1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /* see sysemu-cpu-ops.h */ 84 struct SysemuCPUOps; 85 86 /** 87 * CPUClass: 88 * @class_by_name: Callback to map -cpu command line model name to an 89 * instantiatable CPU type. 90 * @parse_features: Callback to parse command line arguments. 91 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 92 * @has_work: Callback for checking if there is work to do. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 96 * @set_pc: Callback for setting the Program Counter register. This 97 * should have the semantics used by the target architecture when 98 * setting the PC from a source such as an ELF file entry point; 99 * for example on Arm it will also set the Thumb mode bit based 100 * on the least significant bit of the new PC value. 101 * If the target behaviour here is anything other than "set 102 * the PC register to the value passed in" then the target must 103 * also implement the synchronize_from_tb hook. 104 * @gdb_read_register: Callback for letting GDB read a register. 105 * @gdb_write_register: Callback for letting GDB write a register. 106 * @gdb_num_core_regs: Number of core registers accessible to GDB. 107 * @gdb_core_xml_file: File name for core registers GDB XML description. 108 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 109 * before the insn which triggers a watchpoint rather than after it. 110 * @gdb_arch_name: Optional callback that returns the architecture name known 111 * to GDB. The caller must free the returned string with g_free. 112 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 113 * gdb stub. Returns a pointer to the XML contents for the specified XML file 114 * or NULL if the CPU doesn't have a dynamically generated content for it. 115 * @disas_set_info: Setup architecture specific components of disassembly info 116 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 117 * address before attempting to match it against watchpoints. 118 * @deprecation_note: If this CPUClass is deprecated, this field provides 119 * related information. 120 * 121 * Represents a CPU family or model. 122 */ 123 struct CPUClass { 124 /*< private >*/ 125 DeviceClass parent_class; 126 /*< public >*/ 127 128 ObjectClass *(*class_by_name)(const char *cpu_model); 129 void (*parse_features)(const char *typename, char *str, Error **errp); 130 131 int reset_dump_flags; 132 bool (*has_work)(CPUState *cpu); 133 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 134 uint8_t *buf, int len, bool is_write); 135 void (*dump_state)(CPUState *cpu, FILE *, int flags); 136 int64_t (*get_arch_id)(CPUState *cpu); 137 void (*set_pc)(CPUState *cpu, vaddr value); 138 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 139 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 140 141 const char *gdb_core_xml_file; 142 gchar * (*gdb_arch_name)(CPUState *cpu); 143 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 144 145 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 146 147 const char *deprecation_note; 148 /* Keep non-pointer data at the end to minimize holes. */ 149 int gdb_num_core_regs; 150 bool gdb_stop_before_watchpoint; 151 struct AccelCPUClass *accel_cpu; 152 153 /* when system emulation is not available, this pointer is NULL */ 154 const struct SysemuCPUOps *sysemu_ops; 155 156 /* when TCG is not available, this pointer is NULL */ 157 const struct TCGCPUOps *tcg_ops; 158 159 /* 160 * if not NULL, this is called in order for the CPUClass to initialize 161 * class data that depends on the accelerator, see accel/accel-common.c. 162 */ 163 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 164 }; 165 166 /* 167 * Low 16 bits: number of cycles left, used only in icount mode. 168 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 169 * for this CPU and return to its top level loop (even in non-icount mode). 170 * This allows a single read-compare-cbranch-write sequence to test 171 * for both decrementer underflow and exceptions. 172 */ 173 typedef union IcountDecr { 174 uint32_t u32; 175 struct { 176 #ifdef HOST_WORDS_BIGENDIAN 177 uint16_t high; 178 uint16_t low; 179 #else 180 uint16_t low; 181 uint16_t high; 182 #endif 183 } u16; 184 } IcountDecr; 185 186 typedef struct CPUBreakpoint { 187 vaddr pc; 188 int flags; /* BP_* */ 189 QTAILQ_ENTRY(CPUBreakpoint) entry; 190 } CPUBreakpoint; 191 192 struct CPUWatchpoint { 193 vaddr vaddr; 194 vaddr len; 195 vaddr hitaddr; 196 MemTxAttrs hitattrs; 197 int flags; /* BP_* */ 198 QTAILQ_ENTRY(CPUWatchpoint) entry; 199 }; 200 201 #ifdef CONFIG_PLUGIN 202 /* 203 * For plugins we sometime need to save the resolved iotlb data before 204 * the memory regions get moved around by io_writex. 205 */ 206 typedef struct SavedIOTLB { 207 hwaddr addr; 208 MemoryRegionSection *section; 209 hwaddr mr_offset; 210 } SavedIOTLB; 211 #endif 212 213 struct KVMState; 214 struct kvm_run; 215 216 struct hax_vcpu_state; 217 struct hvf_vcpu_state; 218 219 #define TB_JMP_CACHE_BITS 12 220 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 221 222 /* work queue */ 223 224 /* The union type allows passing of 64 bit target pointers on 32 bit 225 * hosts in a single parameter 226 */ 227 typedef union { 228 int host_int; 229 unsigned long host_ulong; 230 void *host_ptr; 231 vaddr target_ptr; 232 } run_on_cpu_data; 233 234 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 235 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 236 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 237 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 238 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 239 240 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 241 242 struct qemu_work_item; 243 244 #define CPU_UNSET_NUMA_NODE_ID -1 245 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 246 247 /** 248 * CPUState: 249 * @cpu_index: CPU index (informative). 250 * @cluster_index: Identifies which cluster this CPU is in. 251 * For boards which don't define clusters or for "loose" CPUs not assigned 252 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 253 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 254 * QOM parent. 255 * @tcg_cflags: Pre-computed cflags for this cpu. 256 * @nr_cores: Number of cores within this CPU package. 257 * @nr_threads: Number of threads within this CPU. 258 * @running: #true if CPU is currently running (lockless). 259 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 260 * valid under cpu_list_lock. 261 * @created: Indicates whether the CPU thread has been successfully created. 262 * @interrupt_request: Indicates a pending interrupt request. 263 * @halted: Nonzero if the CPU is in suspended state. 264 * @stop: Indicates a pending stop request. 265 * @stopped: Indicates the CPU has been artificially stopped. 266 * @unplug: Indicates a pending CPU unplug request. 267 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 268 * @singlestep_enabled: Flags for single-stepping. 269 * @icount_extra: Instructions until next timer event. 270 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 271 * requires that IO only be performed on the last instruction of a TB 272 * so that interrupts take effect immediately. 273 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 274 * AddressSpaces this CPU has) 275 * @num_ases: number of CPUAddressSpaces in @cpu_ases 276 * @as: Pointer to the first AddressSpace, for the convenience of targets which 277 * only have a single AddressSpace 278 * @env_ptr: Pointer to subclass-specific CPUArchState field. 279 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 280 * @gdb_regs: Additional GDB registers. 281 * @gdb_num_regs: Number of total registers accessible to GDB. 282 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 283 * @next_cpu: Next CPU sharing TB cache. 284 * @opaque: User data. 285 * @mem_io_pc: Host Program Counter at which the memory was accessed. 286 * @kvm_fd: vCPU file descriptor for KVM. 287 * @work_mutex: Lock to prevent multiple access to @work_list. 288 * @work_list: List of pending asynchronous work. 289 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 290 * to @trace_dstate). 291 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 292 * @plugin_mask: Plugin event bitmap. Modified only via async work. 293 * @ignore_memory_transaction_failures: Cached copy of the MachineState 294 * flag of the same name: allows the board to suppress calling of the 295 * CPU do_transaction_failed hook function. 296 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 297 * ring is enabled. 298 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 299 * dirty ring structure. 300 * 301 * State of one CPU core or thread. 302 */ 303 struct CPUState { 304 /*< private >*/ 305 DeviceState parent_obj; 306 /*< public >*/ 307 308 int nr_cores; 309 int nr_threads; 310 311 struct QemuThread *thread; 312 #ifdef _WIN32 313 HANDLE hThread; 314 #endif 315 int thread_id; 316 bool running, has_waiter; 317 struct QemuCond *halt_cond; 318 bool thread_kicked; 319 bool created; 320 bool stop; 321 bool stopped; 322 323 /* Should CPU start in powered-off state? */ 324 bool start_powered_off; 325 326 bool unplug; 327 bool crash_occurred; 328 bool exit_request; 329 bool in_exclusive_context; 330 uint32_t cflags_next_tb; 331 /* updates protected by BQL */ 332 uint32_t interrupt_request; 333 int singlestep_enabled; 334 int64_t icount_budget; 335 int64_t icount_extra; 336 uint64_t random_seed; 337 sigjmp_buf jmp_env; 338 339 QemuMutex work_mutex; 340 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 341 342 CPUAddressSpace *cpu_ases; 343 int num_ases; 344 AddressSpace *as; 345 MemoryRegion *memory; 346 347 void *env_ptr; /* CPUArchState */ 348 IcountDecr *icount_decr_ptr; 349 350 /* Accessed in parallel; all accesses must be atomic */ 351 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 352 353 struct GDBRegisterState *gdb_regs; 354 int gdb_num_regs; 355 int gdb_num_g_regs; 356 QTAILQ_ENTRY(CPUState) node; 357 358 /* ice debug support */ 359 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 360 361 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 362 CPUWatchpoint *watchpoint_hit; 363 364 void *opaque; 365 366 /* In order to avoid passing too many arguments to the MMIO helpers, 367 * we store some rarely used information in the CPU context. 368 */ 369 uintptr_t mem_io_pc; 370 371 /* Only used in KVM */ 372 int kvm_fd; 373 struct KVMState *kvm_state; 374 struct kvm_run *kvm_run; 375 struct kvm_dirty_gfn *kvm_dirty_gfns; 376 uint32_t kvm_fetch_index; 377 378 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 379 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 380 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 381 382 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 383 384 #ifdef CONFIG_PLUGIN 385 GArray *plugin_mem_cbs; 386 /* saved iotlb data from io_writex */ 387 SavedIOTLB saved_iotlb; 388 #endif 389 390 /* TODO Move common fields from CPUArchState here. */ 391 int cpu_index; 392 int cluster_index; 393 uint32_t tcg_cflags; 394 uint32_t halted; 395 uint32_t can_do_io; 396 int32_t exception_index; 397 398 /* shared by kvm, hax and hvf */ 399 bool vcpu_dirty; 400 401 /* Used to keep track of an outstanding cpu throttle thread for migration 402 * autoconverge 403 */ 404 bool throttle_thread_scheduled; 405 406 bool ignore_memory_transaction_failures; 407 408 struct hax_vcpu_state *hax_vcpu; 409 410 struct hvf_vcpu_state *hvf; 411 412 /* track IOMMUs whose translations we've cached in the TCG TLB */ 413 GArray *iommu_notifiers; 414 }; 415 416 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 417 extern CPUTailQ cpus; 418 419 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 420 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 421 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 422 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 423 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 424 425 extern __thread CPUState *current_cpu; 426 427 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 428 { 429 unsigned int i; 430 431 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 432 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 433 } 434 } 435 436 /** 437 * qemu_tcg_mttcg_enabled: 438 * Check whether we are running MultiThread TCG or not. 439 * 440 * Returns: %true if we are in MTTCG mode %false otherwise. 441 */ 442 extern bool mttcg_enabled; 443 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 444 445 /** 446 * cpu_paging_enabled: 447 * @cpu: The CPU whose state is to be inspected. 448 * 449 * Returns: %true if paging is enabled, %false otherwise. 450 */ 451 bool cpu_paging_enabled(const CPUState *cpu); 452 453 /** 454 * cpu_get_memory_mapping: 455 * @cpu: The CPU whose memory mappings are to be obtained. 456 * @list: Where to write the memory mappings to. 457 * @errp: Pointer for reporting an #Error. 458 */ 459 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 460 Error **errp); 461 462 #if !defined(CONFIG_USER_ONLY) 463 464 /** 465 * cpu_write_elf64_note: 466 * @f: pointer to a function that writes memory to a file 467 * @cpu: The CPU whose memory is to be dumped 468 * @cpuid: ID number of the CPU 469 * @opaque: pointer to the CPUState struct 470 */ 471 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 472 int cpuid, void *opaque); 473 474 /** 475 * cpu_write_elf64_qemunote: 476 * @f: pointer to a function that writes memory to a file 477 * @cpu: The CPU whose memory is to be dumped 478 * @cpuid: ID number of the CPU 479 * @opaque: pointer to the CPUState struct 480 */ 481 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 482 void *opaque); 483 484 /** 485 * cpu_write_elf32_note: 486 * @f: pointer to a function that writes memory to a file 487 * @cpu: The CPU whose memory is to be dumped 488 * @cpuid: ID number of the CPU 489 * @opaque: pointer to the CPUState struct 490 */ 491 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 492 int cpuid, void *opaque); 493 494 /** 495 * cpu_write_elf32_qemunote: 496 * @f: pointer to a function that writes memory to a file 497 * @cpu: The CPU whose memory is to be dumped 498 * @cpuid: ID number of the CPU 499 * @opaque: pointer to the CPUState struct 500 */ 501 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 502 void *opaque); 503 504 /** 505 * cpu_get_crash_info: 506 * @cpu: The CPU to get crash information for 507 * 508 * Gets the previously saved crash information. 509 * Caller is responsible for freeing the data. 510 */ 511 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 512 513 #endif /* !CONFIG_USER_ONLY */ 514 515 /** 516 * CPUDumpFlags: 517 * @CPU_DUMP_CODE: 518 * @CPU_DUMP_FPU: dump FPU register state, not just integer 519 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 520 */ 521 enum CPUDumpFlags { 522 CPU_DUMP_CODE = 0x00010000, 523 CPU_DUMP_FPU = 0x00020000, 524 CPU_DUMP_CCOP = 0x00040000, 525 }; 526 527 /** 528 * cpu_dump_state: 529 * @cpu: The CPU whose state is to be dumped. 530 * @f: If non-null, dump to this stream, else to current print sink. 531 * 532 * Dumps CPU state. 533 */ 534 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 535 536 #ifndef CONFIG_USER_ONLY 537 /** 538 * cpu_get_phys_page_attrs_debug: 539 * @cpu: The CPU to obtain the physical page address for. 540 * @addr: The virtual address. 541 * @attrs: Updated on return with the memory transaction attributes to use 542 * for this access. 543 * 544 * Obtains the physical page corresponding to a virtual one, together 545 * with the corresponding memory transaction attributes to use for the access. 546 * Use it only for debugging because no protection checks are done. 547 * 548 * Returns: Corresponding physical page address or -1 if no page found. 549 */ 550 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 551 MemTxAttrs *attrs); 552 553 /** 554 * cpu_get_phys_page_debug: 555 * @cpu: The CPU to obtain the physical page address for. 556 * @addr: The virtual address. 557 * 558 * Obtains the physical page corresponding to a virtual one. 559 * Use it only for debugging because no protection checks are done. 560 * 561 * Returns: Corresponding physical page address or -1 if no page found. 562 */ 563 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 564 565 /** cpu_asidx_from_attrs: 566 * @cpu: CPU 567 * @attrs: memory transaction attributes 568 * 569 * Returns the address space index specifying the CPU AddressSpace 570 * to use for a memory access with the given transaction attributes. 571 */ 572 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 573 574 /** 575 * cpu_virtio_is_big_endian: 576 * @cpu: CPU 577 578 * Returns %true if a CPU which supports runtime configurable endianness 579 * is currently big-endian. 580 */ 581 bool cpu_virtio_is_big_endian(CPUState *cpu); 582 583 #endif /* CONFIG_USER_ONLY */ 584 585 /** 586 * cpu_list_add: 587 * @cpu: The CPU to be added to the list of CPUs. 588 */ 589 void cpu_list_add(CPUState *cpu); 590 591 /** 592 * cpu_list_remove: 593 * @cpu: The CPU to be removed from the list of CPUs. 594 */ 595 void cpu_list_remove(CPUState *cpu); 596 597 /** 598 * cpu_reset: 599 * @cpu: The CPU whose state is to be reset. 600 */ 601 void cpu_reset(CPUState *cpu); 602 603 /** 604 * cpu_class_by_name: 605 * @typename: The CPU base type. 606 * @cpu_model: The model string without any parameters. 607 * 608 * Looks up a CPU #ObjectClass matching name @cpu_model. 609 * 610 * Returns: A #CPUClass or %NULL if not matching class is found. 611 */ 612 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 613 614 /** 615 * cpu_create: 616 * @typename: The CPU type. 617 * 618 * Instantiates a CPU and realizes the CPU. 619 * 620 * Returns: A #CPUState or %NULL if an error occurred. 621 */ 622 CPUState *cpu_create(const char *typename); 623 624 /** 625 * parse_cpu_option: 626 * @cpu_option: The -cpu option including optional parameters. 627 * 628 * processes optional parameters and registers them as global properties 629 * 630 * Returns: type of CPU to create or prints error and terminates process 631 * if an error occurred. 632 */ 633 const char *parse_cpu_option(const char *cpu_option); 634 635 /** 636 * cpu_has_work: 637 * @cpu: The vCPU to check. 638 * 639 * Checks whether the CPU has work to do. 640 * 641 * Returns: %true if the CPU has work, %false otherwise. 642 */ 643 static inline bool cpu_has_work(CPUState *cpu) 644 { 645 CPUClass *cc = CPU_GET_CLASS(cpu); 646 647 g_assert(cc->has_work); 648 return cc->has_work(cpu); 649 } 650 651 /** 652 * qemu_cpu_is_self: 653 * @cpu: The vCPU to check against. 654 * 655 * Checks whether the caller is executing on the vCPU thread. 656 * 657 * Returns: %true if called from @cpu's thread, %false otherwise. 658 */ 659 bool qemu_cpu_is_self(CPUState *cpu); 660 661 /** 662 * qemu_cpu_kick: 663 * @cpu: The vCPU to kick. 664 * 665 * Kicks @cpu's thread. 666 */ 667 void qemu_cpu_kick(CPUState *cpu); 668 669 /** 670 * cpu_is_stopped: 671 * @cpu: The CPU to check. 672 * 673 * Checks whether the CPU is stopped. 674 * 675 * Returns: %true if run state is not running or if artificially stopped; 676 * %false otherwise. 677 */ 678 bool cpu_is_stopped(CPUState *cpu); 679 680 /** 681 * do_run_on_cpu: 682 * @cpu: The vCPU to run on. 683 * @func: The function to be executed. 684 * @data: Data to pass to the function. 685 * @mutex: Mutex to release while waiting for @func to run. 686 * 687 * Used internally in the implementation of run_on_cpu. 688 */ 689 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 690 QemuMutex *mutex); 691 692 /** 693 * run_on_cpu: 694 * @cpu: The vCPU to run on. 695 * @func: The function to be executed. 696 * @data: Data to pass to the function. 697 * 698 * Schedules the function @func for execution on the vCPU @cpu. 699 */ 700 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 701 702 /** 703 * async_run_on_cpu: 704 * @cpu: The vCPU to run on. 705 * @func: The function to be executed. 706 * @data: Data to pass to the function. 707 * 708 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 709 */ 710 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 711 712 /** 713 * async_safe_run_on_cpu: 714 * @cpu: The vCPU to run on. 715 * @func: The function to be executed. 716 * @data: Data to pass to the function. 717 * 718 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 719 * while all other vCPUs are sleeping. 720 * 721 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 722 * BQL. 723 */ 724 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 725 726 /** 727 * cpu_in_exclusive_context() 728 * @cpu: The vCPU to check 729 * 730 * Returns true if @cpu is an exclusive context, for example running 731 * something which has previously been queued via async_safe_run_on_cpu(). 732 */ 733 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 734 { 735 return cpu->in_exclusive_context; 736 } 737 738 /** 739 * qemu_get_cpu: 740 * @index: The CPUState@cpu_index value of the CPU to obtain. 741 * 742 * Gets a CPU matching @index. 743 * 744 * Returns: The CPU or %NULL if there is no matching CPU. 745 */ 746 CPUState *qemu_get_cpu(int index); 747 748 /** 749 * cpu_exists: 750 * @id: Guest-exposed CPU ID to lookup. 751 * 752 * Search for CPU with specified ID. 753 * 754 * Returns: %true - CPU is found, %false - CPU isn't found. 755 */ 756 bool cpu_exists(int64_t id); 757 758 /** 759 * cpu_by_arch_id: 760 * @id: Guest-exposed CPU ID of the CPU to obtain. 761 * 762 * Get a CPU with matching @id. 763 * 764 * Returns: The CPU or %NULL if there is no matching CPU. 765 */ 766 CPUState *cpu_by_arch_id(int64_t id); 767 768 /** 769 * cpu_interrupt: 770 * @cpu: The CPU to set an interrupt on. 771 * @mask: The interrupts to set. 772 * 773 * Invokes the interrupt handler. 774 */ 775 776 void cpu_interrupt(CPUState *cpu, int mask); 777 778 /** 779 * cpu_set_pc: 780 * @cpu: The CPU to set the program counter for. 781 * @addr: Program counter value. 782 * 783 * Sets the program counter for a CPU. 784 */ 785 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 786 { 787 CPUClass *cc = CPU_GET_CLASS(cpu); 788 789 cc->set_pc(cpu, addr); 790 } 791 792 /** 793 * cpu_reset_interrupt: 794 * @cpu: The CPU to clear the interrupt on. 795 * @mask: The interrupt mask to clear. 796 * 797 * Resets interrupts on the vCPU @cpu. 798 */ 799 void cpu_reset_interrupt(CPUState *cpu, int mask); 800 801 /** 802 * cpu_exit: 803 * @cpu: The CPU to exit. 804 * 805 * Requests the CPU @cpu to exit execution. 806 */ 807 void cpu_exit(CPUState *cpu); 808 809 /** 810 * cpu_resume: 811 * @cpu: The CPU to resume. 812 * 813 * Resumes CPU, i.e. puts CPU into runnable state. 814 */ 815 void cpu_resume(CPUState *cpu); 816 817 /** 818 * cpu_remove_sync: 819 * @cpu: The CPU to remove. 820 * 821 * Requests the CPU to be removed and waits till it is removed. 822 */ 823 void cpu_remove_sync(CPUState *cpu); 824 825 /** 826 * process_queued_cpu_work() - process all items on CPU work queue 827 * @cpu: The CPU which work queue to process. 828 */ 829 void process_queued_cpu_work(CPUState *cpu); 830 831 /** 832 * cpu_exec_start: 833 * @cpu: The CPU for the current thread. 834 * 835 * Record that a CPU has started execution and can be interrupted with 836 * cpu_exit. 837 */ 838 void cpu_exec_start(CPUState *cpu); 839 840 /** 841 * cpu_exec_end: 842 * @cpu: The CPU for the current thread. 843 * 844 * Record that a CPU has stopped execution and exclusive sections 845 * can be executed without interrupting it. 846 */ 847 void cpu_exec_end(CPUState *cpu); 848 849 /** 850 * start_exclusive: 851 * 852 * Wait for a concurrent exclusive section to end, and then start 853 * a section of work that is run while other CPUs are not running 854 * between cpu_exec_start and cpu_exec_end. CPUs that are running 855 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 856 * during the exclusive section go to sleep until this CPU calls 857 * end_exclusive. 858 */ 859 void start_exclusive(void); 860 861 /** 862 * end_exclusive: 863 * 864 * Concludes an exclusive execution section started by start_exclusive. 865 */ 866 void end_exclusive(void); 867 868 /** 869 * qemu_init_vcpu: 870 * @cpu: The vCPU to initialize. 871 * 872 * Initializes a vCPU. 873 */ 874 void qemu_init_vcpu(CPUState *cpu); 875 876 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 877 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 878 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 879 880 /** 881 * cpu_single_step: 882 * @cpu: CPU to the flags for. 883 * @enabled: Flags to enable. 884 * 885 * Enables or disables single-stepping for @cpu. 886 */ 887 void cpu_single_step(CPUState *cpu, int enabled); 888 889 /* Breakpoint/watchpoint flags */ 890 #define BP_MEM_READ 0x01 891 #define BP_MEM_WRITE 0x02 892 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 893 #define BP_STOP_BEFORE_ACCESS 0x04 894 /* 0x08 currently unused */ 895 #define BP_GDB 0x10 896 #define BP_CPU 0x20 897 #define BP_ANY (BP_GDB | BP_CPU) 898 #define BP_WATCHPOINT_HIT_READ 0x40 899 #define BP_WATCHPOINT_HIT_WRITE 0x80 900 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 901 902 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 903 CPUBreakpoint **breakpoint); 904 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 905 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 906 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 907 908 /* Return true if PC matches an installed breakpoint. */ 909 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 910 { 911 CPUBreakpoint *bp; 912 913 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 914 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 915 if (bp->pc == pc && (bp->flags & mask)) { 916 return true; 917 } 918 } 919 } 920 return false; 921 } 922 923 #ifdef CONFIG_USER_ONLY 924 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 925 int flags, CPUWatchpoint **watchpoint) 926 { 927 return -ENOSYS; 928 } 929 930 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 931 vaddr len, int flags) 932 { 933 return -ENOSYS; 934 } 935 936 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 937 CPUWatchpoint *wp) 938 { 939 } 940 941 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 942 { 943 } 944 945 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 946 MemTxAttrs atr, int fl, uintptr_t ra) 947 { 948 } 949 950 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 951 vaddr addr, vaddr len) 952 { 953 return 0; 954 } 955 #else 956 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 957 int flags, CPUWatchpoint **watchpoint); 958 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 959 vaddr len, int flags); 960 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 961 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 962 963 /** 964 * cpu_check_watchpoint: 965 * @cpu: cpu context 966 * @addr: guest virtual address 967 * @len: access length 968 * @attrs: memory access attributes 969 * @flags: watchpoint access type 970 * @ra: unwind return address 971 * 972 * Check for a watchpoint hit in [addr, addr+len) of the type 973 * specified by @flags. Exit via exception with a hit. 974 */ 975 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 976 MemTxAttrs attrs, int flags, uintptr_t ra); 977 978 /** 979 * cpu_watchpoint_address_matches: 980 * @cpu: cpu context 981 * @addr: guest virtual address 982 * @len: access length 983 * 984 * Return the watchpoint flags that apply to [addr, addr+len). 985 * If no watchpoint is registered for the range, the result is 0. 986 */ 987 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 988 #endif 989 990 /** 991 * cpu_get_address_space: 992 * @cpu: CPU to get address space from 993 * @asidx: index identifying which address space to get 994 * 995 * Return the requested address space of this CPU. @asidx 996 * specifies which address space to read. 997 */ 998 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 999 1000 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1001 GCC_FMT_ATTR(2, 3); 1002 1003 /* $(top_srcdir)/cpu.c */ 1004 void cpu_exec_initfn(CPUState *cpu); 1005 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1006 void cpu_exec_unrealizefn(CPUState *cpu); 1007 1008 /** 1009 * target_words_bigendian: 1010 * Returns true if the (default) endianness of the target is big endian, 1011 * false otherwise. Note that in target-specific code, you can use 1012 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1013 * code should normally never need to know about the endianness of the 1014 * target, so please do *not* use this function unless you know very well 1015 * what you are doing! 1016 */ 1017 bool target_words_bigendian(void); 1018 1019 #ifdef NEED_CPU_H 1020 1021 #ifdef CONFIG_SOFTMMU 1022 1023 extern const VMStateDescription vmstate_cpu_common; 1024 1025 #define VMSTATE_CPU() { \ 1026 .name = "parent_obj", \ 1027 .size = sizeof(CPUState), \ 1028 .vmsd = &vmstate_cpu_common, \ 1029 .flags = VMS_STRUCT, \ 1030 .offset = 0, \ 1031 } 1032 #endif /* CONFIG_SOFTMMU */ 1033 1034 #endif /* NEED_CPU_H */ 1035 1036 #define UNASSIGNED_CPU_INDEX -1 1037 #define UNASSIGNED_CLUSTER_INDEX -1 1038 1039 #endif 1040