xref: /openbmc/qemu/include/hw/core/cpu.h (revision 4b9fa0b4)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 
34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
35                                      void *opaque);
36 
37 /**
38  * vaddr:
39  * Type wide enough to contain any #target_ulong virtual address.
40  */
41 typedef uint64_t vaddr;
42 #define VADDR_PRId PRId64
43 #define VADDR_PRIu PRIu64
44 #define VADDR_PRIo PRIo64
45 #define VADDR_PRIx PRIx64
46 #define VADDR_PRIX PRIX64
47 #define VADDR_MAX UINT64_MAX
48 
49 /**
50  * SECTION:cpu
51  * @section_id: QEMU-cpu
52  * @title: CPU Class
53  * @short_description: Base class for all CPUs
54  */
55 
56 #define TYPE_CPU "cpu"
57 
58 /* Since this macro is used a lot in hot code paths and in conjunction with
59  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
60  * an unchecked cast.
61  */
62 #define CPU(obj) ((CPUState *)(obj))
63 
64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
66 
67 typedef enum MMUAccessType {
68     MMU_DATA_LOAD  = 0,
69     MMU_DATA_STORE = 1,
70     MMU_INST_FETCH = 2
71 } MMUAccessType;
72 
73 typedef struct CPUWatchpoint CPUWatchpoint;
74 
75 typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
76                                     bool is_write, bool is_exec, int opaque,
77                                     unsigned size);
78 
79 struct TranslationBlock;
80 
81 /**
82  * CPUClass:
83  * @class_by_name: Callback to map -cpu command line model name to an
84  * instantiatable CPU type.
85  * @parse_features: Callback to parse command line arguments.
86  * @reset: Callback to reset the #CPUState to its initial state.
87  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
88  * @has_work: Callback for checking if there is work to do.
89  * @do_interrupt: Callback for interrupt handling.
90  * @do_unassigned_access: Callback for unassigned access handling.
91  * (this is deprecated: new targets should use do_transaction_failed instead)
92  * @do_unaligned_access: Callback for unaligned access handling, if
93  * the target defines #TARGET_ALIGNED_ONLY.
94  * @do_transaction_failed: Callback for handling failed memory transactions
95  * (ie bus faults or external aborts; not MMU faults)
96  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
97  * runtime configurable endianness is currently big-endian. Non-configurable
98  * CPUs can use the default implementation of this method. This method should
99  * not be used by any callers other than the pre-1.0 virtio devices.
100  * @memory_rw_debug: Callback for GDB memory access.
101  * @dump_state: Callback for dumping state.
102  * @dump_statistics: Callback for dumping statistics.
103  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
104  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
105  * @get_memory_mapping: Callback for obtaining the memory mappings.
106  * @set_pc: Callback for setting the Program Counter register. This
107  *       should have the semantics used by the target architecture when
108  *       setting the PC from a source such as an ELF file entry point;
109  *       for example on Arm it will also set the Thumb mode bit based
110  *       on the least significant bit of the new PC value.
111  *       If the target behaviour here is anything other than "set
112  *       the PC register to the value passed in" then the target must
113  *       also implement the synchronize_from_tb hook.
114  * @synchronize_from_tb: Callback for synchronizing state from a TCG
115  *       #TranslationBlock. This is called when we abandon execution
116  *       of a TB before starting it, and must set all parts of the CPU
117  *       state which the previous TB in the chain may not have updated.
118  *       This always includes at least the program counter; some targets
119  *       will need to do more. If this hook is not implemented then the
120  *       default is to call @set_pc(tb->pc).
121  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
122  *       address fault.  For system mode, if the access is valid, call
123  *       tlb_set_page and return true; if the access is invalid, and
124  *       probe is true, return false; otherwise raise an exception and
125  *       do not return.  For user-only mode, always raise an exception
126  *       and do not return.
127  * @get_phys_page_debug: Callback for obtaining a physical address.
128  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
129  *       associated memory transaction attributes to use for the access.
130  *       CPUs which use memory transaction attributes should implement this
131  *       instead of get_phys_page_debug.
132  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
133  *       a memory access with the specified memory transaction attributes.
134  * @gdb_read_register: Callback for letting GDB read a register.
135  * @gdb_write_register: Callback for letting GDB write a register.
136  * @debug_check_watchpoint: Callback: return true if the architectural
137  *       watchpoint whose address has matched should really fire.
138  * @debug_excp_handler: Callback for handling debug exceptions.
139  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
140  * 64-bit VM coredump.
141  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
142  * note to a 32-bit VM coredump.
143  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
144  * 32-bit VM coredump.
145  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
146  * note to a 32-bit VM coredump.
147  * @vmsd: State description for migration.
148  * @gdb_num_core_regs: Number of core registers accessible to GDB.
149  * @gdb_core_xml_file: File name for core registers GDB XML description.
150  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
151  *           before the insn which triggers a watchpoint rather than after it.
152  * @gdb_arch_name: Optional callback that returns the architecture name known
153  * to GDB. The caller must free the returned string with g_free.
154  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
155  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
156  *   or NULL if the CPU doesn't have a dynamically generated content for it.
157  * @cpu_exec_enter: Callback for cpu_exec preparation.
158  * @cpu_exec_exit: Callback for cpu_exec cleanup.
159  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
160  * @disas_set_info: Setup architecture specific components of disassembly info
161  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
162  * address before attempting to match it against watchpoints.
163  *
164  * Represents a CPU family or model.
165  */
166 typedef struct CPUClass {
167     /*< private >*/
168     DeviceClass parent_class;
169     /*< public >*/
170 
171     ObjectClass *(*class_by_name)(const char *cpu_model);
172     void (*parse_features)(const char *typename, char *str, Error **errp);
173 
174     void (*reset)(CPUState *cpu);
175     int reset_dump_flags;
176     bool (*has_work)(CPUState *cpu);
177     void (*do_interrupt)(CPUState *cpu);
178     CPUUnassignedAccess do_unassigned_access;
179     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
180                                 MMUAccessType access_type,
181                                 int mmu_idx, uintptr_t retaddr);
182     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
183                                   unsigned size, MMUAccessType access_type,
184                                   int mmu_idx, MemTxAttrs attrs,
185                                   MemTxResult response, uintptr_t retaddr);
186     bool (*virtio_is_big_endian)(CPUState *cpu);
187     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
188                            uint8_t *buf, int len, bool is_write);
189     void (*dump_state)(CPUState *cpu, FILE *, int flags);
190     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
191     void (*dump_statistics)(CPUState *cpu, int flags);
192     int64_t (*get_arch_id)(CPUState *cpu);
193     bool (*get_paging_enabled)(const CPUState *cpu);
194     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
195                                Error **errp);
196     void (*set_pc)(CPUState *cpu, vaddr value);
197     void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
198     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
199                      MMUAccessType access_type, int mmu_idx,
200                      bool probe, uintptr_t retaddr);
201     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
202     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
203                                         MemTxAttrs *attrs);
204     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
205     int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
206     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
207     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
208     void (*debug_excp_handler)(CPUState *cpu);
209 
210     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
211                             int cpuid, void *opaque);
212     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
213                                 void *opaque);
214     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
215                             int cpuid, void *opaque);
216     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
217                                 void *opaque);
218 
219     const VMStateDescription *vmsd;
220     const char *gdb_core_xml_file;
221     gchar * (*gdb_arch_name)(CPUState *cpu);
222     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
223     void (*cpu_exec_enter)(CPUState *cpu);
224     void (*cpu_exec_exit)(CPUState *cpu);
225     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
226 
227     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
228     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
229     void (*tcg_initialize)(void);
230 
231     /* Keep non-pointer data at the end to minimize holes.  */
232     int gdb_num_core_regs;
233     bool gdb_stop_before_watchpoint;
234 } CPUClass;
235 
236 /*
237  * Low 16 bits: number of cycles left, used only in icount mode.
238  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
239  * for this CPU and return to its top level loop (even in non-icount mode).
240  * This allows a single read-compare-cbranch-write sequence to test
241  * for both decrementer underflow and exceptions.
242  */
243 typedef union IcountDecr {
244     uint32_t u32;
245     struct {
246 #ifdef HOST_WORDS_BIGENDIAN
247         uint16_t high;
248         uint16_t low;
249 #else
250         uint16_t low;
251         uint16_t high;
252 #endif
253     } u16;
254 } IcountDecr;
255 
256 typedef struct CPUBreakpoint {
257     vaddr pc;
258     int flags; /* BP_* */
259     QTAILQ_ENTRY(CPUBreakpoint) entry;
260 } CPUBreakpoint;
261 
262 struct CPUWatchpoint {
263     vaddr vaddr;
264     vaddr len;
265     vaddr hitaddr;
266     MemTxAttrs hitattrs;
267     int flags; /* BP_* */
268     QTAILQ_ENTRY(CPUWatchpoint) entry;
269 };
270 
271 struct KVMState;
272 struct kvm_run;
273 
274 struct hax_vcpu_state;
275 
276 #define TB_JMP_CACHE_BITS 12
277 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
278 
279 /* work queue */
280 
281 /* The union type allows passing of 64 bit target pointers on 32 bit
282  * hosts in a single parameter
283  */
284 typedef union {
285     int           host_int;
286     unsigned long host_ulong;
287     void         *host_ptr;
288     vaddr         target_ptr;
289 } run_on_cpu_data;
290 
291 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
292 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
293 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
294 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
295 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
296 
297 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
298 
299 struct qemu_work_item;
300 
301 #define CPU_UNSET_NUMA_NODE_ID -1
302 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
303 
304 /**
305  * CPUState:
306  * @cpu_index: CPU index (informative).
307  * @cluster_index: Identifies which cluster this CPU is in.
308  *   For boards which don't define clusters or for "loose" CPUs not assigned
309  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
310  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
311  *   QOM parent.
312  * @nr_cores: Number of cores within this CPU package.
313  * @nr_threads: Number of threads within this CPU.
314  * @running: #true if CPU is currently running (lockless).
315  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
316  * valid under cpu_list_lock.
317  * @created: Indicates whether the CPU thread has been successfully created.
318  * @interrupt_request: Indicates a pending interrupt request.
319  * @halted: Nonzero if the CPU is in suspended state.
320  * @stop: Indicates a pending stop request.
321  * @stopped: Indicates the CPU has been artificially stopped.
322  * @unplug: Indicates a pending CPU unplug request.
323  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
324  * @singlestep_enabled: Flags for single-stepping.
325  * @icount_extra: Instructions until next timer event.
326  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
327  * requires that IO only be performed on the last instruction of a TB
328  * so that interrupts take effect immediately.
329  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
330  *            AddressSpaces this CPU has)
331  * @num_ases: number of CPUAddressSpaces in @cpu_ases
332  * @as: Pointer to the first AddressSpace, for the convenience of targets which
333  *      only have a single AddressSpace
334  * @env_ptr: Pointer to subclass-specific CPUArchState field.
335  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
336  * @gdb_regs: Additional GDB registers.
337  * @gdb_num_regs: Number of total registers accessible to GDB.
338  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
339  * @next_cpu: Next CPU sharing TB cache.
340  * @opaque: User data.
341  * @mem_io_pc: Host Program Counter at which the memory was accessed.
342  * @kvm_fd: vCPU file descriptor for KVM.
343  * @work_mutex: Lock to prevent multiple access to queued_work_*.
344  * @queued_work_first: First asynchronous work pending.
345  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
346  *                        to @trace_dstate).
347  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
348  * @plugin_mask: Plugin event bitmap. Modified only via async work.
349  * @ignore_memory_transaction_failures: Cached copy of the MachineState
350  *    flag of the same name: allows the board to suppress calling of the
351  *    CPU do_transaction_failed hook function.
352  *
353  * State of one CPU core or thread.
354  */
355 struct CPUState {
356     /*< private >*/
357     DeviceState parent_obj;
358     /*< public >*/
359 
360     int nr_cores;
361     int nr_threads;
362 
363     struct QemuThread *thread;
364 #ifdef _WIN32
365     HANDLE hThread;
366 #endif
367     int thread_id;
368     bool running, has_waiter;
369     struct QemuCond *halt_cond;
370     bool thread_kicked;
371     bool created;
372     bool stop;
373     bool stopped;
374     bool unplug;
375     bool crash_occurred;
376     bool exit_request;
377     bool in_exclusive_context;
378     uint32_t cflags_next_tb;
379     /* updates protected by BQL */
380     uint32_t interrupt_request;
381     int singlestep_enabled;
382     int64_t icount_budget;
383     int64_t icount_extra;
384     uint64_t random_seed;
385     sigjmp_buf jmp_env;
386 
387     QemuMutex work_mutex;
388     struct qemu_work_item *queued_work_first, *queued_work_last;
389 
390     CPUAddressSpace *cpu_ases;
391     int num_ases;
392     AddressSpace *as;
393     MemoryRegion *memory;
394 
395     void *env_ptr; /* CPUArchState */
396     IcountDecr *icount_decr_ptr;
397 
398     /* Accessed in parallel; all accesses must be atomic */
399     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
400 
401     struct GDBRegisterState *gdb_regs;
402     int gdb_num_regs;
403     int gdb_num_g_regs;
404     QTAILQ_ENTRY(CPUState) node;
405 
406     /* ice debug support */
407     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
408 
409     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
410     CPUWatchpoint *watchpoint_hit;
411 
412     void *opaque;
413 
414     /* In order to avoid passing too many arguments to the MMIO helpers,
415      * we store some rarely used information in the CPU context.
416      */
417     uintptr_t mem_io_pc;
418     /*
419      * This is only needed for the legacy cpu_unassigned_access() hook;
420      * when all targets using it have been converted to use
421      * cpu_transaction_failed() instead it can be removed.
422      */
423     MMUAccessType mem_io_access_type;
424 
425     int kvm_fd;
426     struct KVMState *kvm_state;
427     struct kvm_run *kvm_run;
428 
429     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
430     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
431     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
432 
433     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
434 
435     GArray *plugin_mem_cbs;
436 
437     /* TODO Move common fields from CPUArchState here. */
438     int cpu_index;
439     int cluster_index;
440     uint32_t halted;
441     uint32_t can_do_io;
442     int32_t exception_index;
443 
444     /* shared by kvm, hax and hvf */
445     bool vcpu_dirty;
446 
447     /* Used to keep track of an outstanding cpu throttle thread for migration
448      * autoconverge
449      */
450     bool throttle_thread_scheduled;
451 
452     bool ignore_memory_transaction_failures;
453 
454     struct hax_vcpu_state *hax_vcpu;
455 
456     int hvf_fd;
457 
458     /* track IOMMUs whose translations we've cached in the TCG TLB */
459     GArray *iommu_notifiers;
460 };
461 
462 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
463 extern CPUTailQ cpus;
464 
465 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
466 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
467 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
468 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
469     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
470 
471 extern __thread CPUState *current_cpu;
472 
473 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
474 {
475     unsigned int i;
476 
477     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
478         atomic_set(&cpu->tb_jmp_cache[i], NULL);
479     }
480 }
481 
482 /**
483  * qemu_tcg_mttcg_enabled:
484  * Check whether we are running MultiThread TCG or not.
485  *
486  * Returns: %true if we are in MTTCG mode %false otherwise.
487  */
488 extern bool mttcg_enabled;
489 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
490 
491 /**
492  * cpu_paging_enabled:
493  * @cpu: The CPU whose state is to be inspected.
494  *
495  * Returns: %true if paging is enabled, %false otherwise.
496  */
497 bool cpu_paging_enabled(const CPUState *cpu);
498 
499 /**
500  * cpu_get_memory_mapping:
501  * @cpu: The CPU whose memory mappings are to be obtained.
502  * @list: Where to write the memory mappings to.
503  * @errp: Pointer for reporting an #Error.
504  */
505 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
506                             Error **errp);
507 
508 /**
509  * cpu_write_elf64_note:
510  * @f: pointer to a function that writes memory to a file
511  * @cpu: The CPU whose memory is to be dumped
512  * @cpuid: ID number of the CPU
513  * @opaque: pointer to the CPUState struct
514  */
515 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
516                          int cpuid, void *opaque);
517 
518 /**
519  * cpu_write_elf64_qemunote:
520  * @f: pointer to a function that writes memory to a file
521  * @cpu: The CPU whose memory is to be dumped
522  * @cpuid: ID number of the CPU
523  * @opaque: pointer to the CPUState struct
524  */
525 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
526                              void *opaque);
527 
528 /**
529  * cpu_write_elf32_note:
530  * @f: pointer to a function that writes memory to a file
531  * @cpu: The CPU whose memory is to be dumped
532  * @cpuid: ID number of the CPU
533  * @opaque: pointer to the CPUState struct
534  */
535 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
536                          int cpuid, void *opaque);
537 
538 /**
539  * cpu_write_elf32_qemunote:
540  * @f: pointer to a function that writes memory to a file
541  * @cpu: The CPU whose memory is to be dumped
542  * @cpuid: ID number of the CPU
543  * @opaque: pointer to the CPUState struct
544  */
545 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
546                              void *opaque);
547 
548 /**
549  * cpu_get_crash_info:
550  * @cpu: The CPU to get crash information for
551  *
552  * Gets the previously saved crash information.
553  * Caller is responsible for freeing the data.
554  */
555 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
556 
557 /**
558  * CPUDumpFlags:
559  * @CPU_DUMP_CODE:
560  * @CPU_DUMP_FPU: dump FPU register state, not just integer
561  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
562  */
563 enum CPUDumpFlags {
564     CPU_DUMP_CODE = 0x00010000,
565     CPU_DUMP_FPU  = 0x00020000,
566     CPU_DUMP_CCOP = 0x00040000,
567 };
568 
569 /**
570  * cpu_dump_state:
571  * @cpu: The CPU whose state is to be dumped.
572  * @f: If non-null, dump to this stream, else to current print sink.
573  *
574  * Dumps CPU state.
575  */
576 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
577 
578 /**
579  * cpu_dump_statistics:
580  * @cpu: The CPU whose state is to be dumped.
581  * @flags: Flags what to dump.
582  *
583  * Dump CPU statistics to the current monitor if we have one, else to
584  * stdout.
585  */
586 void cpu_dump_statistics(CPUState *cpu, int flags);
587 
588 #ifndef CONFIG_USER_ONLY
589 /**
590  * cpu_get_phys_page_attrs_debug:
591  * @cpu: The CPU to obtain the physical page address for.
592  * @addr: The virtual address.
593  * @attrs: Updated on return with the memory transaction attributes to use
594  *         for this access.
595  *
596  * Obtains the physical page corresponding to a virtual one, together
597  * with the corresponding memory transaction attributes to use for the access.
598  * Use it only for debugging because no protection checks are done.
599  *
600  * Returns: Corresponding physical page address or -1 if no page found.
601  */
602 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
603                                                    MemTxAttrs *attrs)
604 {
605     CPUClass *cc = CPU_GET_CLASS(cpu);
606 
607     if (cc->get_phys_page_attrs_debug) {
608         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
609     }
610     /* Fallback for CPUs which don't implement the _attrs_ hook */
611     *attrs = MEMTXATTRS_UNSPECIFIED;
612     return cc->get_phys_page_debug(cpu, addr);
613 }
614 
615 /**
616  * cpu_get_phys_page_debug:
617  * @cpu: The CPU to obtain the physical page address for.
618  * @addr: The virtual address.
619  *
620  * Obtains the physical page corresponding to a virtual one.
621  * Use it only for debugging because no protection checks are done.
622  *
623  * Returns: Corresponding physical page address or -1 if no page found.
624  */
625 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
626 {
627     MemTxAttrs attrs = {};
628 
629     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
630 }
631 
632 /** cpu_asidx_from_attrs:
633  * @cpu: CPU
634  * @attrs: memory transaction attributes
635  *
636  * Returns the address space index specifying the CPU AddressSpace
637  * to use for a memory access with the given transaction attributes.
638  */
639 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
640 {
641     CPUClass *cc = CPU_GET_CLASS(cpu);
642     int ret = 0;
643 
644     if (cc->asidx_from_attrs) {
645         ret = cc->asidx_from_attrs(cpu, attrs);
646         assert(ret < cpu->num_ases && ret >= 0);
647     }
648     return ret;
649 }
650 #endif
651 
652 /**
653  * cpu_list_add:
654  * @cpu: The CPU to be added to the list of CPUs.
655  */
656 void cpu_list_add(CPUState *cpu);
657 
658 /**
659  * cpu_list_remove:
660  * @cpu: The CPU to be removed from the list of CPUs.
661  */
662 void cpu_list_remove(CPUState *cpu);
663 
664 /**
665  * cpu_reset:
666  * @cpu: The CPU whose state is to be reset.
667  */
668 void cpu_reset(CPUState *cpu);
669 
670 /**
671  * cpu_class_by_name:
672  * @typename: The CPU base type.
673  * @cpu_model: The model string without any parameters.
674  *
675  * Looks up a CPU #ObjectClass matching name @cpu_model.
676  *
677  * Returns: A #CPUClass or %NULL if not matching class is found.
678  */
679 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
680 
681 /**
682  * cpu_create:
683  * @typename: The CPU type.
684  *
685  * Instantiates a CPU and realizes the CPU.
686  *
687  * Returns: A #CPUState or %NULL if an error occurred.
688  */
689 CPUState *cpu_create(const char *typename);
690 
691 /**
692  * parse_cpu_option:
693  * @cpu_option: The -cpu option including optional parameters.
694  *
695  * processes optional parameters and registers them as global properties
696  *
697  * Returns: type of CPU to create or prints error and terminates process
698  *          if an error occurred.
699  */
700 const char *parse_cpu_option(const char *cpu_option);
701 
702 /**
703  * cpu_has_work:
704  * @cpu: The vCPU to check.
705  *
706  * Checks whether the CPU has work to do.
707  *
708  * Returns: %true if the CPU has work, %false otherwise.
709  */
710 static inline bool cpu_has_work(CPUState *cpu)
711 {
712     CPUClass *cc = CPU_GET_CLASS(cpu);
713 
714     g_assert(cc->has_work);
715     return cc->has_work(cpu);
716 }
717 
718 /**
719  * qemu_cpu_is_self:
720  * @cpu: The vCPU to check against.
721  *
722  * Checks whether the caller is executing on the vCPU thread.
723  *
724  * Returns: %true if called from @cpu's thread, %false otherwise.
725  */
726 bool qemu_cpu_is_self(CPUState *cpu);
727 
728 /**
729  * qemu_cpu_kick:
730  * @cpu: The vCPU to kick.
731  *
732  * Kicks @cpu's thread.
733  */
734 void qemu_cpu_kick(CPUState *cpu);
735 
736 /**
737  * cpu_is_stopped:
738  * @cpu: The CPU to check.
739  *
740  * Checks whether the CPU is stopped.
741  *
742  * Returns: %true if run state is not running or if artificially stopped;
743  * %false otherwise.
744  */
745 bool cpu_is_stopped(CPUState *cpu);
746 
747 /**
748  * do_run_on_cpu:
749  * @cpu: The vCPU to run on.
750  * @func: The function to be executed.
751  * @data: Data to pass to the function.
752  * @mutex: Mutex to release while waiting for @func to run.
753  *
754  * Used internally in the implementation of run_on_cpu.
755  */
756 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
757                    QemuMutex *mutex);
758 
759 /**
760  * run_on_cpu:
761  * @cpu: The vCPU to run on.
762  * @func: The function to be executed.
763  * @data: Data to pass to the function.
764  *
765  * Schedules the function @func for execution on the vCPU @cpu.
766  */
767 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
768 
769 /**
770  * async_run_on_cpu:
771  * @cpu: The vCPU to run on.
772  * @func: The function to be executed.
773  * @data: Data to pass to the function.
774  *
775  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
776  */
777 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
778 
779 /**
780  * async_safe_run_on_cpu:
781  * @cpu: The vCPU to run on.
782  * @func: The function to be executed.
783  * @data: Data to pass to the function.
784  *
785  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
786  * while all other vCPUs are sleeping.
787  *
788  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
789  * BQL.
790  */
791 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
792 
793 /**
794  * cpu_in_exclusive_context()
795  * @cpu: The vCPU to check
796  *
797  * Returns true if @cpu is an exclusive context, for example running
798  * something which has previously been queued via async_safe_run_on_cpu().
799  */
800 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
801 {
802     return cpu->in_exclusive_context;
803 }
804 
805 /**
806  * qemu_get_cpu:
807  * @index: The CPUState@cpu_index value of the CPU to obtain.
808  *
809  * Gets a CPU matching @index.
810  *
811  * Returns: The CPU or %NULL if there is no matching CPU.
812  */
813 CPUState *qemu_get_cpu(int index);
814 
815 /**
816  * cpu_exists:
817  * @id: Guest-exposed CPU ID to lookup.
818  *
819  * Search for CPU with specified ID.
820  *
821  * Returns: %true - CPU is found, %false - CPU isn't found.
822  */
823 bool cpu_exists(int64_t id);
824 
825 /**
826  * cpu_by_arch_id:
827  * @id: Guest-exposed CPU ID of the CPU to obtain.
828  *
829  * Get a CPU with matching @id.
830  *
831  * Returns: The CPU or %NULL if there is no matching CPU.
832  */
833 CPUState *cpu_by_arch_id(int64_t id);
834 
835 /**
836  * cpu_throttle_set:
837  * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
838  *
839  * Throttles all vcpus by forcing them to sleep for the given percentage of
840  * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
841  * (example: 10ms sleep for every 30ms awake).
842  *
843  * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
844  * Once the throttling starts, it will remain in effect until cpu_throttle_stop
845  * is called.
846  */
847 void cpu_throttle_set(int new_throttle_pct);
848 
849 /**
850  * cpu_throttle_stop:
851  *
852  * Stops the vcpu throttling started by cpu_throttle_set.
853  */
854 void cpu_throttle_stop(void);
855 
856 /**
857  * cpu_throttle_active:
858  *
859  * Returns: %true if the vcpus are currently being throttled, %false otherwise.
860  */
861 bool cpu_throttle_active(void);
862 
863 /**
864  * cpu_throttle_get_percentage:
865  *
866  * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
867  *
868  * Returns: The throttle percentage in range 1 to 99.
869  */
870 int cpu_throttle_get_percentage(void);
871 
872 #ifndef CONFIG_USER_ONLY
873 
874 typedef void (*CPUInterruptHandler)(CPUState *, int);
875 
876 extern CPUInterruptHandler cpu_interrupt_handler;
877 
878 /**
879  * cpu_interrupt:
880  * @cpu: The CPU to set an interrupt on.
881  * @mask: The interrupts to set.
882  *
883  * Invokes the interrupt handler.
884  */
885 static inline void cpu_interrupt(CPUState *cpu, int mask)
886 {
887     cpu_interrupt_handler(cpu, mask);
888 }
889 
890 #else /* USER_ONLY */
891 
892 void cpu_interrupt(CPUState *cpu, int mask);
893 
894 #endif /* USER_ONLY */
895 
896 #ifdef NEED_CPU_H
897 
898 #ifdef CONFIG_SOFTMMU
899 static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
900                                          bool is_write, bool is_exec,
901                                          int opaque, unsigned size)
902 {
903     CPUClass *cc = CPU_GET_CLASS(cpu);
904 
905     if (cc->do_unassigned_access) {
906         cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
907     }
908 }
909 
910 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
911                                         MMUAccessType access_type,
912                                         int mmu_idx, uintptr_t retaddr)
913 {
914     CPUClass *cc = CPU_GET_CLASS(cpu);
915 
916     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
917 }
918 
919 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
920                                           vaddr addr, unsigned size,
921                                           MMUAccessType access_type,
922                                           int mmu_idx, MemTxAttrs attrs,
923                                           MemTxResult response,
924                                           uintptr_t retaddr)
925 {
926     CPUClass *cc = CPU_GET_CLASS(cpu);
927 
928     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
929         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
930                                   mmu_idx, attrs, response, retaddr);
931     }
932 }
933 #endif
934 
935 #endif /* NEED_CPU_H */
936 
937 /**
938  * cpu_set_pc:
939  * @cpu: The CPU to set the program counter for.
940  * @addr: Program counter value.
941  *
942  * Sets the program counter for a CPU.
943  */
944 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
945 {
946     CPUClass *cc = CPU_GET_CLASS(cpu);
947 
948     cc->set_pc(cpu, addr);
949 }
950 
951 /**
952  * cpu_reset_interrupt:
953  * @cpu: The CPU to clear the interrupt on.
954  * @mask: The interrupt mask to clear.
955  *
956  * Resets interrupts on the vCPU @cpu.
957  */
958 void cpu_reset_interrupt(CPUState *cpu, int mask);
959 
960 /**
961  * cpu_exit:
962  * @cpu: The CPU to exit.
963  *
964  * Requests the CPU @cpu to exit execution.
965  */
966 void cpu_exit(CPUState *cpu);
967 
968 /**
969  * cpu_resume:
970  * @cpu: The CPU to resume.
971  *
972  * Resumes CPU, i.e. puts CPU into runnable state.
973  */
974 void cpu_resume(CPUState *cpu);
975 
976 /**
977  * cpu_remove:
978  * @cpu: The CPU to remove.
979  *
980  * Requests the CPU to be removed.
981  */
982 void cpu_remove(CPUState *cpu);
983 
984  /**
985  * cpu_remove_sync:
986  * @cpu: The CPU to remove.
987  *
988  * Requests the CPU to be removed and waits till it is removed.
989  */
990 void cpu_remove_sync(CPUState *cpu);
991 
992 /**
993  * process_queued_cpu_work() - process all items on CPU work queue
994  * @cpu: The CPU which work queue to process.
995  */
996 void process_queued_cpu_work(CPUState *cpu);
997 
998 /**
999  * cpu_exec_start:
1000  * @cpu: The CPU for the current thread.
1001  *
1002  * Record that a CPU has started execution and can be interrupted with
1003  * cpu_exit.
1004  */
1005 void cpu_exec_start(CPUState *cpu);
1006 
1007 /**
1008  * cpu_exec_end:
1009  * @cpu: The CPU for the current thread.
1010  *
1011  * Record that a CPU has stopped execution and exclusive sections
1012  * can be executed without interrupting it.
1013  */
1014 void cpu_exec_end(CPUState *cpu);
1015 
1016 /**
1017  * start_exclusive:
1018  *
1019  * Wait for a concurrent exclusive section to end, and then start
1020  * a section of work that is run while other CPUs are not running
1021  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1022  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1023  * during the exclusive section go to sleep until this CPU calls
1024  * end_exclusive.
1025  */
1026 void start_exclusive(void);
1027 
1028 /**
1029  * end_exclusive:
1030  *
1031  * Concludes an exclusive execution section started by start_exclusive.
1032  */
1033 void end_exclusive(void);
1034 
1035 /**
1036  * qemu_init_vcpu:
1037  * @cpu: The vCPU to initialize.
1038  *
1039  * Initializes a vCPU.
1040  */
1041 void qemu_init_vcpu(CPUState *cpu);
1042 
1043 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1044 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1045 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1046 
1047 /**
1048  * cpu_single_step:
1049  * @cpu: CPU to the flags for.
1050  * @enabled: Flags to enable.
1051  *
1052  * Enables or disables single-stepping for @cpu.
1053  */
1054 void cpu_single_step(CPUState *cpu, int enabled);
1055 
1056 /* Breakpoint/watchpoint flags */
1057 #define BP_MEM_READ           0x01
1058 #define BP_MEM_WRITE          0x02
1059 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1060 #define BP_STOP_BEFORE_ACCESS 0x04
1061 /* 0x08 currently unused */
1062 #define BP_GDB                0x10
1063 #define BP_CPU                0x20
1064 #define BP_ANY                (BP_GDB | BP_CPU)
1065 #define BP_WATCHPOINT_HIT_READ 0x40
1066 #define BP_WATCHPOINT_HIT_WRITE 0x80
1067 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1068 
1069 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1070                           CPUBreakpoint **breakpoint);
1071 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1072 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1073 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1074 
1075 /* Return true if PC matches an installed breakpoint.  */
1076 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1077 {
1078     CPUBreakpoint *bp;
1079 
1080     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1081         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1082             if (bp->pc == pc && (bp->flags & mask)) {
1083                 return true;
1084             }
1085         }
1086     }
1087     return false;
1088 }
1089 
1090 #ifdef CONFIG_USER_ONLY
1091 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1092                                         int flags, CPUWatchpoint **watchpoint)
1093 {
1094     return -ENOSYS;
1095 }
1096 
1097 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1098                                         vaddr len, int flags)
1099 {
1100     return -ENOSYS;
1101 }
1102 
1103 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1104                                                 CPUWatchpoint *wp)
1105 {
1106 }
1107 
1108 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1109 {
1110 }
1111 
1112 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1113                                         MemTxAttrs atr, int fl, uintptr_t ra)
1114 {
1115 }
1116 
1117 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1118                                                  vaddr addr, vaddr len)
1119 {
1120     return 0;
1121 }
1122 #else
1123 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1124                           int flags, CPUWatchpoint **watchpoint);
1125 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1126                           vaddr len, int flags);
1127 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1128 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1129 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1130                           MemTxAttrs attrs, int flags, uintptr_t ra);
1131 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1132 #endif
1133 
1134 /**
1135  * cpu_get_address_space:
1136  * @cpu: CPU to get address space from
1137  * @asidx: index identifying which address space to get
1138  *
1139  * Return the requested address space of this CPU. @asidx
1140  * specifies which address space to read.
1141  */
1142 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1143 
1144 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1145     GCC_FMT_ATTR(2, 3);
1146 extern Property cpu_common_props[];
1147 void cpu_exec_initfn(CPUState *cpu);
1148 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1149 void cpu_exec_unrealizefn(CPUState *cpu);
1150 
1151 /**
1152  * target_words_bigendian:
1153  * Returns true if the (default) endianness of the target is big endian,
1154  * false otherwise. Note that in target-specific code, you can use
1155  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1156  * code should normally never need to know about the endianness of the
1157  * target, so please do *not* use this function unless you know very well
1158  * what you are doing!
1159  */
1160 bool target_words_bigendian(void);
1161 
1162 #ifdef NEED_CPU_H
1163 
1164 #ifdef CONFIG_SOFTMMU
1165 extern const VMStateDescription vmstate_cpu_common;
1166 #else
1167 #define vmstate_cpu_common vmstate_dummy
1168 #endif
1169 
1170 #define VMSTATE_CPU() {                                                     \
1171     .name = "parent_obj",                                                   \
1172     .size = sizeof(CPUState),                                               \
1173     .vmsd = &vmstate_cpu_common,                                            \
1174     .flags = VMS_STRUCT,                                                    \
1175     .offset = 0,                                                            \
1176 }
1177 
1178 #endif /* NEED_CPU_H */
1179 
1180 #define UNASSIGNED_CPU_INDEX -1
1181 #define UNASSIGNED_CLUSTER_INDEX -1
1182 
1183 #endif
1184