1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 struct TranslationBlock; 78 79 /** 80 * CPUClass: 81 * @class_by_name: Callback to map -cpu command line model name to an 82 * instantiatable CPU type. 83 * @parse_features: Callback to parse command line arguments. 84 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 85 * @has_work: Callback for checking if there is work to do. 86 * @do_interrupt: Callback for interrupt handling. 87 * @do_unaligned_access: Callback for unaligned access handling, if 88 * the target defines #TARGET_ALIGNED_ONLY. 89 * @do_transaction_failed: Callback for handling failed memory transactions 90 * (ie bus faults or external aborts; not MMU faults) 91 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 92 * runtime configurable endianness is currently big-endian. Non-configurable 93 * CPUs can use the default implementation of this method. This method should 94 * not be used by any callers other than the pre-1.0 virtio devices. 95 * @memory_rw_debug: Callback for GDB memory access. 96 * @dump_state: Callback for dumping state. 97 * @dump_statistics: Callback for dumping statistics. 98 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 99 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 100 * @get_memory_mapping: Callback for obtaining the memory mappings. 101 * @set_pc: Callback for setting the Program Counter register. This 102 * should have the semantics used by the target architecture when 103 * setting the PC from a source such as an ELF file entry point; 104 * for example on Arm it will also set the Thumb mode bit based 105 * on the least significant bit of the new PC value. 106 * If the target behaviour here is anything other than "set 107 * the PC register to the value passed in" then the target must 108 * also implement the synchronize_from_tb hook. 109 * @synchronize_from_tb: Callback for synchronizing state from a TCG 110 * #TranslationBlock. This is called when we abandon execution 111 * of a TB before starting it, and must set all parts of the CPU 112 * state which the previous TB in the chain may not have updated. 113 * This always includes at least the program counter; some targets 114 * will need to do more. If this hook is not implemented then the 115 * default is to call @set_pc(tb->pc). 116 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only 117 * address fault. For system mode, if the access is valid, call 118 * tlb_set_page and return true; if the access is invalid, and 119 * probe is true, return false; otherwise raise an exception and 120 * do not return. For user-only mode, always raise an exception 121 * and do not return. 122 * @get_phys_page_debug: Callback for obtaining a physical address. 123 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 124 * associated memory transaction attributes to use for the access. 125 * CPUs which use memory transaction attributes should implement this 126 * instead of get_phys_page_debug. 127 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 128 * a memory access with the specified memory transaction attributes. 129 * @gdb_read_register: Callback for letting GDB read a register. 130 * @gdb_write_register: Callback for letting GDB write a register. 131 * @debug_check_watchpoint: Callback: return true if the architectural 132 * watchpoint whose address has matched should really fire. 133 * @debug_excp_handler: Callback for handling debug exceptions. 134 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 135 * 64-bit VM coredump. 136 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 137 * note to a 32-bit VM coredump. 138 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 139 * 32-bit VM coredump. 140 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 141 * note to a 32-bit VM coredump. 142 * @vmsd: State description for migration. 143 * @gdb_num_core_regs: Number of core registers accessible to GDB. 144 * @gdb_core_xml_file: File name for core registers GDB XML description. 145 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 146 * before the insn which triggers a watchpoint rather than after it. 147 * @gdb_arch_name: Optional callback that returns the architecture name known 148 * to GDB. The caller must free the returned string with g_free. 149 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 150 * gdb stub. Returns a pointer to the XML contents for the specified XML file 151 * or NULL if the CPU doesn't have a dynamically generated content for it. 152 * @cpu_exec_enter: Callback for cpu_exec preparation. 153 * @cpu_exec_exit: Callback for cpu_exec cleanup. 154 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. 155 * @disas_set_info: Setup architecture specific components of disassembly info 156 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 157 * address before attempting to match it against watchpoints. 158 * @deprecation_note: If this CPUClass is deprecated, this field provides 159 * related information. 160 * 161 * Represents a CPU family or model. 162 */ 163 struct CPUClass { 164 /*< private >*/ 165 DeviceClass parent_class; 166 /*< public >*/ 167 168 ObjectClass *(*class_by_name)(const char *cpu_model); 169 void (*parse_features)(const char *typename, char *str, Error **errp); 170 171 int reset_dump_flags; 172 bool (*has_work)(CPUState *cpu); 173 void (*do_interrupt)(CPUState *cpu); 174 void (*do_unaligned_access)(CPUState *cpu, vaddr addr, 175 MMUAccessType access_type, 176 int mmu_idx, uintptr_t retaddr); 177 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, 178 unsigned size, MMUAccessType access_type, 179 int mmu_idx, MemTxAttrs attrs, 180 MemTxResult response, uintptr_t retaddr); 181 bool (*virtio_is_big_endian)(CPUState *cpu); 182 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 183 uint8_t *buf, int len, bool is_write); 184 void (*dump_state)(CPUState *cpu, FILE *, int flags); 185 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 186 void (*dump_statistics)(CPUState *cpu, int flags); 187 int64_t (*get_arch_id)(CPUState *cpu); 188 bool (*get_paging_enabled)(const CPUState *cpu); 189 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 190 Error **errp); 191 void (*set_pc)(CPUState *cpu, vaddr value); 192 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb); 193 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, 194 MMUAccessType access_type, int mmu_idx, 195 bool probe, uintptr_t retaddr); 196 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 197 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 198 MemTxAttrs *attrs); 199 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 200 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 201 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 202 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); 203 void (*debug_excp_handler)(CPUState *cpu); 204 205 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 206 int cpuid, void *opaque); 207 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 208 void *opaque); 209 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 210 int cpuid, void *opaque); 211 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 212 void *opaque); 213 214 const VMStateDescription *vmsd; 215 const char *gdb_core_xml_file; 216 gchar * (*gdb_arch_name)(CPUState *cpu); 217 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 218 void (*cpu_exec_enter)(CPUState *cpu); 219 void (*cpu_exec_exit)(CPUState *cpu); 220 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); 221 222 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 223 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); 224 void (*tcg_initialize)(void); 225 226 const char *deprecation_note; 227 /* Keep non-pointer data at the end to minimize holes. */ 228 int gdb_num_core_regs; 229 bool gdb_stop_before_watchpoint; 230 }; 231 232 /* 233 * Low 16 bits: number of cycles left, used only in icount mode. 234 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 235 * for this CPU and return to its top level loop (even in non-icount mode). 236 * This allows a single read-compare-cbranch-write sequence to test 237 * for both decrementer underflow and exceptions. 238 */ 239 typedef union IcountDecr { 240 uint32_t u32; 241 struct { 242 #ifdef HOST_WORDS_BIGENDIAN 243 uint16_t high; 244 uint16_t low; 245 #else 246 uint16_t low; 247 uint16_t high; 248 #endif 249 } u16; 250 } IcountDecr; 251 252 typedef struct CPUBreakpoint { 253 vaddr pc; 254 int flags; /* BP_* */ 255 QTAILQ_ENTRY(CPUBreakpoint) entry; 256 } CPUBreakpoint; 257 258 struct CPUWatchpoint { 259 vaddr vaddr; 260 vaddr len; 261 vaddr hitaddr; 262 MemTxAttrs hitattrs; 263 int flags; /* BP_* */ 264 QTAILQ_ENTRY(CPUWatchpoint) entry; 265 }; 266 267 #ifdef CONFIG_PLUGIN 268 /* 269 * For plugins we sometime need to save the resolved iotlb data before 270 * the memory regions get moved around by io_writex. 271 */ 272 typedef struct SavedIOTLB { 273 hwaddr addr; 274 MemoryRegionSection *section; 275 hwaddr mr_offset; 276 } SavedIOTLB; 277 #endif 278 279 struct KVMState; 280 struct kvm_run; 281 282 struct hax_vcpu_state; 283 284 #define TB_JMP_CACHE_BITS 12 285 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 286 287 /* work queue */ 288 289 /* The union type allows passing of 64 bit target pointers on 32 bit 290 * hosts in a single parameter 291 */ 292 typedef union { 293 int host_int; 294 unsigned long host_ulong; 295 void *host_ptr; 296 vaddr target_ptr; 297 } run_on_cpu_data; 298 299 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 300 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 301 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 302 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 303 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 304 305 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 306 307 struct qemu_work_item; 308 309 #define CPU_UNSET_NUMA_NODE_ID -1 310 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 311 312 /** 313 * CPUState: 314 * @cpu_index: CPU index (informative). 315 * @cluster_index: Identifies which cluster this CPU is in. 316 * For boards which don't define clusters or for "loose" CPUs not assigned 317 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 318 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 319 * QOM parent. 320 * @nr_cores: Number of cores within this CPU package. 321 * @nr_threads: Number of threads within this CPU. 322 * @running: #true if CPU is currently running (lockless). 323 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 324 * valid under cpu_list_lock. 325 * @created: Indicates whether the CPU thread has been successfully created. 326 * @interrupt_request: Indicates a pending interrupt request. 327 * @halted: Nonzero if the CPU is in suspended state. 328 * @stop: Indicates a pending stop request. 329 * @stopped: Indicates the CPU has been artificially stopped. 330 * @unplug: Indicates a pending CPU unplug request. 331 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 332 * @singlestep_enabled: Flags for single-stepping. 333 * @icount_extra: Instructions until next timer event. 334 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 335 * requires that IO only be performed on the last instruction of a TB 336 * so that interrupts take effect immediately. 337 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 338 * AddressSpaces this CPU has) 339 * @num_ases: number of CPUAddressSpaces in @cpu_ases 340 * @as: Pointer to the first AddressSpace, for the convenience of targets which 341 * only have a single AddressSpace 342 * @env_ptr: Pointer to subclass-specific CPUArchState field. 343 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 344 * @gdb_regs: Additional GDB registers. 345 * @gdb_num_regs: Number of total registers accessible to GDB. 346 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 347 * @next_cpu: Next CPU sharing TB cache. 348 * @opaque: User data. 349 * @mem_io_pc: Host Program Counter at which the memory was accessed. 350 * @kvm_fd: vCPU file descriptor for KVM. 351 * @work_mutex: Lock to prevent multiple access to @work_list. 352 * @work_list: List of pending asynchronous work. 353 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 354 * to @trace_dstate). 355 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 356 * @plugin_mask: Plugin event bitmap. Modified only via async work. 357 * @ignore_memory_transaction_failures: Cached copy of the MachineState 358 * flag of the same name: allows the board to suppress calling of the 359 * CPU do_transaction_failed hook function. 360 * 361 * State of one CPU core or thread. 362 */ 363 struct CPUState { 364 /*< private >*/ 365 DeviceState parent_obj; 366 /*< public >*/ 367 368 int nr_cores; 369 int nr_threads; 370 371 struct QemuThread *thread; 372 #ifdef _WIN32 373 HANDLE hThread; 374 #endif 375 int thread_id; 376 bool running, has_waiter; 377 struct QemuCond *halt_cond; 378 bool thread_kicked; 379 bool created; 380 bool stop; 381 bool stopped; 382 383 /* Should CPU start in powered-off state? */ 384 bool start_powered_off; 385 386 bool unplug; 387 bool crash_occurred; 388 bool exit_request; 389 bool in_exclusive_context; 390 uint32_t cflags_next_tb; 391 /* updates protected by BQL */ 392 uint32_t interrupt_request; 393 int singlestep_enabled; 394 int64_t icount_budget; 395 int64_t icount_extra; 396 uint64_t random_seed; 397 sigjmp_buf jmp_env; 398 399 QemuMutex work_mutex; 400 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 401 402 CPUAddressSpace *cpu_ases; 403 int num_ases; 404 AddressSpace *as; 405 MemoryRegion *memory; 406 407 void *env_ptr; /* CPUArchState */ 408 IcountDecr *icount_decr_ptr; 409 410 /* Accessed in parallel; all accesses must be atomic */ 411 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 412 413 struct GDBRegisterState *gdb_regs; 414 int gdb_num_regs; 415 int gdb_num_g_regs; 416 QTAILQ_ENTRY(CPUState) node; 417 418 /* ice debug support */ 419 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 420 421 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 422 CPUWatchpoint *watchpoint_hit; 423 424 void *opaque; 425 426 /* In order to avoid passing too many arguments to the MMIO helpers, 427 * we store some rarely used information in the CPU context. 428 */ 429 uintptr_t mem_io_pc; 430 431 int kvm_fd; 432 struct KVMState *kvm_state; 433 struct kvm_run *kvm_run; 434 435 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 436 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 437 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 438 439 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 440 441 #ifdef CONFIG_PLUGIN 442 GArray *plugin_mem_cbs; 443 /* saved iotlb data from io_writex */ 444 SavedIOTLB saved_iotlb; 445 #endif 446 447 /* TODO Move common fields from CPUArchState here. */ 448 int cpu_index; 449 int cluster_index; 450 uint32_t halted; 451 uint32_t can_do_io; 452 int32_t exception_index; 453 454 /* shared by kvm, hax and hvf */ 455 bool vcpu_dirty; 456 457 /* Used to keep track of an outstanding cpu throttle thread for migration 458 * autoconverge 459 */ 460 bool throttle_thread_scheduled; 461 462 bool ignore_memory_transaction_failures; 463 464 struct hax_vcpu_state *hax_vcpu; 465 466 int hvf_fd; 467 468 /* track IOMMUs whose translations we've cached in the TCG TLB */ 469 GArray *iommu_notifiers; 470 }; 471 472 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 473 extern CPUTailQ cpus; 474 475 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 476 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 477 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 478 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 479 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 480 481 extern __thread CPUState *current_cpu; 482 483 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 484 { 485 unsigned int i; 486 487 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 488 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 489 } 490 } 491 492 /** 493 * qemu_tcg_mttcg_enabled: 494 * Check whether we are running MultiThread TCG or not. 495 * 496 * Returns: %true if we are in MTTCG mode %false otherwise. 497 */ 498 extern bool mttcg_enabled; 499 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 500 501 /** 502 * cpu_paging_enabled: 503 * @cpu: The CPU whose state is to be inspected. 504 * 505 * Returns: %true if paging is enabled, %false otherwise. 506 */ 507 bool cpu_paging_enabled(const CPUState *cpu); 508 509 /** 510 * cpu_get_memory_mapping: 511 * @cpu: The CPU whose memory mappings are to be obtained. 512 * @list: Where to write the memory mappings to. 513 * @errp: Pointer for reporting an #Error. 514 */ 515 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 516 Error **errp); 517 518 #if !defined(CONFIG_USER_ONLY) 519 520 /** 521 * cpu_write_elf64_note: 522 * @f: pointer to a function that writes memory to a file 523 * @cpu: The CPU whose memory is to be dumped 524 * @cpuid: ID number of the CPU 525 * @opaque: pointer to the CPUState struct 526 */ 527 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 528 int cpuid, void *opaque); 529 530 /** 531 * cpu_write_elf64_qemunote: 532 * @f: pointer to a function that writes memory to a file 533 * @cpu: The CPU whose memory is to be dumped 534 * @cpuid: ID number of the CPU 535 * @opaque: pointer to the CPUState struct 536 */ 537 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 538 void *opaque); 539 540 /** 541 * cpu_write_elf32_note: 542 * @f: pointer to a function that writes memory to a file 543 * @cpu: The CPU whose memory is to be dumped 544 * @cpuid: ID number of the CPU 545 * @opaque: pointer to the CPUState struct 546 */ 547 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 548 int cpuid, void *opaque); 549 550 /** 551 * cpu_write_elf32_qemunote: 552 * @f: pointer to a function that writes memory to a file 553 * @cpu: The CPU whose memory is to be dumped 554 * @cpuid: ID number of the CPU 555 * @opaque: pointer to the CPUState struct 556 */ 557 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 558 void *opaque); 559 560 /** 561 * cpu_get_crash_info: 562 * @cpu: The CPU to get crash information for 563 * 564 * Gets the previously saved crash information. 565 * Caller is responsible for freeing the data. 566 */ 567 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 568 569 #endif /* !CONFIG_USER_ONLY */ 570 571 /** 572 * CPUDumpFlags: 573 * @CPU_DUMP_CODE: 574 * @CPU_DUMP_FPU: dump FPU register state, not just integer 575 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 576 */ 577 enum CPUDumpFlags { 578 CPU_DUMP_CODE = 0x00010000, 579 CPU_DUMP_FPU = 0x00020000, 580 CPU_DUMP_CCOP = 0x00040000, 581 }; 582 583 /** 584 * cpu_dump_state: 585 * @cpu: The CPU whose state is to be dumped. 586 * @f: If non-null, dump to this stream, else to current print sink. 587 * 588 * Dumps CPU state. 589 */ 590 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 591 592 /** 593 * cpu_dump_statistics: 594 * @cpu: The CPU whose state is to be dumped. 595 * @flags: Flags what to dump. 596 * 597 * Dump CPU statistics to the current monitor if we have one, else to 598 * stdout. 599 */ 600 void cpu_dump_statistics(CPUState *cpu, int flags); 601 602 #ifndef CONFIG_USER_ONLY 603 /** 604 * cpu_get_phys_page_attrs_debug: 605 * @cpu: The CPU to obtain the physical page address for. 606 * @addr: The virtual address. 607 * @attrs: Updated on return with the memory transaction attributes to use 608 * for this access. 609 * 610 * Obtains the physical page corresponding to a virtual one, together 611 * with the corresponding memory transaction attributes to use for the access. 612 * Use it only for debugging because no protection checks are done. 613 * 614 * Returns: Corresponding physical page address or -1 if no page found. 615 */ 616 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 617 MemTxAttrs *attrs) 618 { 619 CPUClass *cc = CPU_GET_CLASS(cpu); 620 621 if (cc->get_phys_page_attrs_debug) { 622 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 623 } 624 /* Fallback for CPUs which don't implement the _attrs_ hook */ 625 *attrs = MEMTXATTRS_UNSPECIFIED; 626 return cc->get_phys_page_debug(cpu, addr); 627 } 628 629 /** 630 * cpu_get_phys_page_debug: 631 * @cpu: The CPU to obtain the physical page address for. 632 * @addr: The virtual address. 633 * 634 * Obtains the physical page corresponding to a virtual one. 635 * Use it only for debugging because no protection checks are done. 636 * 637 * Returns: Corresponding physical page address or -1 if no page found. 638 */ 639 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 640 { 641 MemTxAttrs attrs = {}; 642 643 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 644 } 645 646 /** cpu_asidx_from_attrs: 647 * @cpu: CPU 648 * @attrs: memory transaction attributes 649 * 650 * Returns the address space index specifying the CPU AddressSpace 651 * to use for a memory access with the given transaction attributes. 652 */ 653 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 654 { 655 CPUClass *cc = CPU_GET_CLASS(cpu); 656 int ret = 0; 657 658 if (cc->asidx_from_attrs) { 659 ret = cc->asidx_from_attrs(cpu, attrs); 660 assert(ret < cpu->num_ases && ret >= 0); 661 } 662 return ret; 663 } 664 665 #endif /* CONFIG_USER_ONLY */ 666 667 /** 668 * cpu_list_add: 669 * @cpu: The CPU to be added to the list of CPUs. 670 */ 671 void cpu_list_add(CPUState *cpu); 672 673 /** 674 * cpu_list_remove: 675 * @cpu: The CPU to be removed from the list of CPUs. 676 */ 677 void cpu_list_remove(CPUState *cpu); 678 679 /** 680 * cpu_reset: 681 * @cpu: The CPU whose state is to be reset. 682 */ 683 void cpu_reset(CPUState *cpu); 684 685 /** 686 * cpu_class_by_name: 687 * @typename: The CPU base type. 688 * @cpu_model: The model string without any parameters. 689 * 690 * Looks up a CPU #ObjectClass matching name @cpu_model. 691 * 692 * Returns: A #CPUClass or %NULL if not matching class is found. 693 */ 694 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 695 696 /** 697 * cpu_create: 698 * @typename: The CPU type. 699 * 700 * Instantiates a CPU and realizes the CPU. 701 * 702 * Returns: A #CPUState or %NULL if an error occurred. 703 */ 704 CPUState *cpu_create(const char *typename); 705 706 /** 707 * parse_cpu_option: 708 * @cpu_option: The -cpu option including optional parameters. 709 * 710 * processes optional parameters and registers them as global properties 711 * 712 * Returns: type of CPU to create or prints error and terminates process 713 * if an error occurred. 714 */ 715 const char *parse_cpu_option(const char *cpu_option); 716 717 /** 718 * cpu_has_work: 719 * @cpu: The vCPU to check. 720 * 721 * Checks whether the CPU has work to do. 722 * 723 * Returns: %true if the CPU has work, %false otherwise. 724 */ 725 static inline bool cpu_has_work(CPUState *cpu) 726 { 727 CPUClass *cc = CPU_GET_CLASS(cpu); 728 729 g_assert(cc->has_work); 730 return cc->has_work(cpu); 731 } 732 733 /** 734 * qemu_cpu_is_self: 735 * @cpu: The vCPU to check against. 736 * 737 * Checks whether the caller is executing on the vCPU thread. 738 * 739 * Returns: %true if called from @cpu's thread, %false otherwise. 740 */ 741 bool qemu_cpu_is_self(CPUState *cpu); 742 743 /** 744 * qemu_cpu_kick: 745 * @cpu: The vCPU to kick. 746 * 747 * Kicks @cpu's thread. 748 */ 749 void qemu_cpu_kick(CPUState *cpu); 750 751 /** 752 * cpu_is_stopped: 753 * @cpu: The CPU to check. 754 * 755 * Checks whether the CPU is stopped. 756 * 757 * Returns: %true if run state is not running or if artificially stopped; 758 * %false otherwise. 759 */ 760 bool cpu_is_stopped(CPUState *cpu); 761 762 /** 763 * do_run_on_cpu: 764 * @cpu: The vCPU to run on. 765 * @func: The function to be executed. 766 * @data: Data to pass to the function. 767 * @mutex: Mutex to release while waiting for @func to run. 768 * 769 * Used internally in the implementation of run_on_cpu. 770 */ 771 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 772 QemuMutex *mutex); 773 774 /** 775 * run_on_cpu: 776 * @cpu: The vCPU to run on. 777 * @func: The function to be executed. 778 * @data: Data to pass to the function. 779 * 780 * Schedules the function @func for execution on the vCPU @cpu. 781 */ 782 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 783 784 /** 785 * async_run_on_cpu: 786 * @cpu: The vCPU to run on. 787 * @func: The function to be executed. 788 * @data: Data to pass to the function. 789 * 790 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 791 */ 792 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 793 794 /** 795 * async_safe_run_on_cpu: 796 * @cpu: The vCPU to run on. 797 * @func: The function to be executed. 798 * @data: Data to pass to the function. 799 * 800 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 801 * while all other vCPUs are sleeping. 802 * 803 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 804 * BQL. 805 */ 806 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 807 808 /** 809 * cpu_in_exclusive_context() 810 * @cpu: The vCPU to check 811 * 812 * Returns true if @cpu is an exclusive context, for example running 813 * something which has previously been queued via async_safe_run_on_cpu(). 814 */ 815 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 816 { 817 return cpu->in_exclusive_context; 818 } 819 820 /** 821 * qemu_get_cpu: 822 * @index: The CPUState@cpu_index value of the CPU to obtain. 823 * 824 * Gets a CPU matching @index. 825 * 826 * Returns: The CPU or %NULL if there is no matching CPU. 827 */ 828 CPUState *qemu_get_cpu(int index); 829 830 /** 831 * cpu_exists: 832 * @id: Guest-exposed CPU ID to lookup. 833 * 834 * Search for CPU with specified ID. 835 * 836 * Returns: %true - CPU is found, %false - CPU isn't found. 837 */ 838 bool cpu_exists(int64_t id); 839 840 /** 841 * cpu_by_arch_id: 842 * @id: Guest-exposed CPU ID of the CPU to obtain. 843 * 844 * Get a CPU with matching @id. 845 * 846 * Returns: The CPU or %NULL if there is no matching CPU. 847 */ 848 CPUState *cpu_by_arch_id(int64_t id); 849 850 /** 851 * cpu_interrupt: 852 * @cpu: The CPU to set an interrupt on. 853 * @mask: The interrupts to set. 854 * 855 * Invokes the interrupt handler. 856 */ 857 858 void cpu_interrupt(CPUState *cpu, int mask); 859 860 #ifdef NEED_CPU_H 861 862 #ifdef CONFIG_SOFTMMU 863 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 864 MMUAccessType access_type, 865 int mmu_idx, uintptr_t retaddr) 866 { 867 CPUClass *cc = CPU_GET_CLASS(cpu); 868 869 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 870 } 871 872 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 873 vaddr addr, unsigned size, 874 MMUAccessType access_type, 875 int mmu_idx, MemTxAttrs attrs, 876 MemTxResult response, 877 uintptr_t retaddr) 878 { 879 CPUClass *cc = CPU_GET_CLASS(cpu); 880 881 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { 882 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, 883 mmu_idx, attrs, response, retaddr); 884 } 885 } 886 #endif 887 888 #endif /* NEED_CPU_H */ 889 890 /** 891 * cpu_set_pc: 892 * @cpu: The CPU to set the program counter for. 893 * @addr: Program counter value. 894 * 895 * Sets the program counter for a CPU. 896 */ 897 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 898 { 899 CPUClass *cc = CPU_GET_CLASS(cpu); 900 901 cc->set_pc(cpu, addr); 902 } 903 904 /** 905 * cpu_reset_interrupt: 906 * @cpu: The CPU to clear the interrupt on. 907 * @mask: The interrupt mask to clear. 908 * 909 * Resets interrupts on the vCPU @cpu. 910 */ 911 void cpu_reset_interrupt(CPUState *cpu, int mask); 912 913 /** 914 * cpu_exit: 915 * @cpu: The CPU to exit. 916 * 917 * Requests the CPU @cpu to exit execution. 918 */ 919 void cpu_exit(CPUState *cpu); 920 921 /** 922 * cpu_resume: 923 * @cpu: The CPU to resume. 924 * 925 * Resumes CPU, i.e. puts CPU into runnable state. 926 */ 927 void cpu_resume(CPUState *cpu); 928 929 /** 930 * cpu_remove: 931 * @cpu: The CPU to remove. 932 * 933 * Requests the CPU to be removed. 934 */ 935 void cpu_remove(CPUState *cpu); 936 937 /** 938 * cpu_remove_sync: 939 * @cpu: The CPU to remove. 940 * 941 * Requests the CPU to be removed and waits till it is removed. 942 */ 943 void cpu_remove_sync(CPUState *cpu); 944 945 /** 946 * process_queued_cpu_work() - process all items on CPU work queue 947 * @cpu: The CPU which work queue to process. 948 */ 949 void process_queued_cpu_work(CPUState *cpu); 950 951 /** 952 * cpu_exec_start: 953 * @cpu: The CPU for the current thread. 954 * 955 * Record that a CPU has started execution and can be interrupted with 956 * cpu_exit. 957 */ 958 void cpu_exec_start(CPUState *cpu); 959 960 /** 961 * cpu_exec_end: 962 * @cpu: The CPU for the current thread. 963 * 964 * Record that a CPU has stopped execution and exclusive sections 965 * can be executed without interrupting it. 966 */ 967 void cpu_exec_end(CPUState *cpu); 968 969 /** 970 * start_exclusive: 971 * 972 * Wait for a concurrent exclusive section to end, and then start 973 * a section of work that is run while other CPUs are not running 974 * between cpu_exec_start and cpu_exec_end. CPUs that are running 975 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 976 * during the exclusive section go to sleep until this CPU calls 977 * end_exclusive. 978 */ 979 void start_exclusive(void); 980 981 /** 982 * end_exclusive: 983 * 984 * Concludes an exclusive execution section started by start_exclusive. 985 */ 986 void end_exclusive(void); 987 988 /** 989 * qemu_init_vcpu: 990 * @cpu: The vCPU to initialize. 991 * 992 * Initializes a vCPU. 993 */ 994 void qemu_init_vcpu(CPUState *cpu); 995 996 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 997 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 998 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 999 1000 /** 1001 * cpu_single_step: 1002 * @cpu: CPU to the flags for. 1003 * @enabled: Flags to enable. 1004 * 1005 * Enables or disables single-stepping for @cpu. 1006 */ 1007 void cpu_single_step(CPUState *cpu, int enabled); 1008 1009 /* Breakpoint/watchpoint flags */ 1010 #define BP_MEM_READ 0x01 1011 #define BP_MEM_WRITE 0x02 1012 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1013 #define BP_STOP_BEFORE_ACCESS 0x04 1014 /* 0x08 currently unused */ 1015 #define BP_GDB 0x10 1016 #define BP_CPU 0x20 1017 #define BP_ANY (BP_GDB | BP_CPU) 1018 #define BP_WATCHPOINT_HIT_READ 0x40 1019 #define BP_WATCHPOINT_HIT_WRITE 0x80 1020 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 1021 1022 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1023 CPUBreakpoint **breakpoint); 1024 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1025 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1026 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1027 1028 /* Return true if PC matches an installed breakpoint. */ 1029 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1030 { 1031 CPUBreakpoint *bp; 1032 1033 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1034 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1035 if (bp->pc == pc && (bp->flags & mask)) { 1036 return true; 1037 } 1038 } 1039 } 1040 return false; 1041 } 1042 1043 #ifdef CONFIG_USER_ONLY 1044 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1045 int flags, CPUWatchpoint **watchpoint) 1046 { 1047 return -ENOSYS; 1048 } 1049 1050 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1051 vaddr len, int flags) 1052 { 1053 return -ENOSYS; 1054 } 1055 1056 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1057 CPUWatchpoint *wp) 1058 { 1059 } 1060 1061 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1062 { 1063 } 1064 1065 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1066 MemTxAttrs atr, int fl, uintptr_t ra) 1067 { 1068 } 1069 1070 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1071 vaddr addr, vaddr len) 1072 { 1073 return 0; 1074 } 1075 #else 1076 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1077 int flags, CPUWatchpoint **watchpoint); 1078 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1079 vaddr len, int flags); 1080 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1081 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1082 1083 /** 1084 * cpu_check_watchpoint: 1085 * @cpu: cpu context 1086 * @addr: guest virtual address 1087 * @len: access length 1088 * @attrs: memory access attributes 1089 * @flags: watchpoint access type 1090 * @ra: unwind return address 1091 * 1092 * Check for a watchpoint hit in [addr, addr+len) of the type 1093 * specified by @flags. Exit via exception with a hit. 1094 */ 1095 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1096 MemTxAttrs attrs, int flags, uintptr_t ra); 1097 1098 /** 1099 * cpu_watchpoint_address_matches: 1100 * @cpu: cpu context 1101 * @addr: guest virtual address 1102 * @len: access length 1103 * 1104 * Return the watchpoint flags that apply to [addr, addr+len). 1105 * If no watchpoint is registered for the range, the result is 0. 1106 */ 1107 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1108 #endif 1109 1110 /** 1111 * cpu_get_address_space: 1112 * @cpu: CPU to get address space from 1113 * @asidx: index identifying which address space to get 1114 * 1115 * Return the requested address space of this CPU. @asidx 1116 * specifies which address space to read. 1117 */ 1118 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1119 1120 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1121 GCC_FMT_ATTR(2, 3); 1122 extern Property cpu_common_props[]; 1123 void cpu_exec_initfn(CPUState *cpu); 1124 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1125 void cpu_exec_unrealizefn(CPUState *cpu); 1126 1127 /** 1128 * target_words_bigendian: 1129 * Returns true if the (default) endianness of the target is big endian, 1130 * false otherwise. Note that in target-specific code, you can use 1131 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1132 * code should normally never need to know about the endianness of the 1133 * target, so please do *not* use this function unless you know very well 1134 * what you are doing! 1135 */ 1136 bool target_words_bigendian(void); 1137 1138 #ifdef NEED_CPU_H 1139 1140 #ifdef CONFIG_SOFTMMU 1141 extern const VMStateDescription vmstate_cpu_common; 1142 #else 1143 #define vmstate_cpu_common vmstate_dummy 1144 #endif 1145 1146 #define VMSTATE_CPU() { \ 1147 .name = "parent_obj", \ 1148 .size = sizeof(CPUState), \ 1149 .vmsd = &vmstate_cpu_common, \ 1150 .flags = VMS_STRUCT, \ 1151 .offset = 0, \ 1152 } 1153 1154 #endif /* NEED_CPU_H */ 1155 1156 #define UNASSIGNED_CPU_INDEX -1 1157 #define UNASSIGNED_CLUSTER_INDEX -1 1158 1159 #endif 1160