xref: /openbmc/qemu/include/hw/core/cpu.h (revision 4d87fcdd)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 #include "qom/object.h"
34 
35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
36                                      void *opaque);
37 
38 /**
39  * vaddr:
40  * Type wide enough to contain any #target_ulong virtual address.
41  */
42 typedef uint64_t vaddr;
43 #define VADDR_PRId PRId64
44 #define VADDR_PRIu PRIu64
45 #define VADDR_PRIo PRIo64
46 #define VADDR_PRIx PRIx64
47 #define VADDR_PRIX PRIX64
48 #define VADDR_MAX UINT64_MAX
49 
50 /**
51  * SECTION:cpu
52  * @section_id: QEMU-cpu
53  * @title: CPU Class
54  * @short_description: Base class for all CPUs
55  */
56 
57 #define TYPE_CPU "cpu"
58 
59 /* Since this macro is used a lot in hot code paths and in conjunction with
60  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
61  * an unchecked cast.
62  */
63 #define CPU(obj) ((CPUState *)(obj))
64 
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 typedef enum MMUAccessType {
70     MMU_DATA_LOAD  = 0,
71     MMU_DATA_STORE = 1,
72     MMU_INST_FETCH = 2
73 } MMUAccessType;
74 
75 typedef struct CPUWatchpoint CPUWatchpoint;
76 
77 /* see tcg-cpu-ops.h */
78 struct TCGCPUOps;
79 
80 /* see accel-cpu.h */
81 struct AccelCPUClass;
82 
83 /**
84  * CPUClass:
85  * @class_by_name: Callback to map -cpu command line model name to an
86  * instantiatable CPU type.
87  * @parse_features: Callback to parse command line arguments.
88  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
89  * @has_work: Callback for checking if there is work to do.
90  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
91  * runtime configurable endianness is currently big-endian. Non-configurable
92  * CPUs can use the default implementation of this method. This method should
93  * not be used by any callers other than the pre-1.0 virtio devices.
94  * @memory_rw_debug: Callback for GDB memory access.
95  * @dump_state: Callback for dumping state.
96  * @dump_statistics: Callback for dumping statistics.
97  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
98  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
99  * @get_memory_mapping: Callback for obtaining the memory mappings.
100  * @set_pc: Callback for setting the Program Counter register. This
101  *       should have the semantics used by the target architecture when
102  *       setting the PC from a source such as an ELF file entry point;
103  *       for example on Arm it will also set the Thumb mode bit based
104  *       on the least significant bit of the new PC value.
105  *       If the target behaviour here is anything other than "set
106  *       the PC register to the value passed in" then the target must
107  *       also implement the synchronize_from_tb hook.
108  * @get_phys_page_debug: Callback for obtaining a physical address.
109  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
110  *       associated memory transaction attributes to use for the access.
111  *       CPUs which use memory transaction attributes should implement this
112  *       instead of get_phys_page_debug.
113  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
114  *       a memory access with the specified memory transaction attributes.
115  * @gdb_read_register: Callback for letting GDB read a register.
116  * @gdb_write_register: Callback for letting GDB write a register.
117  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
118  * 64-bit VM coredump.
119  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
120  * note to a 32-bit VM coredump.
121  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
122  * 32-bit VM coredump.
123  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
124  * note to a 32-bit VM coredump.
125  * @vmsd: State description for migration.
126  * @gdb_num_core_regs: Number of core registers accessible to GDB.
127  * @gdb_core_xml_file: File name for core registers GDB XML description.
128  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
129  *           before the insn which triggers a watchpoint rather than after it.
130  * @gdb_arch_name: Optional callback that returns the architecture name known
131  * to GDB. The caller must free the returned string with g_free.
132  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
133  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
134  *   or NULL if the CPU doesn't have a dynamically generated content for it.
135  * @disas_set_info: Setup architecture specific components of disassembly info
136  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
137  * address before attempting to match it against watchpoints.
138  * @deprecation_note: If this CPUClass is deprecated, this field provides
139  *                    related information.
140  *
141  * Represents a CPU family or model.
142  */
143 struct CPUClass {
144     /*< private >*/
145     DeviceClass parent_class;
146     /*< public >*/
147 
148     ObjectClass *(*class_by_name)(const char *cpu_model);
149     void (*parse_features)(const char *typename, char *str, Error **errp);
150 
151     int reset_dump_flags;
152     bool (*has_work)(CPUState *cpu);
153     bool (*virtio_is_big_endian)(CPUState *cpu);
154     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
155                            uint8_t *buf, int len, bool is_write);
156     void (*dump_state)(CPUState *cpu, FILE *, int flags);
157     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
158     void (*dump_statistics)(CPUState *cpu, int flags);
159     int64_t (*get_arch_id)(CPUState *cpu);
160     bool (*get_paging_enabled)(const CPUState *cpu);
161     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
162                                Error **errp);
163     void (*set_pc)(CPUState *cpu, vaddr value);
164     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
165     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
166                                         MemTxAttrs *attrs);
167     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
168     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
169     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
170 
171     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
172                             int cpuid, void *opaque);
173     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
174                                 void *opaque);
175     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
176                             int cpuid, void *opaque);
177     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
178                                 void *opaque);
179 
180     const VMStateDescription *vmsd;
181     const char *gdb_core_xml_file;
182     gchar * (*gdb_arch_name)(CPUState *cpu);
183     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
184 
185     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
186 
187     const char *deprecation_note;
188     /* Keep non-pointer data at the end to minimize holes.  */
189     int gdb_num_core_regs;
190     bool gdb_stop_before_watchpoint;
191     struct AccelCPUClass *accel_cpu;
192 
193     /* when TCG is not available, this pointer is NULL */
194     struct TCGCPUOps *tcg_ops;
195 
196     /*
197      * if not NULL, this is called in order for the CPUClass to initialize
198      * class data that depends on the accelerator, see accel/accel-common.c.
199      */
200     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
201 };
202 
203 /*
204  * Low 16 bits: number of cycles left, used only in icount mode.
205  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
206  * for this CPU and return to its top level loop (even in non-icount mode).
207  * This allows a single read-compare-cbranch-write sequence to test
208  * for both decrementer underflow and exceptions.
209  */
210 typedef union IcountDecr {
211     uint32_t u32;
212     struct {
213 #ifdef HOST_WORDS_BIGENDIAN
214         uint16_t high;
215         uint16_t low;
216 #else
217         uint16_t low;
218         uint16_t high;
219 #endif
220     } u16;
221 } IcountDecr;
222 
223 typedef struct CPUBreakpoint {
224     vaddr pc;
225     int flags; /* BP_* */
226     QTAILQ_ENTRY(CPUBreakpoint) entry;
227 } CPUBreakpoint;
228 
229 struct CPUWatchpoint {
230     vaddr vaddr;
231     vaddr len;
232     vaddr hitaddr;
233     MemTxAttrs hitattrs;
234     int flags; /* BP_* */
235     QTAILQ_ENTRY(CPUWatchpoint) entry;
236 };
237 
238 #ifdef CONFIG_PLUGIN
239 /*
240  * For plugins we sometime need to save the resolved iotlb data before
241  * the memory regions get moved around  by io_writex.
242  */
243 typedef struct SavedIOTLB {
244     hwaddr addr;
245     MemoryRegionSection *section;
246     hwaddr mr_offset;
247 } SavedIOTLB;
248 #endif
249 
250 struct KVMState;
251 struct kvm_run;
252 
253 struct hax_vcpu_state;
254 
255 #define TB_JMP_CACHE_BITS 12
256 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
257 
258 /* work queue */
259 
260 /* The union type allows passing of 64 bit target pointers on 32 bit
261  * hosts in a single parameter
262  */
263 typedef union {
264     int           host_int;
265     unsigned long host_ulong;
266     void         *host_ptr;
267     vaddr         target_ptr;
268 } run_on_cpu_data;
269 
270 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
271 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
272 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
273 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
274 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
275 
276 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
277 
278 struct qemu_work_item;
279 
280 #define CPU_UNSET_NUMA_NODE_ID -1
281 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
282 
283 /**
284  * CPUState:
285  * @cpu_index: CPU index (informative).
286  * @cluster_index: Identifies which cluster this CPU is in.
287  *   For boards which don't define clusters or for "loose" CPUs not assigned
288  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
289  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
290  *   QOM parent.
291  * @tcg_cflags: Pre-computed cflags for this cpu.
292  * @nr_cores: Number of cores within this CPU package.
293  * @nr_threads: Number of threads within this CPU.
294  * @running: #true if CPU is currently running (lockless).
295  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
296  * valid under cpu_list_lock.
297  * @created: Indicates whether the CPU thread has been successfully created.
298  * @interrupt_request: Indicates a pending interrupt request.
299  * @halted: Nonzero if the CPU is in suspended state.
300  * @stop: Indicates a pending stop request.
301  * @stopped: Indicates the CPU has been artificially stopped.
302  * @unplug: Indicates a pending CPU unplug request.
303  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
304  * @singlestep_enabled: Flags for single-stepping.
305  * @icount_extra: Instructions until next timer event.
306  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
307  * requires that IO only be performed on the last instruction of a TB
308  * so that interrupts take effect immediately.
309  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
310  *            AddressSpaces this CPU has)
311  * @num_ases: number of CPUAddressSpaces in @cpu_ases
312  * @as: Pointer to the first AddressSpace, for the convenience of targets which
313  *      only have a single AddressSpace
314  * @env_ptr: Pointer to subclass-specific CPUArchState field.
315  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
316  * @gdb_regs: Additional GDB registers.
317  * @gdb_num_regs: Number of total registers accessible to GDB.
318  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
319  * @next_cpu: Next CPU sharing TB cache.
320  * @opaque: User data.
321  * @mem_io_pc: Host Program Counter at which the memory was accessed.
322  * @kvm_fd: vCPU file descriptor for KVM.
323  * @work_mutex: Lock to prevent multiple access to @work_list.
324  * @work_list: List of pending asynchronous work.
325  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
326  *                        to @trace_dstate).
327  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
328  * @plugin_mask: Plugin event bitmap. Modified only via async work.
329  * @ignore_memory_transaction_failures: Cached copy of the MachineState
330  *    flag of the same name: allows the board to suppress calling of the
331  *    CPU do_transaction_failed hook function.
332  *
333  * State of one CPU core or thread.
334  */
335 struct CPUState {
336     /*< private >*/
337     DeviceState parent_obj;
338     /*< public >*/
339 
340     int nr_cores;
341     int nr_threads;
342 
343     struct QemuThread *thread;
344 #ifdef _WIN32
345     HANDLE hThread;
346 #endif
347     int thread_id;
348     bool running, has_waiter;
349     struct QemuCond *halt_cond;
350     bool thread_kicked;
351     bool created;
352     bool stop;
353     bool stopped;
354 
355     /* Should CPU start in powered-off state? */
356     bool start_powered_off;
357 
358     bool unplug;
359     bool crash_occurred;
360     bool exit_request;
361     bool in_exclusive_context;
362     uint32_t cflags_next_tb;
363     /* updates protected by BQL */
364     uint32_t interrupt_request;
365     int singlestep_enabled;
366     int64_t icount_budget;
367     int64_t icount_extra;
368     uint64_t random_seed;
369     sigjmp_buf jmp_env;
370 
371     QemuMutex work_mutex;
372     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
373 
374     CPUAddressSpace *cpu_ases;
375     int num_ases;
376     AddressSpace *as;
377     MemoryRegion *memory;
378 
379     void *env_ptr; /* CPUArchState */
380     IcountDecr *icount_decr_ptr;
381 
382     /* Accessed in parallel; all accesses must be atomic */
383     TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
384 
385     struct GDBRegisterState *gdb_regs;
386     int gdb_num_regs;
387     int gdb_num_g_regs;
388     QTAILQ_ENTRY(CPUState) node;
389 
390     /* ice debug support */
391     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
392 
393     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
394     CPUWatchpoint *watchpoint_hit;
395 
396     void *opaque;
397 
398     /* In order to avoid passing too many arguments to the MMIO helpers,
399      * we store some rarely used information in the CPU context.
400      */
401     uintptr_t mem_io_pc;
402 
403     int kvm_fd;
404     struct KVMState *kvm_state;
405     struct kvm_run *kvm_run;
406 
407     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
408     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
409     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
410 
411     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
412 
413 #ifdef CONFIG_PLUGIN
414     GArray *plugin_mem_cbs;
415     /* saved iotlb data from io_writex */
416     SavedIOTLB saved_iotlb;
417 #endif
418 
419     /* TODO Move common fields from CPUArchState here. */
420     int cpu_index;
421     int cluster_index;
422     uint32_t tcg_cflags;
423     uint32_t halted;
424     uint32_t can_do_io;
425     int32_t exception_index;
426 
427     /* shared by kvm, hax and hvf */
428     bool vcpu_dirty;
429 
430     /* Used to keep track of an outstanding cpu throttle thread for migration
431      * autoconverge
432      */
433     bool throttle_thread_scheduled;
434 
435     bool ignore_memory_transaction_failures;
436 
437     struct hax_vcpu_state *hax_vcpu;
438 
439     int hvf_fd;
440 
441     /* track IOMMUs whose translations we've cached in the TCG TLB */
442     GArray *iommu_notifiers;
443 };
444 
445 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
446 extern CPUTailQ cpus;
447 
448 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
449 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
450 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
451 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
452     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
453 
454 extern __thread CPUState *current_cpu;
455 
456 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
457 {
458     unsigned int i;
459 
460     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
461         qatomic_set(&cpu->tb_jmp_cache[i], NULL);
462     }
463 }
464 
465 /**
466  * qemu_tcg_mttcg_enabled:
467  * Check whether we are running MultiThread TCG or not.
468  *
469  * Returns: %true if we are in MTTCG mode %false otherwise.
470  */
471 extern bool mttcg_enabled;
472 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
473 
474 /**
475  * cpu_paging_enabled:
476  * @cpu: The CPU whose state is to be inspected.
477  *
478  * Returns: %true if paging is enabled, %false otherwise.
479  */
480 bool cpu_paging_enabled(const CPUState *cpu);
481 
482 /**
483  * cpu_get_memory_mapping:
484  * @cpu: The CPU whose memory mappings are to be obtained.
485  * @list: Where to write the memory mappings to.
486  * @errp: Pointer for reporting an #Error.
487  */
488 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
489                             Error **errp);
490 
491 #if !defined(CONFIG_USER_ONLY)
492 
493 /**
494  * cpu_write_elf64_note:
495  * @f: pointer to a function that writes memory to a file
496  * @cpu: The CPU whose memory is to be dumped
497  * @cpuid: ID number of the CPU
498  * @opaque: pointer to the CPUState struct
499  */
500 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
501                          int cpuid, void *opaque);
502 
503 /**
504  * cpu_write_elf64_qemunote:
505  * @f: pointer to a function that writes memory to a file
506  * @cpu: The CPU whose memory is to be dumped
507  * @cpuid: ID number of the CPU
508  * @opaque: pointer to the CPUState struct
509  */
510 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
511                              void *opaque);
512 
513 /**
514  * cpu_write_elf32_note:
515  * @f: pointer to a function that writes memory to a file
516  * @cpu: The CPU whose memory is to be dumped
517  * @cpuid: ID number of the CPU
518  * @opaque: pointer to the CPUState struct
519  */
520 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
521                          int cpuid, void *opaque);
522 
523 /**
524  * cpu_write_elf32_qemunote:
525  * @f: pointer to a function that writes memory to a file
526  * @cpu: The CPU whose memory is to be dumped
527  * @cpuid: ID number of the CPU
528  * @opaque: pointer to the CPUState struct
529  */
530 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
531                              void *opaque);
532 
533 /**
534  * cpu_get_crash_info:
535  * @cpu: The CPU to get crash information for
536  *
537  * Gets the previously saved crash information.
538  * Caller is responsible for freeing the data.
539  */
540 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
541 
542 #endif /* !CONFIG_USER_ONLY */
543 
544 /**
545  * CPUDumpFlags:
546  * @CPU_DUMP_CODE:
547  * @CPU_DUMP_FPU: dump FPU register state, not just integer
548  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
549  */
550 enum CPUDumpFlags {
551     CPU_DUMP_CODE = 0x00010000,
552     CPU_DUMP_FPU  = 0x00020000,
553     CPU_DUMP_CCOP = 0x00040000,
554 };
555 
556 /**
557  * cpu_dump_state:
558  * @cpu: The CPU whose state is to be dumped.
559  * @f: If non-null, dump to this stream, else to current print sink.
560  *
561  * Dumps CPU state.
562  */
563 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
564 
565 /**
566  * cpu_dump_statistics:
567  * @cpu: The CPU whose state is to be dumped.
568  * @flags: Flags what to dump.
569  *
570  * Dump CPU statistics to the current monitor if we have one, else to
571  * stdout.
572  */
573 void cpu_dump_statistics(CPUState *cpu, int flags);
574 
575 #ifndef CONFIG_USER_ONLY
576 /**
577  * cpu_get_phys_page_attrs_debug:
578  * @cpu: The CPU to obtain the physical page address for.
579  * @addr: The virtual address.
580  * @attrs: Updated on return with the memory transaction attributes to use
581  *         for this access.
582  *
583  * Obtains the physical page corresponding to a virtual one, together
584  * with the corresponding memory transaction attributes to use for the access.
585  * Use it only for debugging because no protection checks are done.
586  *
587  * Returns: Corresponding physical page address or -1 if no page found.
588  */
589 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
590                                                    MemTxAttrs *attrs)
591 {
592     CPUClass *cc = CPU_GET_CLASS(cpu);
593 
594     if (cc->get_phys_page_attrs_debug) {
595         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
596     }
597     /* Fallback for CPUs which don't implement the _attrs_ hook */
598     *attrs = MEMTXATTRS_UNSPECIFIED;
599     return cc->get_phys_page_debug(cpu, addr);
600 }
601 
602 /**
603  * cpu_get_phys_page_debug:
604  * @cpu: The CPU to obtain the physical page address for.
605  * @addr: The virtual address.
606  *
607  * Obtains the physical page corresponding to a virtual one.
608  * Use it only for debugging because no protection checks are done.
609  *
610  * Returns: Corresponding physical page address or -1 if no page found.
611  */
612 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
613 {
614     MemTxAttrs attrs = {};
615 
616     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
617 }
618 
619 /** cpu_asidx_from_attrs:
620  * @cpu: CPU
621  * @attrs: memory transaction attributes
622  *
623  * Returns the address space index specifying the CPU AddressSpace
624  * to use for a memory access with the given transaction attributes.
625  */
626 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
627 {
628     CPUClass *cc = CPU_GET_CLASS(cpu);
629     int ret = 0;
630 
631     if (cc->asidx_from_attrs) {
632         ret = cc->asidx_from_attrs(cpu, attrs);
633         assert(ret < cpu->num_ases && ret >= 0);
634     }
635     return ret;
636 }
637 
638 #endif /* CONFIG_USER_ONLY */
639 
640 /**
641  * cpu_list_add:
642  * @cpu: The CPU to be added to the list of CPUs.
643  */
644 void cpu_list_add(CPUState *cpu);
645 
646 /**
647  * cpu_list_remove:
648  * @cpu: The CPU to be removed from the list of CPUs.
649  */
650 void cpu_list_remove(CPUState *cpu);
651 
652 /**
653  * cpu_reset:
654  * @cpu: The CPU whose state is to be reset.
655  */
656 void cpu_reset(CPUState *cpu);
657 
658 /**
659  * cpu_class_by_name:
660  * @typename: The CPU base type.
661  * @cpu_model: The model string without any parameters.
662  *
663  * Looks up a CPU #ObjectClass matching name @cpu_model.
664  *
665  * Returns: A #CPUClass or %NULL if not matching class is found.
666  */
667 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
668 
669 /**
670  * cpu_create:
671  * @typename: The CPU type.
672  *
673  * Instantiates a CPU and realizes the CPU.
674  *
675  * Returns: A #CPUState or %NULL if an error occurred.
676  */
677 CPUState *cpu_create(const char *typename);
678 
679 /**
680  * parse_cpu_option:
681  * @cpu_option: The -cpu option including optional parameters.
682  *
683  * processes optional parameters and registers them as global properties
684  *
685  * Returns: type of CPU to create or prints error and terminates process
686  *          if an error occurred.
687  */
688 const char *parse_cpu_option(const char *cpu_option);
689 
690 /**
691  * cpu_has_work:
692  * @cpu: The vCPU to check.
693  *
694  * Checks whether the CPU has work to do.
695  *
696  * Returns: %true if the CPU has work, %false otherwise.
697  */
698 static inline bool cpu_has_work(CPUState *cpu)
699 {
700     CPUClass *cc = CPU_GET_CLASS(cpu);
701 
702     g_assert(cc->has_work);
703     return cc->has_work(cpu);
704 }
705 
706 /**
707  * qemu_cpu_is_self:
708  * @cpu: The vCPU to check against.
709  *
710  * Checks whether the caller is executing on the vCPU thread.
711  *
712  * Returns: %true if called from @cpu's thread, %false otherwise.
713  */
714 bool qemu_cpu_is_self(CPUState *cpu);
715 
716 /**
717  * qemu_cpu_kick:
718  * @cpu: The vCPU to kick.
719  *
720  * Kicks @cpu's thread.
721  */
722 void qemu_cpu_kick(CPUState *cpu);
723 
724 /**
725  * cpu_is_stopped:
726  * @cpu: The CPU to check.
727  *
728  * Checks whether the CPU is stopped.
729  *
730  * Returns: %true if run state is not running or if artificially stopped;
731  * %false otherwise.
732  */
733 bool cpu_is_stopped(CPUState *cpu);
734 
735 /**
736  * do_run_on_cpu:
737  * @cpu: The vCPU to run on.
738  * @func: The function to be executed.
739  * @data: Data to pass to the function.
740  * @mutex: Mutex to release while waiting for @func to run.
741  *
742  * Used internally in the implementation of run_on_cpu.
743  */
744 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
745                    QemuMutex *mutex);
746 
747 /**
748  * run_on_cpu:
749  * @cpu: The vCPU to run on.
750  * @func: The function to be executed.
751  * @data: Data to pass to the function.
752  *
753  * Schedules the function @func for execution on the vCPU @cpu.
754  */
755 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
756 
757 /**
758  * async_run_on_cpu:
759  * @cpu: The vCPU to run on.
760  * @func: The function to be executed.
761  * @data: Data to pass to the function.
762  *
763  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
764  */
765 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
766 
767 /**
768  * async_safe_run_on_cpu:
769  * @cpu: The vCPU to run on.
770  * @func: The function to be executed.
771  * @data: Data to pass to the function.
772  *
773  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
774  * while all other vCPUs are sleeping.
775  *
776  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
777  * BQL.
778  */
779 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
780 
781 /**
782  * cpu_in_exclusive_context()
783  * @cpu: The vCPU to check
784  *
785  * Returns true if @cpu is an exclusive context, for example running
786  * something which has previously been queued via async_safe_run_on_cpu().
787  */
788 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
789 {
790     return cpu->in_exclusive_context;
791 }
792 
793 /**
794  * qemu_get_cpu:
795  * @index: The CPUState@cpu_index value of the CPU to obtain.
796  *
797  * Gets a CPU matching @index.
798  *
799  * Returns: The CPU or %NULL if there is no matching CPU.
800  */
801 CPUState *qemu_get_cpu(int index);
802 
803 /**
804  * cpu_exists:
805  * @id: Guest-exposed CPU ID to lookup.
806  *
807  * Search for CPU with specified ID.
808  *
809  * Returns: %true - CPU is found, %false - CPU isn't found.
810  */
811 bool cpu_exists(int64_t id);
812 
813 /**
814  * cpu_by_arch_id:
815  * @id: Guest-exposed CPU ID of the CPU to obtain.
816  *
817  * Get a CPU with matching @id.
818  *
819  * Returns: The CPU or %NULL if there is no matching CPU.
820  */
821 CPUState *cpu_by_arch_id(int64_t id);
822 
823 /**
824  * cpu_interrupt:
825  * @cpu: The CPU to set an interrupt on.
826  * @mask: The interrupts to set.
827  *
828  * Invokes the interrupt handler.
829  */
830 
831 void cpu_interrupt(CPUState *cpu, int mask);
832 
833 /**
834  * cpu_set_pc:
835  * @cpu: The CPU to set the program counter for.
836  * @addr: Program counter value.
837  *
838  * Sets the program counter for a CPU.
839  */
840 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
841 {
842     CPUClass *cc = CPU_GET_CLASS(cpu);
843 
844     cc->set_pc(cpu, addr);
845 }
846 
847 /**
848  * cpu_reset_interrupt:
849  * @cpu: The CPU to clear the interrupt on.
850  * @mask: The interrupt mask to clear.
851  *
852  * Resets interrupts on the vCPU @cpu.
853  */
854 void cpu_reset_interrupt(CPUState *cpu, int mask);
855 
856 /**
857  * cpu_exit:
858  * @cpu: The CPU to exit.
859  *
860  * Requests the CPU @cpu to exit execution.
861  */
862 void cpu_exit(CPUState *cpu);
863 
864 /**
865  * cpu_resume:
866  * @cpu: The CPU to resume.
867  *
868  * Resumes CPU, i.e. puts CPU into runnable state.
869  */
870 void cpu_resume(CPUState *cpu);
871 
872 /**
873  * cpu_remove_sync:
874  * @cpu: The CPU to remove.
875  *
876  * Requests the CPU to be removed and waits till it is removed.
877  */
878 void cpu_remove_sync(CPUState *cpu);
879 
880 /**
881  * process_queued_cpu_work() - process all items on CPU work queue
882  * @cpu: The CPU which work queue to process.
883  */
884 void process_queued_cpu_work(CPUState *cpu);
885 
886 /**
887  * cpu_exec_start:
888  * @cpu: The CPU for the current thread.
889  *
890  * Record that a CPU has started execution and can be interrupted with
891  * cpu_exit.
892  */
893 void cpu_exec_start(CPUState *cpu);
894 
895 /**
896  * cpu_exec_end:
897  * @cpu: The CPU for the current thread.
898  *
899  * Record that a CPU has stopped execution and exclusive sections
900  * can be executed without interrupting it.
901  */
902 void cpu_exec_end(CPUState *cpu);
903 
904 /**
905  * start_exclusive:
906  *
907  * Wait for a concurrent exclusive section to end, and then start
908  * a section of work that is run while other CPUs are not running
909  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
910  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
911  * during the exclusive section go to sleep until this CPU calls
912  * end_exclusive.
913  */
914 void start_exclusive(void);
915 
916 /**
917  * end_exclusive:
918  *
919  * Concludes an exclusive execution section started by start_exclusive.
920  */
921 void end_exclusive(void);
922 
923 /**
924  * qemu_init_vcpu:
925  * @cpu: The vCPU to initialize.
926  *
927  * Initializes a vCPU.
928  */
929 void qemu_init_vcpu(CPUState *cpu);
930 
931 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
932 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
933 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
934 
935 /**
936  * cpu_single_step:
937  * @cpu: CPU to the flags for.
938  * @enabled: Flags to enable.
939  *
940  * Enables or disables single-stepping for @cpu.
941  */
942 void cpu_single_step(CPUState *cpu, int enabled);
943 
944 /* Breakpoint/watchpoint flags */
945 #define BP_MEM_READ           0x01
946 #define BP_MEM_WRITE          0x02
947 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
948 #define BP_STOP_BEFORE_ACCESS 0x04
949 /* 0x08 currently unused */
950 #define BP_GDB                0x10
951 #define BP_CPU                0x20
952 #define BP_ANY                (BP_GDB | BP_CPU)
953 #define BP_WATCHPOINT_HIT_READ 0x40
954 #define BP_WATCHPOINT_HIT_WRITE 0x80
955 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
956 
957 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
958                           CPUBreakpoint **breakpoint);
959 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
960 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
961 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
962 
963 /* Return true if PC matches an installed breakpoint.  */
964 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
965 {
966     CPUBreakpoint *bp;
967 
968     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
969         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
970             if (bp->pc == pc && (bp->flags & mask)) {
971                 return true;
972             }
973         }
974     }
975     return false;
976 }
977 
978 #ifdef CONFIG_USER_ONLY
979 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
980                                         int flags, CPUWatchpoint **watchpoint)
981 {
982     return -ENOSYS;
983 }
984 
985 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
986                                         vaddr len, int flags)
987 {
988     return -ENOSYS;
989 }
990 
991 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
992                                                 CPUWatchpoint *wp)
993 {
994 }
995 
996 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
997 {
998 }
999 
1000 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1001                                         MemTxAttrs atr, int fl, uintptr_t ra)
1002 {
1003 }
1004 
1005 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1006                                                  vaddr addr, vaddr len)
1007 {
1008     return 0;
1009 }
1010 #else
1011 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1012                           int flags, CPUWatchpoint **watchpoint);
1013 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1014                           vaddr len, int flags);
1015 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1016 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1017 
1018 /**
1019  * cpu_check_watchpoint:
1020  * @cpu: cpu context
1021  * @addr: guest virtual address
1022  * @len: access length
1023  * @attrs: memory access attributes
1024  * @flags: watchpoint access type
1025  * @ra: unwind return address
1026  *
1027  * Check for a watchpoint hit in [addr, addr+len) of the type
1028  * specified by @flags.  Exit via exception with a hit.
1029  */
1030 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1031                           MemTxAttrs attrs, int flags, uintptr_t ra);
1032 
1033 /**
1034  * cpu_watchpoint_address_matches:
1035  * @cpu: cpu context
1036  * @addr: guest virtual address
1037  * @len: access length
1038  *
1039  * Return the watchpoint flags that apply to [addr, addr+len).
1040  * If no watchpoint is registered for the range, the result is 0.
1041  */
1042 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1043 #endif
1044 
1045 /**
1046  * cpu_get_address_space:
1047  * @cpu: CPU to get address space from
1048  * @asidx: index identifying which address space to get
1049  *
1050  * Return the requested address space of this CPU. @asidx
1051  * specifies which address space to read.
1052  */
1053 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1054 
1055 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1056     GCC_FMT_ATTR(2, 3);
1057 
1058 /* $(top_srcdir)/cpu.c */
1059 void cpu_exec_initfn(CPUState *cpu);
1060 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1061 void cpu_exec_unrealizefn(CPUState *cpu);
1062 
1063 /**
1064  * target_words_bigendian:
1065  * Returns true if the (default) endianness of the target is big endian,
1066  * false otherwise. Note that in target-specific code, you can use
1067  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1068  * code should normally never need to know about the endianness of the
1069  * target, so please do *not* use this function unless you know very well
1070  * what you are doing!
1071  */
1072 bool target_words_bigendian(void);
1073 
1074 #ifdef NEED_CPU_H
1075 
1076 #ifdef CONFIG_SOFTMMU
1077 extern const VMStateDescription vmstate_cpu_common;
1078 #else
1079 #define vmstate_cpu_common vmstate_dummy
1080 #endif
1081 
1082 #define VMSTATE_CPU() {                                                     \
1083     .name = "parent_obj",                                                   \
1084     .size = sizeof(CPUState),                                               \
1085     .vmsd = &vmstate_cpu_common,                                            \
1086     .flags = VMS_STRUCT,                                                    \
1087     .offset = 0,                                                            \
1088 }
1089 
1090 #endif /* NEED_CPU_H */
1091 
1092 #define UNASSIGNED_CPU_INDEX -1
1093 #define UNASSIGNED_CLUSTER_INDEX -1
1094 
1095 #endif
1096