1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/lockcnt.h" 37 #include "qemu/thread.h" 38 #include "qom/object.h" 39 40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 41 void *opaque); 42 43 /** 44 * SECTION:cpu 45 * @section_id: QEMU-cpu 46 * @title: CPU Class 47 * @short_description: Base class for all CPUs 48 */ 49 50 #define TYPE_CPU "cpu" 51 52 /* Since this macro is used a lot in hot code paths and in conjunction with 53 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 54 * an unchecked cast. 55 */ 56 #define CPU(obj) ((CPUState *)(obj)) 57 58 /* 59 * The class checkers bring in CPU_GET_CLASS() which is potentially 60 * expensive given the eventual call to 61 * object_class_dynamic_cast_assert(). Because of this the CPUState 62 * has a cached value for the class in cs->cc which is set up in 63 * cpu_exec_realizefn() for use in hot code paths. 64 */ 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 /** 70 * OBJECT_DECLARE_CPU_TYPE: 71 * @CpuInstanceType: instance struct name 72 * @CpuClassType: class struct name 73 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 74 * 75 * This macro is typically used in "cpu-qom.h" header file, and will: 76 * 77 * - create the typedefs for the CPU object and class structs 78 * - register the type for use with g_autoptr 79 * - provide three standard type cast functions 80 * 81 * The object struct and class struct need to be declared manually. 82 */ 83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 84 typedef struct ArchCPU CpuInstanceType; \ 85 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 86 87 typedef struct CPUWatchpoint CPUWatchpoint; 88 89 /* see physmem.c */ 90 struct CPUAddressSpace; 91 92 /* see accel/tcg/tb-jmp-cache.h */ 93 struct CPUJumpCache; 94 95 /* see accel-cpu.h */ 96 struct AccelCPUClass; 97 98 /* see sysemu-cpu-ops.h */ 99 struct SysemuCPUOps; 100 101 /** 102 * CPUClass: 103 * @class_by_name: Callback to map -cpu command line model name to an 104 * instantiatable CPU type. 105 * @list_cpus: list available CPU models and flags. 106 * @parse_features: Callback to parse command line arguments. 107 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 108 * @memory_rw_debug: Callback for GDB memory access. 109 * @dump_state: Callback for dumping state. 110 * @query_cpu_fast: 111 * Fill in target specific information for the "query-cpus-fast" 112 * QAPI call. 113 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 114 * @set_pc: Callback for setting the Program Counter register. This 115 * should have the semantics used by the target architecture when 116 * setting the PC from a source such as an ELF file entry point; 117 * for example on Arm it will also set the Thumb mode bit based 118 * on the least significant bit of the new PC value. 119 * If the target behaviour here is anything other than "set 120 * the PC register to the value passed in" then the target must 121 * also implement the synchronize_from_tb hook. 122 * @get_pc: Callback for getting the Program Counter register. 123 * As above, with the semantics of the target architecture. 124 * @gdb_read_register: Callback for letting GDB read a register. 125 * No more than @gdb_num_core_regs registers can be read. 126 * @gdb_write_register: Callback for letting GDB write a register. 127 * No more than @gdb_num_core_regs registers can be written. 128 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 129 * breakpoint. Used by AVR to handle a gdb mis-feature with 130 * its Harvard architecture split code and data. 131 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 132 * from @gdb_core_xml_file. 133 * @gdb_core_xml_file: File name for core registers GDB XML description. 134 * @gdb_get_core_xml_file: Optional callback that returns the file name for 135 * the core registers GDB XML description. The returned value is expected to 136 * be a simple constant string: the caller will not g_free() it. If this 137 * is NULL then @gdb_core_xml_file will be used instead. 138 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 139 * before the insn which triggers a watchpoint rather than after it. 140 * @gdb_arch_name: Optional callback that returns the architecture name known 141 * to GDB. The returned value is expected to be a simple constant string: 142 * the caller will not g_free() it. 143 * @disas_set_info: Setup architecture specific components of disassembly info 144 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 145 * address before attempting to match it against watchpoints. 146 * @deprecation_note: If this CPUClass is deprecated, this field provides 147 * related information. 148 * 149 * Represents a CPU family or model. 150 */ 151 struct CPUClass { 152 /*< private >*/ 153 DeviceClass parent_class; 154 /*< public >*/ 155 156 ObjectClass *(*class_by_name)(const char *cpu_model); 157 void (*list_cpus)(void); 158 void (*parse_features)(const char *typename, char *str, Error **errp); 159 160 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 161 uint8_t *buf, size_t len, bool is_write); 162 void (*dump_state)(CPUState *cpu, FILE *, int flags); 163 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 164 int64_t (*get_arch_id)(CPUState *cpu); 165 void (*set_pc)(CPUState *cpu, vaddr value); 166 vaddr (*get_pc)(CPUState *cpu); 167 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 168 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 169 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 170 171 const char *gdb_core_xml_file; 172 const gchar * (*gdb_arch_name)(CPUState *cpu); 173 const char * (*gdb_get_core_xml_file)(CPUState *cpu); 174 175 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 176 177 const char *deprecation_note; 178 struct AccelCPUClass *accel_cpu; 179 180 /* when system emulation is not available, this pointer is NULL */ 181 const struct SysemuCPUOps *sysemu_ops; 182 183 /* when TCG is not available, this pointer is NULL */ 184 const TCGCPUOps *tcg_ops; 185 186 /* 187 * if not NULL, this is called in order for the CPUClass to initialize 188 * class data that depends on the accelerator, see accel/accel-common.c. 189 */ 190 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 191 192 /* 193 * Keep non-pointer data at the end to minimize holes. 194 */ 195 int reset_dump_flags; 196 int gdb_num_core_regs; 197 bool gdb_stop_before_watchpoint; 198 }; 199 200 /* 201 * Fix the number of mmu modes to 16, which is also the maximum 202 * supported by the softmmu tlb api. 203 */ 204 #define NB_MMU_MODES 16 205 206 /* Use a fully associative victim tlb of 8 entries. */ 207 #define CPU_VTLB_SIZE 8 208 209 /* 210 * The full TLB entry, which is not accessed by generated TCG code, 211 * so the layout is not as critical as that of CPUTLBEntry. This is 212 * also why we don't want to combine the two structs. 213 */ 214 struct CPUTLBEntryFull { 215 /* 216 * @xlat_section contains: 217 * - in the lower TARGET_PAGE_BITS, a physical section number 218 * - with the lower TARGET_PAGE_BITS masked off, an offset which 219 * must be added to the virtual address to obtain: 220 * + the ram_addr_t of the target RAM (if the physical section 221 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 222 * + the offset within the target MemoryRegion (otherwise) 223 */ 224 hwaddr xlat_section; 225 226 /* 227 * @phys_addr contains the physical address in the address space 228 * given by cpu_asidx_from_attrs(cpu, @attrs). 229 */ 230 hwaddr phys_addr; 231 232 /* @attrs contains the memory transaction attributes for the page. */ 233 MemTxAttrs attrs; 234 235 /* @prot contains the complete protections for the page. */ 236 uint8_t prot; 237 238 /* @lg_page_size contains the log2 of the page size. */ 239 uint8_t lg_page_size; 240 241 /* Additional tlb flags requested by tlb_fill. */ 242 uint8_t tlb_fill_flags; 243 244 /* 245 * Additional tlb flags for use by the slow path. If non-zero, 246 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 247 */ 248 uint8_t slow_flags[MMU_ACCESS_COUNT]; 249 250 /* 251 * Allow target-specific additions to this structure. 252 * This may be used to cache items from the guest cpu 253 * page tables for later use by the implementation. 254 */ 255 union { 256 /* 257 * Cache the attrs and shareability fields from the page table entry. 258 * 259 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 260 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 261 * For shareability and guarded, as in the SH and GP fields respectively 262 * of the VMSAv8-64 PTEs. 263 */ 264 struct { 265 uint8_t pte_attrs; 266 uint8_t shareability; 267 bool guarded; 268 } arm; 269 } extra; 270 }; 271 272 /* 273 * Data elements that are per MMU mode, minus the bits accessed by 274 * the TCG fast path. 275 */ 276 typedef struct CPUTLBDesc { 277 /* 278 * Describe a region covering all of the large pages allocated 279 * into the tlb. When any page within this region is flushed, 280 * we must flush the entire tlb. The region is matched if 281 * (addr & large_page_mask) == large_page_addr. 282 */ 283 vaddr large_page_addr; 284 vaddr large_page_mask; 285 /* host time (in ns) at the beginning of the time window */ 286 int64_t window_begin_ns; 287 /* maximum number of entries observed in the window */ 288 size_t window_max_entries; 289 size_t n_used_entries; 290 /* The next index to use in the tlb victim table. */ 291 size_t vindex; 292 /* The tlb victim table, in two parts. */ 293 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 294 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 295 CPUTLBEntryFull *fulltlb; 296 } CPUTLBDesc; 297 298 /* 299 * Data elements that are shared between all MMU modes. 300 */ 301 typedef struct CPUTLBCommon { 302 /* Serialize updates to f.table and d.vtable, and others as noted. */ 303 QemuSpin lock; 304 /* 305 * Within dirty, for each bit N, modifications have been made to 306 * mmu_idx N since the last time that mmu_idx was flushed. 307 * Protected by tlb_c.lock. 308 */ 309 uint16_t dirty; 310 /* 311 * Statistics. These are not lock protected, but are read and 312 * written atomically. This allows the monitor to print a snapshot 313 * of the stats without interfering with the cpu. 314 */ 315 size_t full_flush_count; 316 size_t part_flush_count; 317 size_t elide_flush_count; 318 } CPUTLBCommon; 319 320 /* 321 * The entire softmmu tlb, for all MMU modes. 322 * The meaning of each of the MMU modes is defined in the target code. 323 * Since this is placed within CPUNegativeOffsetState, the smallest 324 * negative offsets are at the end of the struct. 325 */ 326 typedef struct CPUTLB { 327 #ifdef CONFIG_TCG 328 CPUTLBCommon c; 329 CPUTLBDesc d[NB_MMU_MODES]; 330 CPUTLBDescFast f[NB_MMU_MODES]; 331 #endif 332 } CPUTLB; 333 334 /* 335 * Low 16 bits: number of cycles left, used only in icount mode. 336 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 337 * for this CPU and return to its top level loop (even in non-icount mode). 338 * This allows a single read-compare-cbranch-write sequence to test 339 * for both decrementer underflow and exceptions. 340 */ 341 typedef union IcountDecr { 342 uint32_t u32; 343 struct { 344 #if HOST_BIG_ENDIAN 345 uint16_t high; 346 uint16_t low; 347 #else 348 uint16_t low; 349 uint16_t high; 350 #endif 351 } u16; 352 } IcountDecr; 353 354 /** 355 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed 356 * from CPUArchState, via small negative offsets. 357 * @can_do_io: True if memory-mapped IO is allowed. 358 * @plugin_mem_cbs: active plugin memory callbacks 359 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value. 360 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value. 361 */ 362 typedef struct CPUNegativeOffsetState { 363 CPUTLB tlb; 364 #ifdef CONFIG_PLUGIN 365 /* 366 * The callback pointer are accessed via TCG (see gen_empty_mem_helper). 367 */ 368 GArray *plugin_mem_cbs; 369 uint64_t plugin_mem_value_low; 370 uint64_t plugin_mem_value_high; 371 int32_t plugin_cb_flags; 372 #endif 373 IcountDecr icount_decr; 374 bool can_do_io; 375 } CPUNegativeOffsetState; 376 377 struct KVMState; 378 struct kvm_run; 379 380 /* work queue */ 381 382 /* The union type allows passing of 64 bit target pointers on 32 bit 383 * hosts in a single parameter 384 */ 385 typedef union { 386 int host_int; 387 unsigned long host_ulong; 388 void *host_ptr; 389 vaddr target_ptr; 390 } run_on_cpu_data; 391 392 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 393 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 394 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 395 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 396 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 397 398 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 399 400 struct qemu_work_item; 401 402 #define CPU_UNSET_NUMA_NODE_ID -1 403 404 /** 405 * struct CPUState - common state of one CPU core or thread. 406 * 407 * @cpu_index: CPU index (informative). 408 * @cluster_index: Identifies which cluster this CPU is in. 409 * For boards which don't define clusters or for "loose" CPUs not assigned 410 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 411 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 412 * QOM parent. 413 * Under TCG this value is propagated to @tcg_cflags. 414 * See TranslationBlock::TCG CF_CLUSTER_MASK. 415 * @tcg_cflags: Pre-computed cflags for this cpu. 416 * @nr_threads: Number of threads within this CPU core. 417 * @thread: Host thread details, only live once @created is #true 418 * @sem: WIN32 only semaphore used only for qtest 419 * @thread_id: native thread id of vCPU, only live once @created is #true 420 * @running: #true if CPU is currently running (lockless). 421 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 422 * valid under cpu_list_lock. 423 * @created: Indicates whether the CPU thread has been successfully created. 424 * @halt_cond: condition variable sleeping threads can wait on. 425 * @interrupt_request: Indicates a pending interrupt request. 426 * @halted: Nonzero if the CPU is in suspended state. 427 * @stop: Indicates a pending stop request. 428 * @stopped: Indicates the CPU has been artificially stopped. 429 * @unplug: Indicates a pending CPU unplug request. 430 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 431 * @singlestep_enabled: Flags for single-stepping. 432 * @icount_extra: Instructions until next timer event. 433 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 434 * AddressSpaces this CPU has) 435 * @num_ases: number of CPUAddressSpaces in @cpu_ases 436 * @as: Pointer to the first AddressSpace, for the convenience of targets which 437 * only have a single AddressSpace 438 * @gdb_regs: Additional GDB registers. 439 * @gdb_num_regs: Number of total registers accessible to GDB. 440 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 441 * @node: QTAILQ of CPUs sharing TB cache. 442 * @opaque: User data. 443 * @mem_io_pc: Host Program Counter at which the memory was accessed. 444 * @accel: Pointer to accelerator specific state. 445 * @vcpu_dirty: Hardware accelerator is not synchronized with QEMU state 446 * @kvm_fd: vCPU file descriptor for KVM. 447 * @work_mutex: Lock to prevent multiple access to @work_list. 448 * @work_list: List of pending asynchronous work. 449 * @plugin_state: per-CPU plugin state 450 * @ignore_memory_transaction_failures: Cached copy of the MachineState 451 * flag of the same name: allows the board to suppress calling of the 452 * CPU do_transaction_failed hook function. 453 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 454 * ring is enabled. 455 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 456 * dirty ring structure. 457 * 458 * @neg_align: The CPUState is the common part of a concrete ArchCPU 459 * which is allocated when an individual CPU instance is created. As 460 * such care is taken is ensure there is no gap between between 461 * CPUState and CPUArchState within ArchCPU. 462 * 463 * @neg: The architectural register state ("cpu_env") immediately follows 464 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds 465 * some common TCG CPU variables which are accessed with a negative offset 466 * from cpu_env. 467 */ 468 struct CPUState { 469 /*< private >*/ 470 DeviceState parent_obj; 471 /* cache to avoid expensive CPU_GET_CLASS */ 472 CPUClass *cc; 473 /*< public >*/ 474 475 int nr_threads; 476 477 struct QemuThread *thread; 478 #ifdef _WIN32 479 QemuSemaphore sem; 480 #endif 481 int thread_id; 482 bool running, has_waiter; 483 struct QemuCond *halt_cond; 484 bool thread_kicked; 485 bool created; 486 bool stop; 487 bool stopped; 488 489 /* Should CPU start in powered-off state? */ 490 bool start_powered_off; 491 492 bool unplug; 493 bool crash_occurred; 494 bool exit_request; 495 int exclusive_context_count; 496 uint32_t cflags_next_tb; 497 /* updates protected by BQL */ 498 uint32_t interrupt_request; 499 int singlestep_enabled; 500 int64_t icount_budget; 501 int64_t icount_extra; 502 uint64_t random_seed; 503 sigjmp_buf jmp_env; 504 505 QemuMutex work_mutex; 506 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 507 508 struct CPUAddressSpace *cpu_ases; 509 int cpu_ases_count; 510 int num_ases; 511 AddressSpace *as; 512 MemoryRegion *memory; 513 514 struct CPUJumpCache *tb_jmp_cache; 515 516 GArray *gdb_regs; 517 int gdb_num_regs; 518 int gdb_num_g_regs; 519 QTAILQ_ENTRY(CPUState) node; 520 521 /* ice debug support */ 522 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 523 524 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 525 CPUWatchpoint *watchpoint_hit; 526 527 void *opaque; 528 529 /* In order to avoid passing too many arguments to the MMIO helpers, 530 * we store some rarely used information in the CPU context. 531 */ 532 uintptr_t mem_io_pc; 533 534 /* Only used in KVM */ 535 int kvm_fd; 536 struct KVMState *kvm_state; 537 struct kvm_run *kvm_run; 538 struct kvm_dirty_gfn *kvm_dirty_gfns; 539 uint32_t kvm_fetch_index; 540 uint64_t dirty_pages; 541 int kvm_vcpu_stats_fd; 542 543 /* Use by accel-block: CPU is executing an ioctl() */ 544 QemuLockCnt in_ioctl_lock; 545 546 #ifdef CONFIG_PLUGIN 547 CPUPluginState *plugin_state; 548 #endif 549 550 /* TODO Move common fields from CPUArchState here. */ 551 int cpu_index; 552 int cluster_index; 553 uint32_t tcg_cflags; 554 uint32_t halted; 555 int32_t exception_index; 556 557 bool vcpu_dirty; 558 AccelCPUState *accel; 559 560 /* Used to keep track of an outstanding cpu throttle thread for migration 561 * autoconverge 562 */ 563 bool throttle_thread_scheduled; 564 565 /* 566 * Sleep throttle_us_per_full microseconds once dirty ring is full 567 * if dirty page rate limit is enabled. 568 */ 569 int64_t throttle_us_per_full; 570 571 bool ignore_memory_transaction_failures; 572 573 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 574 bool prctl_unalign_sigbus; 575 576 /* track IOMMUs whose translations we've cached in the TCG TLB */ 577 GArray *iommu_notifiers; 578 579 /* 580 * MUST BE LAST in order to minimize the displacement to CPUArchState. 581 */ 582 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 583 CPUNegativeOffsetState neg; 584 }; 585 586 /* Validate placement of CPUNegativeOffsetState. */ 587 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 588 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 589 590 static inline CPUArchState *cpu_env(CPUState *cpu) 591 { 592 /* We validate that CPUArchState follows CPUState in cpu-target.c */ 593 return (CPUArchState *)(cpu + 1); 594 } 595 596 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 597 extern CPUTailQ cpus_queue; 598 599 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 600 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 601 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 602 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 603 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 604 605 extern __thread CPUState *current_cpu; 606 607 /** 608 * cpu_paging_enabled: 609 * @cpu: The CPU whose state is to be inspected. 610 * 611 * Returns: %true if paging is enabled, %false otherwise. 612 */ 613 bool cpu_paging_enabled(const CPUState *cpu); 614 615 /** 616 * cpu_get_memory_mapping: 617 * @cpu: The CPU whose memory mappings are to be obtained. 618 * @list: Where to write the memory mappings to. 619 * @errp: Pointer for reporting an #Error. 620 * 621 * Returns: %true on success, %false otherwise. 622 */ 623 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 624 Error **errp); 625 626 /** 627 * cpu_write_elf64_note: 628 * @f: pointer to a function that writes memory to a file 629 * @cpu: The CPU whose memory is to be dumped 630 * @cpuid: ID number of the CPU 631 * @opaque: pointer to the CPUState struct 632 */ 633 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 634 int cpuid, void *opaque); 635 636 /** 637 * cpu_write_elf64_qemunote: 638 * @f: pointer to a function that writes memory to a file 639 * @cpu: The CPU whose memory is to be dumped 640 * @cpuid: ID number of the CPU 641 * @opaque: pointer to the CPUState struct 642 */ 643 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 644 void *opaque); 645 646 /** 647 * cpu_write_elf32_note: 648 * @f: pointer to a function that writes memory to a file 649 * @cpu: The CPU whose memory is to be dumped 650 * @cpuid: ID number of the CPU 651 * @opaque: pointer to the CPUState struct 652 */ 653 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 654 int cpuid, void *opaque); 655 656 /** 657 * cpu_write_elf32_qemunote: 658 * @f: pointer to a function that writes memory to a file 659 * @cpu: The CPU whose memory is to be dumped 660 * @cpuid: ID number of the CPU 661 * @opaque: pointer to the CPUState struct 662 */ 663 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 664 void *opaque); 665 666 /** 667 * cpu_get_crash_info: 668 * @cpu: The CPU to get crash information for 669 * 670 * Gets the previously saved crash information. 671 * Caller is responsible for freeing the data. 672 */ 673 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 674 675 /** 676 * CPUDumpFlags: 677 * @CPU_DUMP_CODE: 678 * @CPU_DUMP_FPU: dump FPU register state, not just integer 679 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 680 * @CPU_DUMP_VPU: dump VPU registers 681 */ 682 enum CPUDumpFlags { 683 CPU_DUMP_CODE = 0x00010000, 684 CPU_DUMP_FPU = 0x00020000, 685 CPU_DUMP_CCOP = 0x00040000, 686 CPU_DUMP_VPU = 0x00080000, 687 }; 688 689 /** 690 * cpu_dump_state: 691 * @cpu: The CPU whose state is to be dumped. 692 * @f: If non-null, dump to this stream, else to current print sink. 693 * 694 * Dumps CPU state. 695 */ 696 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 697 698 /** 699 * cpu_get_phys_page_attrs_debug: 700 * @cpu: The CPU to obtain the physical page address for. 701 * @addr: The virtual address. 702 * @attrs: Updated on return with the memory transaction attributes to use 703 * for this access. 704 * 705 * Obtains the physical page corresponding to a virtual one, together 706 * with the corresponding memory transaction attributes to use for the access. 707 * Use it only for debugging because no protection checks are done. 708 * 709 * Returns: Corresponding physical page address or -1 if no page found. 710 */ 711 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 712 MemTxAttrs *attrs); 713 714 /** 715 * cpu_get_phys_page_debug: 716 * @cpu: The CPU to obtain the physical page address for. 717 * @addr: The virtual address. 718 * 719 * Obtains the physical page corresponding to a virtual one. 720 * Use it only for debugging because no protection checks are done. 721 * 722 * Returns: Corresponding physical page address or -1 if no page found. 723 */ 724 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 725 726 /** cpu_asidx_from_attrs: 727 * @cpu: CPU 728 * @attrs: memory transaction attributes 729 * 730 * Returns the address space index specifying the CPU AddressSpace 731 * to use for a memory access with the given transaction attributes. 732 */ 733 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 734 735 /** 736 * cpu_virtio_is_big_endian: 737 * @cpu: CPU 738 739 * Returns %true if a CPU which supports runtime configurable endianness 740 * is currently big-endian. 741 */ 742 bool cpu_virtio_is_big_endian(CPUState *cpu); 743 744 /** 745 * cpu_has_work: 746 * @cpu: The vCPU to check. 747 * 748 * Checks whether the CPU has work to do. 749 * 750 * Returns: %true if the CPU has work, %false otherwise. 751 */ 752 bool cpu_has_work(CPUState *cpu); 753 754 /** 755 * cpu_list_add: 756 * @cpu: The CPU to be added to the list of CPUs. 757 */ 758 void cpu_list_add(CPUState *cpu); 759 760 /** 761 * cpu_list_remove: 762 * @cpu: The CPU to be removed from the list of CPUs. 763 */ 764 void cpu_list_remove(CPUState *cpu); 765 766 /** 767 * cpu_reset: 768 * @cpu: The CPU whose state is to be reset. 769 */ 770 void cpu_reset(CPUState *cpu); 771 772 /** 773 * cpu_class_by_name: 774 * @typename: The CPU base type. 775 * @cpu_model: The model string without any parameters. 776 * 777 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 778 * 779 * Returns: A concrete #CPUClass or %NULL if no matching class is found 780 * or if the matching class is abstract. 781 */ 782 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 783 784 /** 785 * cpu_model_from_type: 786 * @typename: The CPU type name 787 * 788 * Extract the CPU model name from the CPU type name. The 789 * CPU type name is either the combination of the CPU model 790 * name and suffix, or same to the CPU model name. 791 * 792 * Returns: CPU model name or NULL if the CPU class doesn't exist 793 * The user should g_free() the string once no longer needed. 794 */ 795 char *cpu_model_from_type(const char *typename); 796 797 /** 798 * cpu_create: 799 * @typename: The CPU type. 800 * 801 * Instantiates a CPU and realizes the CPU. 802 * 803 * Returns: A #CPUState or %NULL if an error occurred. 804 */ 805 CPUState *cpu_create(const char *typename); 806 807 /** 808 * parse_cpu_option: 809 * @cpu_option: The -cpu option including optional parameters. 810 * 811 * processes optional parameters and registers them as global properties 812 * 813 * Returns: type of CPU to create or prints error and terminates process 814 * if an error occurred. 815 */ 816 const char *parse_cpu_option(const char *cpu_option); 817 818 /** 819 * qemu_cpu_is_self: 820 * @cpu: The vCPU to check against. 821 * 822 * Checks whether the caller is executing on the vCPU thread. 823 * 824 * Returns: %true if called from @cpu's thread, %false otherwise. 825 */ 826 bool qemu_cpu_is_self(CPUState *cpu); 827 828 /** 829 * qemu_cpu_kick: 830 * @cpu: The vCPU to kick. 831 * 832 * Kicks @cpu's thread. 833 */ 834 void qemu_cpu_kick(CPUState *cpu); 835 836 /** 837 * cpu_is_stopped: 838 * @cpu: The CPU to check. 839 * 840 * Checks whether the CPU is stopped. 841 * 842 * Returns: %true if run state is not running or if artificially stopped; 843 * %false otherwise. 844 */ 845 bool cpu_is_stopped(CPUState *cpu); 846 847 /** 848 * do_run_on_cpu: 849 * @cpu: The vCPU to run on. 850 * @func: The function to be executed. 851 * @data: Data to pass to the function. 852 * @mutex: Mutex to release while waiting for @func to run. 853 * 854 * Used internally in the implementation of run_on_cpu. 855 */ 856 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 857 QemuMutex *mutex); 858 859 /** 860 * run_on_cpu: 861 * @cpu: The vCPU to run on. 862 * @func: The function to be executed. 863 * @data: Data to pass to the function. 864 * 865 * Schedules the function @func for execution on the vCPU @cpu. 866 */ 867 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 868 869 /** 870 * async_run_on_cpu: 871 * @cpu: The vCPU to run on. 872 * @func: The function to be executed. 873 * @data: Data to pass to the function. 874 * 875 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 876 */ 877 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 878 879 /** 880 * async_safe_run_on_cpu: 881 * @cpu: The vCPU to run on. 882 * @func: The function to be executed. 883 * @data: Data to pass to the function. 884 * 885 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 886 * while all other vCPUs are sleeping. 887 * 888 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 889 * BQL. 890 */ 891 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 892 893 /** 894 * cpu_in_exclusive_context() 895 * @cpu: The vCPU to check 896 * 897 * Returns true if @cpu is an exclusive context, for example running 898 * something which has previously been queued via async_safe_run_on_cpu(). 899 */ 900 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 901 { 902 return cpu->exclusive_context_count; 903 } 904 905 /** 906 * qemu_get_cpu: 907 * @index: The CPUState@cpu_index value of the CPU to obtain. 908 * 909 * Gets a CPU matching @index. 910 * 911 * Returns: The CPU or %NULL if there is no matching CPU. 912 */ 913 CPUState *qemu_get_cpu(int index); 914 915 /** 916 * cpu_exists: 917 * @id: Guest-exposed CPU ID to lookup. 918 * 919 * Search for CPU with specified ID. 920 * 921 * Returns: %true - CPU is found, %false - CPU isn't found. 922 */ 923 bool cpu_exists(int64_t id); 924 925 /** 926 * cpu_by_arch_id: 927 * @id: Guest-exposed CPU ID of the CPU to obtain. 928 * 929 * Get a CPU with matching @id. 930 * 931 * Returns: The CPU or %NULL if there is no matching CPU. 932 */ 933 CPUState *cpu_by_arch_id(int64_t id); 934 935 /** 936 * cpu_interrupt: 937 * @cpu: The CPU to set an interrupt on. 938 * @mask: The interrupts to set. 939 * 940 * Invokes the interrupt handler. 941 */ 942 943 void cpu_interrupt(CPUState *cpu, int mask); 944 945 /** 946 * cpu_set_pc: 947 * @cpu: The CPU to set the program counter for. 948 * @addr: Program counter value. 949 * 950 * Sets the program counter for a CPU. 951 */ 952 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 953 { 954 cpu->cc->set_pc(cpu, addr); 955 } 956 957 /** 958 * cpu_reset_interrupt: 959 * @cpu: The CPU to clear the interrupt on. 960 * @mask: The interrupt mask to clear. 961 * 962 * Resets interrupts on the vCPU @cpu. 963 */ 964 void cpu_reset_interrupt(CPUState *cpu, int mask); 965 966 /** 967 * cpu_exit: 968 * @cpu: The CPU to exit. 969 * 970 * Requests the CPU @cpu to exit execution. 971 */ 972 void cpu_exit(CPUState *cpu); 973 974 /** 975 * cpu_pause: 976 * @cpu: The CPU to pause. 977 * 978 * Pauses CPU, i.e. puts CPU into stopped state. 979 */ 980 void cpu_pause(CPUState *cpu); 981 982 /** 983 * cpu_resume: 984 * @cpu: The CPU to resume. 985 * 986 * Resumes CPU, i.e. puts CPU into runnable state. 987 */ 988 void cpu_resume(CPUState *cpu); 989 990 /** 991 * cpu_remove_sync: 992 * @cpu: The CPU to remove. 993 * 994 * Requests the CPU to be removed and waits till it is removed. 995 */ 996 void cpu_remove_sync(CPUState *cpu); 997 998 /** 999 * free_queued_cpu_work() - free all items on CPU work queue 1000 * @cpu: The CPU which work queue to free. 1001 */ 1002 void free_queued_cpu_work(CPUState *cpu); 1003 1004 /** 1005 * process_queued_cpu_work() - process all items on CPU work queue 1006 * @cpu: The CPU which work queue to process. 1007 */ 1008 void process_queued_cpu_work(CPUState *cpu); 1009 1010 /** 1011 * cpu_exec_start: 1012 * @cpu: The CPU for the current thread. 1013 * 1014 * Record that a CPU has started execution and can be interrupted with 1015 * cpu_exit. 1016 */ 1017 void cpu_exec_start(CPUState *cpu); 1018 1019 /** 1020 * cpu_exec_end: 1021 * @cpu: The CPU for the current thread. 1022 * 1023 * Record that a CPU has stopped execution and exclusive sections 1024 * can be executed without interrupting it. 1025 */ 1026 void cpu_exec_end(CPUState *cpu); 1027 1028 /** 1029 * start_exclusive: 1030 * 1031 * Wait for a concurrent exclusive section to end, and then start 1032 * a section of work that is run while other CPUs are not running 1033 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1034 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1035 * during the exclusive section go to sleep until this CPU calls 1036 * end_exclusive. 1037 */ 1038 void start_exclusive(void); 1039 1040 /** 1041 * end_exclusive: 1042 * 1043 * Concludes an exclusive execution section started by start_exclusive. 1044 */ 1045 void end_exclusive(void); 1046 1047 /** 1048 * qemu_init_vcpu: 1049 * @cpu: The vCPU to initialize. 1050 * 1051 * Initializes a vCPU. 1052 */ 1053 void qemu_init_vcpu(CPUState *cpu); 1054 1055 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1056 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1057 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1058 1059 /** 1060 * cpu_single_step: 1061 * @cpu: CPU to the flags for. 1062 * @enabled: Flags to enable. 1063 * 1064 * Enables or disables single-stepping for @cpu. 1065 */ 1066 void cpu_single_step(CPUState *cpu, int enabled); 1067 1068 /* Breakpoint/watchpoint flags */ 1069 #define BP_MEM_READ 0x01 1070 #define BP_MEM_WRITE 0x02 1071 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1072 #define BP_STOP_BEFORE_ACCESS 0x04 1073 /* 0x08 currently unused */ 1074 #define BP_GDB 0x10 1075 #define BP_CPU 0x20 1076 #define BP_ANY (BP_GDB | BP_CPU) 1077 #define BP_HIT_SHIFT 6 1078 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1079 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1080 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1081 1082 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1083 CPUBreakpoint **breakpoint); 1084 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1085 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1086 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1087 1088 /* Return true if PC matches an installed breakpoint. */ 1089 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1090 { 1091 CPUBreakpoint *bp; 1092 1093 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1094 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1095 if (bp->pc == pc && (bp->flags & mask)) { 1096 return true; 1097 } 1098 } 1099 } 1100 return false; 1101 } 1102 1103 /** 1104 * cpu_get_address_space: 1105 * @cpu: CPU to get address space from 1106 * @asidx: index identifying which address space to get 1107 * 1108 * Return the requested address space of this CPU. @asidx 1109 * specifies which address space to read. 1110 */ 1111 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1112 1113 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1114 G_GNUC_PRINTF(2, 3); 1115 1116 /* $(top_srcdir)/cpu.c */ 1117 void cpu_class_init_props(DeviceClass *dc); 1118 void cpu_exec_class_post_init(CPUClass *cc); 1119 void cpu_exec_initfn(CPUState *cpu); 1120 void cpu_vmstate_register(CPUState *cpu); 1121 void cpu_vmstate_unregister(CPUState *cpu); 1122 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1123 void cpu_exec_unrealizefn(CPUState *cpu); 1124 void cpu_exec_reset_hold(CPUState *cpu); 1125 1126 extern const VMStateDescription vmstate_cpu_common; 1127 1128 #define UNASSIGNED_CPU_INDEX -1 1129 #define UNASSIGNED_CLUSTER_INDEX -1 1130 1131 enum CacheType { 1132 DATA_CACHE, 1133 INSTRUCTION_CACHE, 1134 UNIFIED_CACHE 1135 }; 1136 1137 #endif 1138