1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/breakpoint.h" 26 #include "exec/hwaddr.h" 27 #include "exec/vaddr.h" 28 #include "exec/memattrs.h" 29 #include "exec/mmu-access-type.h" 30 #include "exec/tlb-common.h" 31 #include "qapi/qapi-types-machine.h" 32 #include "qapi/qapi-types-run-state.h" 33 #include "qemu/bitmap.h" 34 #include "qemu/rcu_queue.h" 35 #include "qemu/queue.h" 36 #include "qemu/lockcnt.h" 37 #include "qemu/thread.h" 38 #include "qom/object.h" 39 40 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 41 void *opaque); 42 43 /** 44 * SECTION:cpu 45 * @section_id: QEMU-cpu 46 * @title: CPU Class 47 * @short_description: Base class for all CPUs 48 */ 49 50 #define TYPE_CPU "cpu" 51 52 /* Since this macro is used a lot in hot code paths and in conjunction with 53 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 54 * an unchecked cast. 55 */ 56 #define CPU(obj) ((CPUState *)(obj)) 57 58 /* 59 * The class checkers bring in CPU_GET_CLASS() which is potentially 60 * expensive given the eventual call to 61 * object_class_dynamic_cast_assert(). Because of this the CPUState 62 * has a cached value for the class in cs->cc which is set up in 63 * cpu_exec_realizefn() for use in hot code paths. 64 */ 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 /** 70 * OBJECT_DECLARE_CPU_TYPE: 71 * @CpuInstanceType: instance struct name 72 * @CpuClassType: class struct name 73 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 74 * 75 * This macro is typically used in "cpu-qom.h" header file, and will: 76 * 77 * - create the typedefs for the CPU object and class structs 78 * - register the type for use with g_autoptr 79 * - provide three standard type cast functions 80 * 81 * The object struct and class struct need to be declared manually. 82 */ 83 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 84 typedef struct ArchCPU CpuInstanceType; \ 85 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 86 87 typedef struct CPUWatchpoint CPUWatchpoint; 88 89 /* see physmem.c */ 90 struct CPUAddressSpace; 91 92 /* see accel/tcg/tb-jmp-cache.h */ 93 struct CPUJumpCache; 94 95 /* see accel-cpu.h */ 96 struct AccelCPUClass; 97 98 /* see sysemu-cpu-ops.h */ 99 struct SysemuCPUOps; 100 101 /** 102 * CPUClass: 103 * @class_by_name: Callback to map -cpu command line model name to an 104 * instantiatable CPU type. 105 * @parse_features: Callback to parse command line arguments. 106 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 107 * @has_work: Callback for checking if there is work to do. 108 * @mmu_index: Callback for choosing softmmu mmu index; 109 * may be used internally by memory_rw_debug without TCG. 110 * @memory_rw_debug: Callback for GDB memory access. 111 * @dump_state: Callback for dumping state. 112 * @query_cpu_fast: 113 * Fill in target specific information for the "query-cpus-fast" 114 * QAPI call. 115 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 116 * @set_pc: Callback for setting the Program Counter register. This 117 * should have the semantics used by the target architecture when 118 * setting the PC from a source such as an ELF file entry point; 119 * for example on Arm it will also set the Thumb mode bit based 120 * on the least significant bit of the new PC value. 121 * If the target behaviour here is anything other than "set 122 * the PC register to the value passed in" then the target must 123 * also implement the synchronize_from_tb hook. 124 * @get_pc: Callback for getting the Program Counter register. 125 * As above, with the semantics of the target architecture. 126 * @gdb_read_register: Callback for letting GDB read a register. 127 * @gdb_write_register: Callback for letting GDB write a register. 128 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 129 * breakpoint. Used by AVR to handle a gdb mis-feature with 130 * its Harvard architecture split code and data. 131 * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer 132 * from @gdb_core_xml_file. 133 * @gdb_core_xml_file: File name for core registers GDB XML description. 134 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 135 * before the insn which triggers a watchpoint rather than after it. 136 * @gdb_arch_name: Optional callback that returns the architecture name known 137 * to GDB. The caller must free the returned string with g_free. 138 * @disas_set_info: Setup architecture specific components of disassembly info 139 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 140 * address before attempting to match it against watchpoints. 141 * @deprecation_note: If this CPUClass is deprecated, this field provides 142 * related information. 143 * 144 * Represents a CPU family or model. 145 */ 146 struct CPUClass { 147 /*< private >*/ 148 DeviceClass parent_class; 149 /*< public >*/ 150 151 ObjectClass *(*class_by_name)(const char *cpu_model); 152 void (*parse_features)(const char *typename, char *str, Error **errp); 153 154 bool (*has_work)(CPUState *cpu); 155 int (*mmu_index)(CPUState *cpu, bool ifetch); 156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 157 uint8_t *buf, int len, bool is_write); 158 void (*dump_state)(CPUState *cpu, FILE *, int flags); 159 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 160 int64_t (*get_arch_id)(CPUState *cpu); 161 bool (*cpu_persistent_status)(CPUState *cpu); 162 bool (*cpu_enabled_status)(CPUState *cpu); 163 void (*set_pc)(CPUState *cpu, vaddr value); 164 vaddr (*get_pc)(CPUState *cpu); 165 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 166 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 167 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 168 169 const char *gdb_core_xml_file; 170 const gchar * (*gdb_arch_name)(CPUState *cpu); 171 172 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 173 174 const char *deprecation_note; 175 struct AccelCPUClass *accel_cpu; 176 177 /* when system emulation is not available, this pointer is NULL */ 178 const struct SysemuCPUOps *sysemu_ops; 179 180 /* when TCG is not available, this pointer is NULL */ 181 const TCGCPUOps *tcg_ops; 182 183 /* 184 * if not NULL, this is called in order for the CPUClass to initialize 185 * class data that depends on the accelerator, see accel/accel-common.c. 186 */ 187 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 188 189 /* 190 * Keep non-pointer data at the end to minimize holes. 191 */ 192 int reset_dump_flags; 193 int gdb_num_core_regs; 194 bool gdb_stop_before_watchpoint; 195 }; 196 197 /* 198 * Fix the number of mmu modes to 16, which is also the maximum 199 * supported by the softmmu tlb api. 200 */ 201 #define NB_MMU_MODES 16 202 203 /* Use a fully associative victim tlb of 8 entries. */ 204 #define CPU_VTLB_SIZE 8 205 206 /* 207 * The full TLB entry, which is not accessed by generated TCG code, 208 * so the layout is not as critical as that of CPUTLBEntry. This is 209 * also why we don't want to combine the two structs. 210 */ 211 struct CPUTLBEntryFull { 212 /* 213 * @xlat_section contains: 214 * - in the lower TARGET_PAGE_BITS, a physical section number 215 * - with the lower TARGET_PAGE_BITS masked off, an offset which 216 * must be added to the virtual address to obtain: 217 * + the ram_addr_t of the target RAM (if the physical section 218 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 219 * + the offset within the target MemoryRegion (otherwise) 220 */ 221 hwaddr xlat_section; 222 223 /* 224 * @phys_addr contains the physical address in the address space 225 * given by cpu_asidx_from_attrs(cpu, @attrs). 226 */ 227 hwaddr phys_addr; 228 229 /* @attrs contains the memory transaction attributes for the page. */ 230 MemTxAttrs attrs; 231 232 /* @prot contains the complete protections for the page. */ 233 uint8_t prot; 234 235 /* @lg_page_size contains the log2 of the page size. */ 236 uint8_t lg_page_size; 237 238 /* Additional tlb flags requested by tlb_fill. */ 239 uint8_t tlb_fill_flags; 240 241 /* 242 * Additional tlb flags for use by the slow path. If non-zero, 243 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 244 */ 245 uint8_t slow_flags[MMU_ACCESS_COUNT]; 246 247 /* 248 * Allow target-specific additions to this structure. 249 * This may be used to cache items from the guest cpu 250 * page tables for later use by the implementation. 251 */ 252 union { 253 /* 254 * Cache the attrs and shareability fields from the page table entry. 255 * 256 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 257 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 258 * For shareability and guarded, as in the SH and GP fields respectively 259 * of the VMSAv8-64 PTEs. 260 */ 261 struct { 262 uint8_t pte_attrs; 263 uint8_t shareability; 264 bool guarded; 265 } arm; 266 } extra; 267 }; 268 269 /* 270 * Data elements that are per MMU mode, minus the bits accessed by 271 * the TCG fast path. 272 */ 273 typedef struct CPUTLBDesc { 274 /* 275 * Describe a region covering all of the large pages allocated 276 * into the tlb. When any page within this region is flushed, 277 * we must flush the entire tlb. The region is matched if 278 * (addr & large_page_mask) == large_page_addr. 279 */ 280 vaddr large_page_addr; 281 vaddr large_page_mask; 282 /* host time (in ns) at the beginning of the time window */ 283 int64_t window_begin_ns; 284 /* maximum number of entries observed in the window */ 285 size_t window_max_entries; 286 size_t n_used_entries; 287 /* The next index to use in the tlb victim table. */ 288 size_t vindex; 289 /* The tlb victim table, in two parts. */ 290 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 291 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 292 CPUTLBEntryFull *fulltlb; 293 } CPUTLBDesc; 294 295 /* 296 * Data elements that are shared between all MMU modes. 297 */ 298 typedef struct CPUTLBCommon { 299 /* Serialize updates to f.table and d.vtable, and others as noted. */ 300 QemuSpin lock; 301 /* 302 * Within dirty, for each bit N, modifications have been made to 303 * mmu_idx N since the last time that mmu_idx was flushed. 304 * Protected by tlb_c.lock. 305 */ 306 uint16_t dirty; 307 /* 308 * Statistics. These are not lock protected, but are read and 309 * written atomically. This allows the monitor to print a snapshot 310 * of the stats without interfering with the cpu. 311 */ 312 size_t full_flush_count; 313 size_t part_flush_count; 314 size_t elide_flush_count; 315 } CPUTLBCommon; 316 317 /* 318 * The entire softmmu tlb, for all MMU modes. 319 * The meaning of each of the MMU modes is defined in the target code. 320 * Since this is placed within CPUNegativeOffsetState, the smallest 321 * negative offsets are at the end of the struct. 322 */ 323 typedef struct CPUTLB { 324 #ifdef CONFIG_TCG 325 CPUTLBCommon c; 326 CPUTLBDesc d[NB_MMU_MODES]; 327 CPUTLBDescFast f[NB_MMU_MODES]; 328 #endif 329 } CPUTLB; 330 331 /* 332 * Low 16 bits: number of cycles left, used only in icount mode. 333 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 334 * for this CPU and return to its top level loop (even in non-icount mode). 335 * This allows a single read-compare-cbranch-write sequence to test 336 * for both decrementer underflow and exceptions. 337 */ 338 typedef union IcountDecr { 339 uint32_t u32; 340 struct { 341 #if HOST_BIG_ENDIAN 342 uint16_t high; 343 uint16_t low; 344 #else 345 uint16_t low; 346 uint16_t high; 347 #endif 348 } u16; 349 } IcountDecr; 350 351 /** 352 * CPUNegativeOffsetState: Elements of CPUState most efficiently accessed 353 * from CPUArchState, via small negative offsets. 354 * @can_do_io: True if memory-mapped IO is allowed. 355 * @plugin_mem_cbs: active plugin memory callbacks 356 * @plugin_mem_value_low: 64 lower bits of latest accessed mem value. 357 * @plugin_mem_value_high: 64 higher bits of latest accessed mem value. 358 */ 359 typedef struct CPUNegativeOffsetState { 360 CPUTLB tlb; 361 #ifdef CONFIG_PLUGIN 362 /* 363 * The callback pointer are accessed via TCG (see gen_empty_mem_helper). 364 */ 365 GArray *plugin_mem_cbs; 366 uint64_t plugin_mem_value_low; 367 uint64_t plugin_mem_value_high; 368 #endif 369 IcountDecr icount_decr; 370 bool can_do_io; 371 } CPUNegativeOffsetState; 372 373 struct KVMState; 374 struct kvm_run; 375 376 /* work queue */ 377 378 /* The union type allows passing of 64 bit target pointers on 32 bit 379 * hosts in a single parameter 380 */ 381 typedef union { 382 int host_int; 383 unsigned long host_ulong; 384 void *host_ptr; 385 vaddr target_ptr; 386 } run_on_cpu_data; 387 388 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 389 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 390 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 391 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 392 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 393 394 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 395 396 struct qemu_work_item; 397 398 #define CPU_UNSET_NUMA_NODE_ID -1 399 400 /** 401 * struct CPUState - common state of one CPU core or thread. 402 * 403 * @cpu_index: CPU index (informative). 404 * @cluster_index: Identifies which cluster this CPU is in. 405 * For boards which don't define clusters or for "loose" CPUs not assigned 406 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 407 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 408 * QOM parent. 409 * Under TCG this value is propagated to @tcg_cflags. 410 * See TranslationBlock::TCG CF_CLUSTER_MASK. 411 * @tcg_cflags: Pre-computed cflags for this cpu. 412 * @nr_cores: Number of cores within this CPU package. 413 * @nr_threads: Number of threads within this CPU core. 414 * @thread: Host thread details, only live once @created is #true 415 * @sem: WIN32 only semaphore used only for qtest 416 * @thread_id: native thread id of vCPU, only live once @created is #true 417 * @running: #true if CPU is currently running (lockless). 418 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 419 * valid under cpu_list_lock. 420 * @created: Indicates whether the CPU thread has been successfully created. 421 * @halt_cond: condition variable sleeping threads can wait on. 422 * @interrupt_request: Indicates a pending interrupt request. 423 * @halted: Nonzero if the CPU is in suspended state. 424 * @stop: Indicates a pending stop request. 425 * @stopped: Indicates the CPU has been artificially stopped. 426 * @unplug: Indicates a pending CPU unplug request. 427 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 428 * @singlestep_enabled: Flags for single-stepping. 429 * @icount_extra: Instructions until next timer event. 430 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 431 * AddressSpaces this CPU has) 432 * @num_ases: number of CPUAddressSpaces in @cpu_ases 433 * @as: Pointer to the first AddressSpace, for the convenience of targets which 434 * only have a single AddressSpace 435 * @gdb_regs: Additional GDB registers. 436 * @gdb_num_regs: Number of total registers accessible to GDB. 437 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 438 * @node: QTAILQ of CPUs sharing TB cache. 439 * @opaque: User data. 440 * @mem_io_pc: Host Program Counter at which the memory was accessed. 441 * @accel: Pointer to accelerator specific state. 442 * @kvm_fd: vCPU file descriptor for KVM. 443 * @work_mutex: Lock to prevent multiple access to @work_list. 444 * @work_list: List of pending asynchronous work. 445 * @plugin_state: per-CPU plugin state 446 * @ignore_memory_transaction_failures: Cached copy of the MachineState 447 * flag of the same name: allows the board to suppress calling of the 448 * CPU do_transaction_failed hook function. 449 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 450 * ring is enabled. 451 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 452 * dirty ring structure. 453 * 454 * @neg_align: The CPUState is the common part of a concrete ArchCPU 455 * which is allocated when an individual CPU instance is created. As 456 * such care is taken is ensure there is no gap between between 457 * CPUState and CPUArchState within ArchCPU. 458 * 459 * @neg: The architectural register state ("cpu_env") immediately follows 460 * CPUState in ArchCPU and is passed to TCG code. The @neg structure holds 461 * some common TCG CPU variables which are accessed with a negative offset 462 * from cpu_env. 463 */ 464 struct CPUState { 465 /*< private >*/ 466 DeviceState parent_obj; 467 /* cache to avoid expensive CPU_GET_CLASS */ 468 CPUClass *cc; 469 /*< public >*/ 470 471 int nr_cores; 472 int nr_threads; 473 474 struct QemuThread *thread; 475 #ifdef _WIN32 476 QemuSemaphore sem; 477 #endif 478 int thread_id; 479 bool running, has_waiter; 480 struct QemuCond *halt_cond; 481 bool thread_kicked; 482 bool created; 483 bool stop; 484 bool stopped; 485 486 /* Should CPU start in powered-off state? */ 487 bool start_powered_off; 488 489 bool unplug; 490 bool crash_occurred; 491 bool exit_request; 492 int exclusive_context_count; 493 uint32_t cflags_next_tb; 494 /* updates protected by BQL */ 495 uint32_t interrupt_request; 496 int singlestep_enabled; 497 int64_t icount_budget; 498 int64_t icount_extra; 499 uint64_t random_seed; 500 sigjmp_buf jmp_env; 501 502 QemuMutex work_mutex; 503 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 504 505 struct CPUAddressSpace *cpu_ases; 506 int cpu_ases_count; 507 int num_ases; 508 AddressSpace *as; 509 MemoryRegion *memory; 510 511 struct CPUJumpCache *tb_jmp_cache; 512 513 GArray *gdb_regs; 514 int gdb_num_regs; 515 int gdb_num_g_regs; 516 QTAILQ_ENTRY(CPUState) node; 517 518 /* ice debug support */ 519 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 520 521 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 522 CPUWatchpoint *watchpoint_hit; 523 524 void *opaque; 525 526 /* In order to avoid passing too many arguments to the MMIO helpers, 527 * we store some rarely used information in the CPU context. 528 */ 529 uintptr_t mem_io_pc; 530 531 /* Only used in KVM */ 532 int kvm_fd; 533 struct KVMState *kvm_state; 534 struct kvm_run *kvm_run; 535 struct kvm_dirty_gfn *kvm_dirty_gfns; 536 uint32_t kvm_fetch_index; 537 uint64_t dirty_pages; 538 int kvm_vcpu_stats_fd; 539 bool vcpu_dirty; 540 541 /* Use by accel-block: CPU is executing an ioctl() */ 542 QemuLockCnt in_ioctl_lock; 543 544 #ifdef CONFIG_PLUGIN 545 CPUPluginState *plugin_state; 546 #endif 547 548 /* TODO Move common fields from CPUArchState here. */ 549 int cpu_index; 550 int cluster_index; 551 uint32_t tcg_cflags; 552 uint32_t halted; 553 int32_t exception_index; 554 555 AccelCPUState *accel; 556 557 /* Used to keep track of an outstanding cpu throttle thread for migration 558 * autoconverge 559 */ 560 bool throttle_thread_scheduled; 561 562 /* 563 * Sleep throttle_us_per_full microseconds once dirty ring is full 564 * if dirty page rate limit is enabled. 565 */ 566 int64_t throttle_us_per_full; 567 568 bool ignore_memory_transaction_failures; 569 570 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 571 bool prctl_unalign_sigbus; 572 573 /* track IOMMUs whose translations we've cached in the TCG TLB */ 574 GArray *iommu_notifiers; 575 576 /* 577 * MUST BE LAST in order to minimize the displacement to CPUArchState. 578 */ 579 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 580 CPUNegativeOffsetState neg; 581 }; 582 583 /* Validate placement of CPUNegativeOffsetState. */ 584 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 585 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 586 587 static inline CPUArchState *cpu_env(CPUState *cpu) 588 { 589 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 590 return (CPUArchState *)(cpu + 1); 591 } 592 593 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 594 extern CPUTailQ cpus_queue; 595 596 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 597 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 598 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 599 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 600 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 601 602 extern __thread CPUState *current_cpu; 603 604 /** 605 * qemu_tcg_mttcg_enabled: 606 * Check whether we are running MultiThread TCG or not. 607 * 608 * Returns: %true if we are in MTTCG mode %false otherwise. 609 */ 610 extern bool mttcg_enabled; 611 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 612 613 /** 614 * cpu_paging_enabled: 615 * @cpu: The CPU whose state is to be inspected. 616 * 617 * Returns: %true if paging is enabled, %false otherwise. 618 */ 619 bool cpu_paging_enabled(const CPUState *cpu); 620 621 /** 622 * cpu_get_memory_mapping: 623 * @cpu: The CPU whose memory mappings are to be obtained. 624 * @list: Where to write the memory mappings to. 625 * @errp: Pointer for reporting an #Error. 626 * 627 * Returns: %true on success, %false otherwise. 628 */ 629 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 630 Error **errp); 631 632 #if !defined(CONFIG_USER_ONLY) 633 634 /** 635 * cpu_write_elf64_note: 636 * @f: pointer to a function that writes memory to a file 637 * @cpu: The CPU whose memory is to be dumped 638 * @cpuid: ID number of the CPU 639 * @opaque: pointer to the CPUState struct 640 */ 641 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 642 int cpuid, void *opaque); 643 644 /** 645 * cpu_write_elf64_qemunote: 646 * @f: pointer to a function that writes memory to a file 647 * @cpu: The CPU whose memory is to be dumped 648 * @cpuid: ID number of the CPU 649 * @opaque: pointer to the CPUState struct 650 */ 651 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 652 void *opaque); 653 654 /** 655 * cpu_write_elf32_note: 656 * @f: pointer to a function that writes memory to a file 657 * @cpu: The CPU whose memory is to be dumped 658 * @cpuid: ID number of the CPU 659 * @opaque: pointer to the CPUState struct 660 */ 661 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 662 int cpuid, void *opaque); 663 664 /** 665 * cpu_write_elf32_qemunote: 666 * @f: pointer to a function that writes memory to a file 667 * @cpu: The CPU whose memory is to be dumped 668 * @cpuid: ID number of the CPU 669 * @opaque: pointer to the CPUState struct 670 */ 671 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 672 void *opaque); 673 674 /** 675 * cpu_get_crash_info: 676 * @cpu: The CPU to get crash information for 677 * 678 * Gets the previously saved crash information. 679 * Caller is responsible for freeing the data. 680 */ 681 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 682 683 #endif /* !CONFIG_USER_ONLY */ 684 685 /** 686 * CPUDumpFlags: 687 * @CPU_DUMP_CODE: 688 * @CPU_DUMP_FPU: dump FPU register state, not just integer 689 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 690 * @CPU_DUMP_VPU: dump VPU registers 691 */ 692 enum CPUDumpFlags { 693 CPU_DUMP_CODE = 0x00010000, 694 CPU_DUMP_FPU = 0x00020000, 695 CPU_DUMP_CCOP = 0x00040000, 696 CPU_DUMP_VPU = 0x00080000, 697 }; 698 699 /** 700 * cpu_dump_state: 701 * @cpu: The CPU whose state is to be dumped. 702 * @f: If non-null, dump to this stream, else to current print sink. 703 * 704 * Dumps CPU state. 705 */ 706 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 707 708 #ifndef CONFIG_USER_ONLY 709 /** 710 * cpu_get_phys_page_attrs_debug: 711 * @cpu: The CPU to obtain the physical page address for. 712 * @addr: The virtual address. 713 * @attrs: Updated on return with the memory transaction attributes to use 714 * for this access. 715 * 716 * Obtains the physical page corresponding to a virtual one, together 717 * with the corresponding memory transaction attributes to use for the access. 718 * Use it only for debugging because no protection checks are done. 719 * 720 * Returns: Corresponding physical page address or -1 if no page found. 721 */ 722 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 723 MemTxAttrs *attrs); 724 725 /** 726 * cpu_get_phys_page_debug: 727 * @cpu: The CPU to obtain the physical page address for. 728 * @addr: The virtual address. 729 * 730 * Obtains the physical page corresponding to a virtual one. 731 * Use it only for debugging because no protection checks are done. 732 * 733 * Returns: Corresponding physical page address or -1 if no page found. 734 */ 735 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 736 737 /** cpu_asidx_from_attrs: 738 * @cpu: CPU 739 * @attrs: memory transaction attributes 740 * 741 * Returns the address space index specifying the CPU AddressSpace 742 * to use for a memory access with the given transaction attributes. 743 */ 744 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 745 746 /** 747 * cpu_virtio_is_big_endian: 748 * @cpu: CPU 749 750 * Returns %true if a CPU which supports runtime configurable endianness 751 * is currently big-endian. 752 */ 753 bool cpu_virtio_is_big_endian(CPUState *cpu); 754 755 #endif /* CONFIG_USER_ONLY */ 756 757 /** 758 * cpu_list_add: 759 * @cpu: The CPU to be added to the list of CPUs. 760 */ 761 void cpu_list_add(CPUState *cpu); 762 763 /** 764 * cpu_list_remove: 765 * @cpu: The CPU to be removed from the list of CPUs. 766 */ 767 void cpu_list_remove(CPUState *cpu); 768 769 /** 770 * cpu_reset: 771 * @cpu: The CPU whose state is to be reset. 772 */ 773 void cpu_reset(CPUState *cpu); 774 775 /** 776 * cpu_class_by_name: 777 * @typename: The CPU base type. 778 * @cpu_model: The model string without any parameters. 779 * 780 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 781 * 782 * Returns: A concrete #CPUClass or %NULL if no matching class is found 783 * or if the matching class is abstract. 784 */ 785 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 786 787 /** 788 * cpu_model_from_type: 789 * @typename: The CPU type name 790 * 791 * Extract the CPU model name from the CPU type name. The 792 * CPU type name is either the combination of the CPU model 793 * name and suffix, or same to the CPU model name. 794 * 795 * Returns: CPU model name or NULL if the CPU class doesn't exist 796 * The user should g_free() the string once no longer needed. 797 */ 798 char *cpu_model_from_type(const char *typename); 799 800 /** 801 * cpu_create: 802 * @typename: The CPU type. 803 * 804 * Instantiates a CPU and realizes the CPU. 805 * 806 * Returns: A #CPUState or %NULL if an error occurred. 807 */ 808 CPUState *cpu_create(const char *typename); 809 810 /** 811 * parse_cpu_option: 812 * @cpu_option: The -cpu option including optional parameters. 813 * 814 * processes optional parameters and registers them as global properties 815 * 816 * Returns: type of CPU to create or prints error and terminates process 817 * if an error occurred. 818 */ 819 const char *parse_cpu_option(const char *cpu_option); 820 821 /** 822 * cpu_has_work: 823 * @cpu: The vCPU to check. 824 * 825 * Checks whether the CPU has work to do. 826 * 827 * Returns: %true if the CPU has work, %false otherwise. 828 */ 829 static inline bool cpu_has_work(CPUState *cpu) 830 { 831 CPUClass *cc = CPU_GET_CLASS(cpu); 832 833 g_assert(cc->has_work); 834 return cc->has_work(cpu); 835 } 836 837 /** 838 * qemu_cpu_is_self: 839 * @cpu: The vCPU to check against. 840 * 841 * Checks whether the caller is executing on the vCPU thread. 842 * 843 * Returns: %true if called from @cpu's thread, %false otherwise. 844 */ 845 bool qemu_cpu_is_self(CPUState *cpu); 846 847 /** 848 * qemu_cpu_kick: 849 * @cpu: The vCPU to kick. 850 * 851 * Kicks @cpu's thread. 852 */ 853 void qemu_cpu_kick(CPUState *cpu); 854 855 /** 856 * cpu_is_stopped: 857 * @cpu: The CPU to check. 858 * 859 * Checks whether the CPU is stopped. 860 * 861 * Returns: %true if run state is not running or if artificially stopped; 862 * %false otherwise. 863 */ 864 bool cpu_is_stopped(CPUState *cpu); 865 866 /** 867 * do_run_on_cpu: 868 * @cpu: The vCPU to run on. 869 * @func: The function to be executed. 870 * @data: Data to pass to the function. 871 * @mutex: Mutex to release while waiting for @func to run. 872 * 873 * Used internally in the implementation of run_on_cpu. 874 */ 875 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 876 QemuMutex *mutex); 877 878 /** 879 * run_on_cpu: 880 * @cpu: The vCPU to run on. 881 * @func: The function to be executed. 882 * @data: Data to pass to the function. 883 * 884 * Schedules the function @func for execution on the vCPU @cpu. 885 */ 886 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 887 888 /** 889 * async_run_on_cpu: 890 * @cpu: The vCPU to run on. 891 * @func: The function to be executed. 892 * @data: Data to pass to the function. 893 * 894 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 895 */ 896 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 897 898 /** 899 * async_safe_run_on_cpu: 900 * @cpu: The vCPU to run on. 901 * @func: The function to be executed. 902 * @data: Data to pass to the function. 903 * 904 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 905 * while all other vCPUs are sleeping. 906 * 907 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 908 * BQL. 909 */ 910 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 911 912 /** 913 * cpu_in_exclusive_context() 914 * @cpu: The vCPU to check 915 * 916 * Returns true if @cpu is an exclusive context, for example running 917 * something which has previously been queued via async_safe_run_on_cpu(). 918 */ 919 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 920 { 921 return cpu->exclusive_context_count; 922 } 923 924 /** 925 * qemu_get_cpu: 926 * @index: The CPUState@cpu_index value of the CPU to obtain. 927 * 928 * Gets a CPU matching @index. 929 * 930 * Returns: The CPU or %NULL if there is no matching CPU. 931 */ 932 CPUState *qemu_get_cpu(int index); 933 934 /** 935 * cpu_exists: 936 * @id: Guest-exposed CPU ID to lookup. 937 * 938 * Search for CPU with specified ID. 939 * 940 * Returns: %true - CPU is found, %false - CPU isn't found. 941 */ 942 bool cpu_exists(int64_t id); 943 944 /** 945 * cpu_by_arch_id: 946 * @id: Guest-exposed CPU ID of the CPU to obtain. 947 * 948 * Get a CPU with matching @id. 949 * 950 * Returns: The CPU or %NULL if there is no matching CPU. 951 */ 952 CPUState *cpu_by_arch_id(int64_t id); 953 954 /** 955 * cpu_interrupt: 956 * @cpu: The CPU to set an interrupt on. 957 * @mask: The interrupts to set. 958 * 959 * Invokes the interrupt handler. 960 */ 961 962 void cpu_interrupt(CPUState *cpu, int mask); 963 964 /** 965 * cpu_set_pc: 966 * @cpu: The CPU to set the program counter for. 967 * @addr: Program counter value. 968 * 969 * Sets the program counter for a CPU. 970 */ 971 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 972 { 973 CPUClass *cc = CPU_GET_CLASS(cpu); 974 975 cc->set_pc(cpu, addr); 976 } 977 978 /** 979 * cpu_reset_interrupt: 980 * @cpu: The CPU to clear the interrupt on. 981 * @mask: The interrupt mask to clear. 982 * 983 * Resets interrupts on the vCPU @cpu. 984 */ 985 void cpu_reset_interrupt(CPUState *cpu, int mask); 986 987 /** 988 * cpu_exit: 989 * @cpu: The CPU to exit. 990 * 991 * Requests the CPU @cpu to exit execution. 992 */ 993 void cpu_exit(CPUState *cpu); 994 995 /** 996 * cpu_pause: 997 * @cpu: The CPU to pause. 998 * 999 * Pauses CPU, i.e. puts CPU into stopped state. 1000 */ 1001 void cpu_pause(CPUState *cpu); 1002 1003 /** 1004 * cpu_resume: 1005 * @cpu: The CPU to resume. 1006 * 1007 * Resumes CPU, i.e. puts CPU into runnable state. 1008 */ 1009 void cpu_resume(CPUState *cpu); 1010 1011 /** 1012 * cpu_remove_sync: 1013 * @cpu: The CPU to remove. 1014 * 1015 * Requests the CPU to be removed and waits till it is removed. 1016 */ 1017 void cpu_remove_sync(CPUState *cpu); 1018 1019 /** 1020 * free_queued_cpu_work() - free all items on CPU work queue 1021 * @cpu: The CPU which work queue to free. 1022 */ 1023 void free_queued_cpu_work(CPUState *cpu); 1024 1025 /** 1026 * process_queued_cpu_work() - process all items on CPU work queue 1027 * @cpu: The CPU which work queue to process. 1028 */ 1029 void process_queued_cpu_work(CPUState *cpu); 1030 1031 /** 1032 * cpu_exec_start: 1033 * @cpu: The CPU for the current thread. 1034 * 1035 * Record that a CPU has started execution and can be interrupted with 1036 * cpu_exit. 1037 */ 1038 void cpu_exec_start(CPUState *cpu); 1039 1040 /** 1041 * cpu_exec_end: 1042 * @cpu: The CPU for the current thread. 1043 * 1044 * Record that a CPU has stopped execution and exclusive sections 1045 * can be executed without interrupting it. 1046 */ 1047 void cpu_exec_end(CPUState *cpu); 1048 1049 /** 1050 * start_exclusive: 1051 * 1052 * Wait for a concurrent exclusive section to end, and then start 1053 * a section of work that is run while other CPUs are not running 1054 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1055 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1056 * during the exclusive section go to sleep until this CPU calls 1057 * end_exclusive. 1058 */ 1059 void start_exclusive(void); 1060 1061 /** 1062 * end_exclusive: 1063 * 1064 * Concludes an exclusive execution section started by start_exclusive. 1065 */ 1066 void end_exclusive(void); 1067 1068 /** 1069 * qemu_init_vcpu: 1070 * @cpu: The vCPU to initialize. 1071 * 1072 * Initializes a vCPU. 1073 */ 1074 void qemu_init_vcpu(CPUState *cpu); 1075 1076 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1077 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1078 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1079 1080 /** 1081 * cpu_single_step: 1082 * @cpu: CPU to the flags for. 1083 * @enabled: Flags to enable. 1084 * 1085 * Enables or disables single-stepping for @cpu. 1086 */ 1087 void cpu_single_step(CPUState *cpu, int enabled); 1088 1089 /* Breakpoint/watchpoint flags */ 1090 #define BP_MEM_READ 0x01 1091 #define BP_MEM_WRITE 0x02 1092 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1093 #define BP_STOP_BEFORE_ACCESS 0x04 1094 /* 0x08 currently unused */ 1095 #define BP_GDB 0x10 1096 #define BP_CPU 0x20 1097 #define BP_ANY (BP_GDB | BP_CPU) 1098 #define BP_HIT_SHIFT 6 1099 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1100 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1101 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1102 1103 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1104 CPUBreakpoint **breakpoint); 1105 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1106 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1107 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1108 1109 /* Return true if PC matches an installed breakpoint. */ 1110 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1111 { 1112 CPUBreakpoint *bp; 1113 1114 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1115 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1116 if (bp->pc == pc && (bp->flags & mask)) { 1117 return true; 1118 } 1119 } 1120 } 1121 return false; 1122 } 1123 1124 #if defined(CONFIG_USER_ONLY) 1125 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1126 int flags, CPUWatchpoint **watchpoint) 1127 { 1128 return -ENOSYS; 1129 } 1130 1131 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1132 vaddr len, int flags) 1133 { 1134 return -ENOSYS; 1135 } 1136 1137 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1138 CPUWatchpoint *wp) 1139 { 1140 } 1141 1142 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1143 { 1144 } 1145 #else 1146 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1147 int flags, CPUWatchpoint **watchpoint); 1148 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1149 vaddr len, int flags); 1150 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1151 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1152 #endif 1153 1154 /** 1155 * cpu_get_address_space: 1156 * @cpu: CPU to get address space from 1157 * @asidx: index identifying which address space to get 1158 * 1159 * Return the requested address space of this CPU. @asidx 1160 * specifies which address space to read. 1161 */ 1162 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1163 1164 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1165 G_GNUC_PRINTF(2, 3); 1166 1167 /* $(top_srcdir)/cpu.c */ 1168 void cpu_class_init_props(DeviceClass *dc); 1169 void cpu_exec_initfn(CPUState *cpu); 1170 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1171 void cpu_exec_unrealizefn(CPUState *cpu); 1172 void cpu_exec_reset_hold(CPUState *cpu); 1173 1174 const char *target_name(void); 1175 1176 #ifdef COMPILING_PER_TARGET 1177 1178 #ifndef CONFIG_USER_ONLY 1179 1180 extern const VMStateDescription vmstate_cpu_common; 1181 1182 #define VMSTATE_CPU() { \ 1183 .name = "parent_obj", \ 1184 .size = sizeof(CPUState), \ 1185 .vmsd = &vmstate_cpu_common, \ 1186 .flags = VMS_STRUCT, \ 1187 .offset = 0, \ 1188 } 1189 #endif /* !CONFIG_USER_ONLY */ 1190 1191 #endif /* COMPILING_PER_TARGET */ 1192 1193 #define UNASSIGNED_CPU_INDEX -1 1194 #define UNASSIGNED_CLUSTER_INDEX -1 1195 1196 #endif 1197