 * @addr: Program counter value. 831 * 832 * Sets the program counter for a CPU. 833 */ 834 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 835 { 836 CPUClass *cc = CPU_GET_CLASS(cpu); 837 838 cc->set_pc(cpu, addr); 839 } 840 841 /** 842 * cpu_reset_interrupt: 843 * @cpu: The CPU to clear the interrupt on. 844 * @mask: The interrupt mask to clear. 845 * 846 * Resets interrupts on the vCPU @cpu. 847 */ 848 void cpu_reset_interrupt(CPUState *cpu, int mask); 849 850 /** 851 * cpu_exit: 852 * @cpu: The CPU to exit. 853 * 854 * Requests the CPU @cpu to exit execution. 855 */ 856 void cpu_exit(CPUState *cpu); 857 858 /** 859 * cpu_resume: 860 * @cpu: The CPU to resume. 861 * 862 * Resumes CPU, i.e. puts CPU into runnable state. 863 */ 864 void cpu_resume(CPUState *cpu); 865 866 /** 867 * cpu_remove_sync: 868 * @cpu: The CPU to remove. 869 * 870 * Requests the CPU to be removed and waits till it is removed. 871 */ 872 void cpu_remove_sync(CPUState *cpu); 873 874 /** 875 * process_queued_cpu_work() - process all items on CPU work queue 876 * @cpu: The CPU which work queue to process. 877 */ 878 void process_queued_cpu_work(CPUState *cpu); 879 880 /** 881 * cpu_exec_start: 882 * @cpu: The CPU for the current thread. 883 * 884 * Record that a CPU has started execution and can be interrupted with 885 * cpu_exit. 886 */ 887 void cpu_exec_start(CPUState *cpu); 888 889 /** 890 * cpu_exec_end: 891 * @cpu: The CPU for the current thread. 892 * 893 * Record that a CPU has stopped execution and exclusive sections 894 * can be executed without interrupting it. 895 */ 896 void cpu_exec_end(CPUState *cpu); 897 898 /** 899 * start_exclusive: 900 * 901 * Wait for a concurrent exclusive section to end, and then start 902 * a section of work that is run while other CPUs are not running 903 * between cpu_exec_start and cpu_exec_end. CPUs that are running 904 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 905 * during the exclusive section go to sleep until this CPU calls 906 * end_exclusive. 907 */ 908 void start_exclusive(void); 909 910 /** 911 * end_exclusive: 912 * 913 * Concludes an exclusive execution section started by start_exclusive. 914 */ 915 void end_exclusive(void); 916 917 /** 918 * qemu_init_vcpu: 919 * @cpu: The vCPU to initialize. 920 * 921 * Initializes a vCPU. 922 */ 923 void qemu_init_vcpu(CPUState *cpu); 924 925 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 926 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 927 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 928 929 /** 930 * cpu_single_step: 931 * @cpu: CPU to the flags for. 932 * @enabled: Flags to enable. 933 * 934 * Enables or disables single-stepping for @cpu. 935 */ 936 void cpu_single_step(CPUState *cpu, int enabled); 937 938 /* Breakpoint/watchpoint flags */ 939 #define BP_MEM_READ 0x01 940 #define BP_MEM_WRITE 0x02 941 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 942 #define BP_STOP_BEFORE_ACCESS 0x04 943 /* 0x08 currently unused */ 944 #define BP_GDB 0x10 945 #define BP_CPU 0x20 946 #define BP_ANY (BP_GDB | BP_CPU) 947 #define BP_WATCHPOINT_HIT_READ 0x40 948 #define BP_WATCHPOINT_HIT_WRITE 0x80 949 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 950 951 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 952 CPUBreakpoint **breakpoint); 953 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 954 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 955 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 956 957 /* Return true if PC matches an installed breakpoint. */ 958 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 959 { 960 CPUBreakpoint *bp; 961 962 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 963 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 964 if (bp->pc == pc && (bp->flags & mask)) { 965 return true; 966 } 967 } 968 } 969 return false; 970 } 971 972 #ifdef CONFIG_USER_ONLY 973 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 974 int flags, CPUWatchpoint **watchpoint) 975 { 976 return -ENOSYS; 977 } 978 979 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 980 vaddr len, int flags) 981 { 982 return -ENOSYS; 983 } 984 985 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 986 CPUWatchpoint *wp) 987 { 988 } 989 990 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 991 { 992 } 993 994 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 995 MemTxAttrs atr, int fl, uintptr_t ra) 996 { 997 } 998 999 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1000 vaddr addr, vaddr len) 1001 { 1002 return 0; 1003 } 1004 #else 1005 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1006 int flags, CPUWatchpoint **watchpoint); 1007 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1008 vaddr len, int flags); 1009 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1010 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1011 1012 /** 1013 * cpu_check_watchpoint: 1014 * @cpu: cpu context 1015 * @addr: guest virtual address 1016 * @len: access length 1017 * @attrs: memory access attributes 1018 * @flags: watchpoint access type 1019 * @ra: unwind return address 1020 * 1021 * Check for a watchpoint hit in [addr, addr+len) of the type 1022 * specified by @flags. Exit via exception with a hit. 1023 */ 1024 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1025 MemTxAttrs attrs, int flags, uintptr_t ra); 1026 1027 /** 1028 * cpu_watchpoint_address_matches: 1029 * @cpu: cpu context 1030 * @addr: guest virtual address 1031 * @len: access length 1032 * 1033 * Return the watchpoint flags that apply to [addr, addr+len). 1034 * If no watchpoint is registered for the range, the result is 0. 1035 */ 1036 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1037 #endif 1038 1039 /** 1040 * cpu_get_address_space: 1041 * @cpu: CPU to get address space from 1042 * @asidx: index identifying which address space to get 1043 * 1044 * Return the requested address space of this CPU. @asidx 1045 * specifies which address space to read. 1046 */ 1047 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1048 1049 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1050 GCC_FMT_ATTR(2, 3); 1051 1052 /* $(top_srcdir)/cpu.c */ 1053 void cpu_exec_initfn(CPUState *cpu); 1054 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1055 void cpu_exec_unrealizefn(CPUState *cpu); 1056 1057 /** 1058 * target_words_bigendian: 1059 * Returns true if the (default) endianness of the target is big endian, 1060 * false otherwise. Note that in target-specific code, you can use 1061 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1062 * code should normally never need to know about the endianness of the 1063 * target, so please do *not* use this function unless you know very well 1064 * what you are doing! 1065 */ 1066 bool target_words_bigendian(void); 1067 1068 #ifdef NEED_CPU_H 1069 1070 #ifdef CONFIG_SOFTMMU 1071 extern const VMStateDescription vmstate_cpu_common; 1072 #else 1073 #define vmstate_cpu_common vmstate_dummy 1074 #endif 1075 1076 #define VMSTATE_CPU() { \ 1077 .name = "parent_obj", \ 1078 .size = sizeof(CPUState), \ 1079 .vmsd = &vmstate_cpu_common, \ 1080 .flags = VMS_STRUCT, \ 1081 .offset = 0, \ 1082 } 1083 1084 #endif /* NEED_CPU_H */ 1085 1086 #define UNASSIGNED_CPU_INDEX -1 1087 #define UNASSIGNED_CLUSTER_INDEX -1 1088 1089 #endif 1090