1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/cpu-common.h" 26 #include "exec/hwaddr.h" 27 #include "exec/memattrs.h" 28 #include "exec/tlb-common.h" 29 #include "qapi/qapi-types-run-state.h" 30 #include "qemu/bitmap.h" 31 #include "qemu/rcu_queue.h" 32 #include "qemu/queue.h" 33 #include "qemu/thread.h" 34 #include "qemu/plugin-event.h" 35 #include "qom/object.h" 36 37 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 38 void *opaque); 39 40 /** 41 * SECTION:cpu 42 * @section_id: QEMU-cpu 43 * @title: CPU Class 44 * @short_description: Base class for all CPUs 45 */ 46 47 #define TYPE_CPU "cpu" 48 49 /* Since this macro is used a lot in hot code paths and in conjunction with 50 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 51 * an unchecked cast. 52 */ 53 #define CPU(obj) ((CPUState *)(obj)) 54 55 /* 56 * The class checkers bring in CPU_GET_CLASS() which is potentially 57 * expensive given the eventual call to 58 * object_class_dynamic_cast_assert(). Because of this the CPUState 59 * has a cached value for the class in cs->cc which is set up in 60 * cpu_exec_realizefn() for use in hot code paths. 61 */ 62 typedef struct CPUClass CPUClass; 63 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 64 TYPE_CPU) 65 66 /** 67 * OBJECT_DECLARE_CPU_TYPE: 68 * @CpuInstanceType: instance struct name 69 * @CpuClassType: class struct name 70 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 71 * 72 * This macro is typically used in "cpu-qom.h" header file, and will: 73 * 74 * - create the typedefs for the CPU object and class structs 75 * - register the type for use with g_autoptr 76 * - provide three standard type cast functions 77 * 78 * The object struct and class struct need to be declared manually. 79 */ 80 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 81 typedef struct ArchCPU CpuInstanceType; \ 82 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 83 84 typedef enum MMUAccessType { 85 MMU_DATA_LOAD = 0, 86 MMU_DATA_STORE = 1, 87 MMU_INST_FETCH = 2 88 #define MMU_ACCESS_COUNT 3 89 } MMUAccessType; 90 91 typedef struct CPUWatchpoint CPUWatchpoint; 92 93 /* see tcg-cpu-ops.h */ 94 struct TCGCPUOps; 95 96 /* see accel-cpu.h */ 97 struct AccelCPUClass; 98 99 /* see sysemu-cpu-ops.h */ 100 struct SysemuCPUOps; 101 102 /** 103 * CPUClass: 104 * @class_by_name: Callback to map -cpu command line model name to an 105 * instantiatable CPU type. 106 * @parse_features: Callback to parse command line arguments. 107 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 108 * @has_work: Callback for checking if there is work to do. 109 * @memory_rw_debug: Callback for GDB memory access. 110 * @dump_state: Callback for dumping state. 111 * @query_cpu_fast: 112 * Fill in target specific information for the "query-cpus-fast" 113 * QAPI call. 114 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 115 * @set_pc: Callback for setting the Program Counter register. This 116 * should have the semantics used by the target architecture when 117 * setting the PC from a source such as an ELF file entry point; 118 * for example on Arm it will also set the Thumb mode bit based 119 * on the least significant bit of the new PC value. 120 * If the target behaviour here is anything other than "set 121 * the PC register to the value passed in" then the target must 122 * also implement the synchronize_from_tb hook. 123 * @get_pc: Callback for getting the Program Counter register. 124 * As above, with the semantics of the target architecture. 125 * @gdb_read_register: Callback for letting GDB read a register. 126 * @gdb_write_register: Callback for letting GDB write a register. 127 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 128 * breakpoint. Used by AVR to handle a gdb mis-feature with 129 * its Harvard architecture split code and data. 130 * @gdb_num_core_regs: Number of core registers accessible to GDB. 131 * @gdb_core_xml_file: File name for core registers GDB XML description. 132 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 133 * before the insn which triggers a watchpoint rather than after it. 134 * @gdb_arch_name: Optional callback that returns the architecture name known 135 * to GDB. The caller must free the returned string with g_free. 136 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 137 * gdb stub. Returns a pointer to the XML contents for the specified XML file 138 * or NULL if the CPU doesn't have a dynamically generated content for it. 139 * @disas_set_info: Setup architecture specific components of disassembly info 140 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 141 * address before attempting to match it against watchpoints. 142 * @deprecation_note: If this CPUClass is deprecated, this field provides 143 * related information. 144 * 145 * Represents a CPU family or model. 146 */ 147 struct CPUClass { 148 /*< private >*/ 149 DeviceClass parent_class; 150 /*< public >*/ 151 152 ObjectClass *(*class_by_name)(const char *cpu_model); 153 void (*parse_features)(const char *typename, char *str, Error **errp); 154 155 bool (*has_work)(CPUState *cpu); 156 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 157 uint8_t *buf, int len, bool is_write); 158 void (*dump_state)(CPUState *cpu, FILE *, int flags); 159 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 160 int64_t (*get_arch_id)(CPUState *cpu); 161 void (*set_pc)(CPUState *cpu, vaddr value); 162 vaddr (*get_pc)(CPUState *cpu); 163 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 164 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 165 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 166 167 const char *gdb_core_xml_file; 168 const gchar * (*gdb_arch_name)(CPUState *cpu); 169 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 170 171 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 172 173 const char *deprecation_note; 174 struct AccelCPUClass *accel_cpu; 175 176 /* when system emulation is not available, this pointer is NULL */ 177 const struct SysemuCPUOps *sysemu_ops; 178 179 /* when TCG is not available, this pointer is NULL */ 180 const struct TCGCPUOps *tcg_ops; 181 182 /* 183 * if not NULL, this is called in order for the CPUClass to initialize 184 * class data that depends on the accelerator, see accel/accel-common.c. 185 */ 186 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 187 188 /* 189 * Keep non-pointer data at the end to minimize holes. 190 */ 191 int reset_dump_flags; 192 int gdb_num_core_regs; 193 bool gdb_stop_before_watchpoint; 194 }; 195 196 /* 197 * Fix the number of mmu modes to 16, which is also the maximum 198 * supported by the softmmu tlb api. 199 */ 200 #define NB_MMU_MODES 16 201 202 /* Use a fully associative victim tlb of 8 entries. */ 203 #define CPU_VTLB_SIZE 8 204 205 /* 206 * The full TLB entry, which is not accessed by generated TCG code, 207 * so the layout is not as critical as that of CPUTLBEntry. This is 208 * also why we don't want to combine the two structs. 209 */ 210 typedef struct CPUTLBEntryFull { 211 /* 212 * @xlat_section contains: 213 * - in the lower TARGET_PAGE_BITS, a physical section number 214 * - with the lower TARGET_PAGE_BITS masked off, an offset which 215 * must be added to the virtual address to obtain: 216 * + the ram_addr_t of the target RAM (if the physical section 217 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 218 * + the offset within the target MemoryRegion (otherwise) 219 */ 220 hwaddr xlat_section; 221 222 /* 223 * @phys_addr contains the physical address in the address space 224 * given by cpu_asidx_from_attrs(cpu, @attrs). 225 */ 226 hwaddr phys_addr; 227 228 /* @attrs contains the memory transaction attributes for the page. */ 229 MemTxAttrs attrs; 230 231 /* @prot contains the complete protections for the page. */ 232 uint8_t prot; 233 234 /* @lg_page_size contains the log2 of the page size. */ 235 uint8_t lg_page_size; 236 237 /* 238 * Additional tlb flags for use by the slow path. If non-zero, 239 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 240 */ 241 uint8_t slow_flags[MMU_ACCESS_COUNT]; 242 243 /* 244 * Allow target-specific additions to this structure. 245 * This may be used to cache items from the guest cpu 246 * page tables for later use by the implementation. 247 */ 248 union { 249 /* 250 * Cache the attrs and shareability fields from the page table entry. 251 * 252 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 253 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 254 * For shareability and guarded, as in the SH and GP fields respectively 255 * of the VMSAv8-64 PTEs. 256 */ 257 struct { 258 uint8_t pte_attrs; 259 uint8_t shareability; 260 bool guarded; 261 } arm; 262 } extra; 263 } CPUTLBEntryFull; 264 265 /* 266 * Data elements that are per MMU mode, minus the bits accessed by 267 * the TCG fast path. 268 */ 269 typedef struct CPUTLBDesc { 270 /* 271 * Describe a region covering all of the large pages allocated 272 * into the tlb. When any page within this region is flushed, 273 * we must flush the entire tlb. The region is matched if 274 * (addr & large_page_mask) == large_page_addr. 275 */ 276 vaddr large_page_addr; 277 vaddr large_page_mask; 278 /* host time (in ns) at the beginning of the time window */ 279 int64_t window_begin_ns; 280 /* maximum number of entries observed in the window */ 281 size_t window_max_entries; 282 size_t n_used_entries; 283 /* The next index to use in the tlb victim table. */ 284 size_t vindex; 285 /* The tlb victim table, in two parts. */ 286 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 287 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 288 CPUTLBEntryFull *fulltlb; 289 } CPUTLBDesc; 290 291 /* 292 * Data elements that are shared between all MMU modes. 293 */ 294 typedef struct CPUTLBCommon { 295 /* Serialize updates to f.table and d.vtable, and others as noted. */ 296 QemuSpin lock; 297 /* 298 * Within dirty, for each bit N, modifications have been made to 299 * mmu_idx N since the last time that mmu_idx was flushed. 300 * Protected by tlb_c.lock. 301 */ 302 uint16_t dirty; 303 /* 304 * Statistics. These are not lock protected, but are read and 305 * written atomically. This allows the monitor to print a snapshot 306 * of the stats without interfering with the cpu. 307 */ 308 size_t full_flush_count; 309 size_t part_flush_count; 310 size_t elide_flush_count; 311 } CPUTLBCommon; 312 313 /* 314 * The entire softmmu tlb, for all MMU modes. 315 * The meaning of each of the MMU modes is defined in the target code. 316 * Since this is placed within CPUNegativeOffsetState, the smallest 317 * negative offsets are at the end of the struct. 318 */ 319 typedef struct CPUTLB { 320 #ifdef CONFIG_TCG 321 CPUTLBCommon c; 322 CPUTLBDesc d[NB_MMU_MODES]; 323 CPUTLBDescFast f[NB_MMU_MODES]; 324 #endif 325 } CPUTLB; 326 327 /* 328 * Low 16 bits: number of cycles left, used only in icount mode. 329 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 330 * for this CPU and return to its top level loop (even in non-icount mode). 331 * This allows a single read-compare-cbranch-write sequence to test 332 * for both decrementer underflow and exceptions. 333 */ 334 typedef union IcountDecr { 335 uint32_t u32; 336 struct { 337 #if HOST_BIG_ENDIAN 338 uint16_t high; 339 uint16_t low; 340 #else 341 uint16_t low; 342 uint16_t high; 343 #endif 344 } u16; 345 } IcountDecr; 346 347 /* 348 * Elements of CPUState most efficiently accessed from CPUArchState, 349 * via small negative offsets. 350 */ 351 typedef struct CPUNegativeOffsetState { 352 CPUTLB tlb; 353 IcountDecr icount_decr; 354 bool can_do_io; 355 } CPUNegativeOffsetState; 356 357 typedef struct CPUBreakpoint { 358 vaddr pc; 359 int flags; /* BP_* */ 360 QTAILQ_ENTRY(CPUBreakpoint) entry; 361 } CPUBreakpoint; 362 363 struct CPUWatchpoint { 364 vaddr vaddr; 365 vaddr len; 366 vaddr hitaddr; 367 MemTxAttrs hitattrs; 368 int flags; /* BP_* */ 369 QTAILQ_ENTRY(CPUWatchpoint) entry; 370 }; 371 372 struct KVMState; 373 struct kvm_run; 374 375 /* work queue */ 376 377 /* The union type allows passing of 64 bit target pointers on 32 bit 378 * hosts in a single parameter 379 */ 380 typedef union { 381 int host_int; 382 unsigned long host_ulong; 383 void *host_ptr; 384 vaddr target_ptr; 385 } run_on_cpu_data; 386 387 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 388 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 389 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 390 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 391 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 392 393 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 394 395 struct qemu_work_item; 396 397 #define CPU_UNSET_NUMA_NODE_ID -1 398 399 /** 400 * CPUState: 401 * @cpu_index: CPU index (informative). 402 * @cluster_index: Identifies which cluster this CPU is in. 403 * For boards which don't define clusters or for "loose" CPUs not assigned 404 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 405 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 406 * QOM parent. 407 * Under TCG this value is propagated to @tcg_cflags. 408 * See TranslationBlock::TCG CF_CLUSTER_MASK. 409 * @tcg_cflags: Pre-computed cflags for this cpu. 410 * @nr_cores: Number of cores within this CPU package. 411 * @nr_threads: Number of threads within this CPU. 412 * @running: #true if CPU is currently running (lockless). 413 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 414 * valid under cpu_list_lock. 415 * @created: Indicates whether the CPU thread has been successfully created. 416 * @interrupt_request: Indicates a pending interrupt request. 417 * @halted: Nonzero if the CPU is in suspended state. 418 * @stop: Indicates a pending stop request. 419 * @stopped: Indicates the CPU has been artificially stopped. 420 * @unplug: Indicates a pending CPU unplug request. 421 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 422 * @singlestep_enabled: Flags for single-stepping. 423 * @icount_extra: Instructions until next timer event. 424 * @neg.can_do_io: True if memory-mapped IO is allowed. 425 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 426 * AddressSpaces this CPU has) 427 * @num_ases: number of CPUAddressSpaces in @cpu_ases 428 * @as: Pointer to the first AddressSpace, for the convenience of targets which 429 * only have a single AddressSpace 430 * @gdb_regs: Additional GDB registers. 431 * @gdb_num_regs: Number of total registers accessible to GDB. 432 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 433 * @next_cpu: Next CPU sharing TB cache. 434 * @opaque: User data. 435 * @mem_io_pc: Host Program Counter at which the memory was accessed. 436 * @accel: Pointer to accelerator specific state. 437 * @kvm_fd: vCPU file descriptor for KVM. 438 * @work_mutex: Lock to prevent multiple access to @work_list. 439 * @work_list: List of pending asynchronous work. 440 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 441 * to @trace_dstate). 442 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 443 * @plugin_mask: Plugin event bitmap. Modified only via async work. 444 * @ignore_memory_transaction_failures: Cached copy of the MachineState 445 * flag of the same name: allows the board to suppress calling of the 446 * CPU do_transaction_failed hook function. 447 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 448 * ring is enabled. 449 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 450 * dirty ring structure. 451 * 452 * State of one CPU core or thread. 453 * 454 * Align, in order to match possible alignment required by CPUArchState, 455 * and eliminate a hole between CPUState and CPUArchState within ArchCPU. 456 */ 457 struct CPUState { 458 /*< private >*/ 459 DeviceState parent_obj; 460 /* cache to avoid expensive CPU_GET_CLASS */ 461 CPUClass *cc; 462 /*< public >*/ 463 464 int nr_cores; 465 int nr_threads; 466 467 struct QemuThread *thread; 468 #ifdef _WIN32 469 QemuSemaphore sem; 470 #endif 471 int thread_id; 472 bool running, has_waiter; 473 struct QemuCond *halt_cond; 474 bool thread_kicked; 475 bool created; 476 bool stop; 477 bool stopped; 478 479 /* Should CPU start in powered-off state? */ 480 bool start_powered_off; 481 482 bool unplug; 483 bool crash_occurred; 484 bool exit_request; 485 int exclusive_context_count; 486 uint32_t cflags_next_tb; 487 /* updates protected by BQL */ 488 uint32_t interrupt_request; 489 int singlestep_enabled; 490 int64_t icount_budget; 491 int64_t icount_extra; 492 uint64_t random_seed; 493 sigjmp_buf jmp_env; 494 495 QemuMutex work_mutex; 496 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 497 498 CPUAddressSpace *cpu_ases; 499 int num_ases; 500 AddressSpace *as; 501 MemoryRegion *memory; 502 503 CPUJumpCache *tb_jmp_cache; 504 505 GArray *gdb_regs; 506 int gdb_num_regs; 507 int gdb_num_g_regs; 508 QTAILQ_ENTRY(CPUState) node; 509 510 /* ice debug support */ 511 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 512 513 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 514 CPUWatchpoint *watchpoint_hit; 515 516 void *opaque; 517 518 /* In order to avoid passing too many arguments to the MMIO helpers, 519 * we store some rarely used information in the CPU context. 520 */ 521 uintptr_t mem_io_pc; 522 523 /* Only used in KVM */ 524 int kvm_fd; 525 struct KVMState *kvm_state; 526 struct kvm_run *kvm_run; 527 struct kvm_dirty_gfn *kvm_dirty_gfns; 528 uint32_t kvm_fetch_index; 529 uint64_t dirty_pages; 530 int kvm_vcpu_stats_fd; 531 532 /* Use by accel-block: CPU is executing an ioctl() */ 533 QemuLockCnt in_ioctl_lock; 534 535 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 536 537 #ifdef CONFIG_PLUGIN 538 GArray *plugin_mem_cbs; 539 #endif 540 541 /* TODO Move common fields from CPUArchState here. */ 542 int cpu_index; 543 int cluster_index; 544 uint32_t tcg_cflags; 545 uint32_t halted; 546 int32_t exception_index; 547 548 AccelCPUState *accel; 549 /* shared by kvm and hvf */ 550 bool vcpu_dirty; 551 552 /* Used to keep track of an outstanding cpu throttle thread for migration 553 * autoconverge 554 */ 555 bool throttle_thread_scheduled; 556 557 /* 558 * Sleep throttle_us_per_full microseconds once dirty ring is full 559 * if dirty page rate limit is enabled. 560 */ 561 int64_t throttle_us_per_full; 562 563 bool ignore_memory_transaction_failures; 564 565 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 566 bool prctl_unalign_sigbus; 567 568 /* track IOMMUs whose translations we've cached in the TCG TLB */ 569 GArray *iommu_notifiers; 570 571 /* 572 * MUST BE LAST in order to minimize the displacement to CPUArchState. 573 */ 574 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 575 CPUNegativeOffsetState neg; 576 }; 577 578 /* Validate placement of CPUNegativeOffsetState. */ 579 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 580 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 581 582 static inline CPUArchState *cpu_env(CPUState *cpu) 583 { 584 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 585 return (CPUArchState *)(cpu + 1); 586 } 587 588 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 589 extern CPUTailQ cpus; 590 591 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 592 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 593 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 594 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 595 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 596 597 extern __thread CPUState *current_cpu; 598 599 /** 600 * qemu_tcg_mttcg_enabled: 601 * Check whether we are running MultiThread TCG or not. 602 * 603 * Returns: %true if we are in MTTCG mode %false otherwise. 604 */ 605 extern bool mttcg_enabled; 606 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 607 608 /** 609 * cpu_paging_enabled: 610 * @cpu: The CPU whose state is to be inspected. 611 * 612 * Returns: %true if paging is enabled, %false otherwise. 613 */ 614 bool cpu_paging_enabled(const CPUState *cpu); 615 616 /** 617 * cpu_get_memory_mapping: 618 * @cpu: The CPU whose memory mappings are to be obtained. 619 * @list: Where to write the memory mappings to. 620 * @errp: Pointer for reporting an #Error. 621 */ 622 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 623 Error **errp); 624 625 #if !defined(CONFIG_USER_ONLY) 626 627 /** 628 * cpu_write_elf64_note: 629 * @f: pointer to a function that writes memory to a file 630 * @cpu: The CPU whose memory is to be dumped 631 * @cpuid: ID number of the CPU 632 * @opaque: pointer to the CPUState struct 633 */ 634 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 635 int cpuid, void *opaque); 636 637 /** 638 * cpu_write_elf64_qemunote: 639 * @f: pointer to a function that writes memory to a file 640 * @cpu: The CPU whose memory is to be dumped 641 * @cpuid: ID number of the CPU 642 * @opaque: pointer to the CPUState struct 643 */ 644 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 645 void *opaque); 646 647 /** 648 * cpu_write_elf32_note: 649 * @f: pointer to a function that writes memory to a file 650 * @cpu: The CPU whose memory is to be dumped 651 * @cpuid: ID number of the CPU 652 * @opaque: pointer to the CPUState struct 653 */ 654 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 655 int cpuid, void *opaque); 656 657 /** 658 * cpu_write_elf32_qemunote: 659 * @f: pointer to a function that writes memory to a file 660 * @cpu: The CPU whose memory is to be dumped 661 * @cpuid: ID number of the CPU 662 * @opaque: pointer to the CPUState struct 663 */ 664 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 665 void *opaque); 666 667 /** 668 * cpu_get_crash_info: 669 * @cpu: The CPU to get crash information for 670 * 671 * Gets the previously saved crash information. 672 * Caller is responsible for freeing the data. 673 */ 674 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 675 676 #endif /* !CONFIG_USER_ONLY */ 677 678 /** 679 * CPUDumpFlags: 680 * @CPU_DUMP_CODE: 681 * @CPU_DUMP_FPU: dump FPU register state, not just integer 682 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 683 * @CPU_DUMP_VPU: dump VPU registers 684 */ 685 enum CPUDumpFlags { 686 CPU_DUMP_CODE = 0x00010000, 687 CPU_DUMP_FPU = 0x00020000, 688 CPU_DUMP_CCOP = 0x00040000, 689 CPU_DUMP_VPU = 0x00080000, 690 }; 691 692 /** 693 * cpu_dump_state: 694 * @cpu: The CPU whose state is to be dumped. 695 * @f: If non-null, dump to this stream, else to current print sink. 696 * 697 * Dumps CPU state. 698 */ 699 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 700 701 #ifndef CONFIG_USER_ONLY 702 /** 703 * cpu_get_phys_page_attrs_debug: 704 * @cpu: The CPU to obtain the physical page address for. 705 * @addr: The virtual address. 706 * @attrs: Updated on return with the memory transaction attributes to use 707 * for this access. 708 * 709 * Obtains the physical page corresponding to a virtual one, together 710 * with the corresponding memory transaction attributes to use for the access. 711 * Use it only for debugging because no protection checks are done. 712 * 713 * Returns: Corresponding physical page address or -1 if no page found. 714 */ 715 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 716 MemTxAttrs *attrs); 717 718 /** 719 * cpu_get_phys_page_debug: 720 * @cpu: The CPU to obtain the physical page address for. 721 * @addr: The virtual address. 722 * 723 * Obtains the physical page corresponding to a virtual one. 724 * Use it only for debugging because no protection checks are done. 725 * 726 * Returns: Corresponding physical page address or -1 if no page found. 727 */ 728 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 729 730 /** cpu_asidx_from_attrs: 731 * @cpu: CPU 732 * @attrs: memory transaction attributes 733 * 734 * Returns the address space index specifying the CPU AddressSpace 735 * to use for a memory access with the given transaction attributes. 736 */ 737 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 738 739 /** 740 * cpu_virtio_is_big_endian: 741 * @cpu: CPU 742 743 * Returns %true if a CPU which supports runtime configurable endianness 744 * is currently big-endian. 745 */ 746 bool cpu_virtio_is_big_endian(CPUState *cpu); 747 748 #endif /* CONFIG_USER_ONLY */ 749 750 /** 751 * cpu_list_add: 752 * @cpu: The CPU to be added to the list of CPUs. 753 */ 754 void cpu_list_add(CPUState *cpu); 755 756 /** 757 * cpu_list_remove: 758 * @cpu: The CPU to be removed from the list of CPUs. 759 */ 760 void cpu_list_remove(CPUState *cpu); 761 762 /** 763 * cpu_reset: 764 * @cpu: The CPU whose state is to be reset. 765 */ 766 void cpu_reset(CPUState *cpu); 767 768 /** 769 * cpu_class_by_name: 770 * @typename: The CPU base type. 771 * @cpu_model: The model string without any parameters. 772 * 773 * Looks up a CPU #ObjectClass matching name @cpu_model. 774 * 775 * Returns: A #CPUClass or %NULL if not matching class is found. 776 */ 777 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 778 779 /** 780 * cpu_create: 781 * @typename: The CPU type. 782 * 783 * Instantiates a CPU and realizes the CPU. 784 * 785 * Returns: A #CPUState or %NULL if an error occurred. 786 */ 787 CPUState *cpu_create(const char *typename); 788 789 /** 790 * parse_cpu_option: 791 * @cpu_option: The -cpu option including optional parameters. 792 * 793 * processes optional parameters and registers them as global properties 794 * 795 * Returns: type of CPU to create or prints error and terminates process 796 * if an error occurred. 797 */ 798 const char *parse_cpu_option(const char *cpu_option); 799 800 /** 801 * cpu_has_work: 802 * @cpu: The vCPU to check. 803 * 804 * Checks whether the CPU has work to do. 805 * 806 * Returns: %true if the CPU has work, %false otherwise. 807 */ 808 static inline bool cpu_has_work(CPUState *cpu) 809 { 810 CPUClass *cc = CPU_GET_CLASS(cpu); 811 812 g_assert(cc->has_work); 813 return cc->has_work(cpu); 814 } 815 816 /** 817 * qemu_cpu_is_self: 818 * @cpu: The vCPU to check against. 819 * 820 * Checks whether the caller is executing on the vCPU thread. 821 * 822 * Returns: %true if called from @cpu's thread, %false otherwise. 823 */ 824 bool qemu_cpu_is_self(CPUState *cpu); 825 826 /** 827 * qemu_cpu_kick: 828 * @cpu: The vCPU to kick. 829 * 830 * Kicks @cpu's thread. 831 */ 832 void qemu_cpu_kick(CPUState *cpu); 833 834 /** 835 * cpu_is_stopped: 836 * @cpu: The CPU to check. 837 * 838 * Checks whether the CPU is stopped. 839 * 840 * Returns: %true if run state is not running or if artificially stopped; 841 * %false otherwise. 842 */ 843 bool cpu_is_stopped(CPUState *cpu); 844 845 /** 846 * do_run_on_cpu: 847 * @cpu: The vCPU to run on. 848 * @func: The function to be executed. 849 * @data: Data to pass to the function. 850 * @mutex: Mutex to release while waiting for @func to run. 851 * 852 * Used internally in the implementation of run_on_cpu. 853 */ 854 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 855 QemuMutex *mutex); 856 857 /** 858 * run_on_cpu: 859 * @cpu: The vCPU to run on. 860 * @func: The function to be executed. 861 * @data: Data to pass to the function. 862 * 863 * Schedules the function @func for execution on the vCPU @cpu. 864 */ 865 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 866 867 /** 868 * async_run_on_cpu: 869 * @cpu: The vCPU to run on. 870 * @func: The function to be executed. 871 * @data: Data to pass to the function. 872 * 873 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 874 */ 875 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 876 877 /** 878 * async_safe_run_on_cpu: 879 * @cpu: The vCPU to run on. 880 * @func: The function to be executed. 881 * @data: Data to pass to the function. 882 * 883 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 884 * while all other vCPUs are sleeping. 885 * 886 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 887 * BQL. 888 */ 889 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 890 891 /** 892 * cpu_in_exclusive_context() 893 * @cpu: The vCPU to check 894 * 895 * Returns true if @cpu is an exclusive context, for example running 896 * something which has previously been queued via async_safe_run_on_cpu(). 897 */ 898 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 899 { 900 return cpu->exclusive_context_count; 901 } 902 903 /** 904 * qemu_get_cpu: 905 * @index: The CPUState@cpu_index value of the CPU to obtain. 906 * 907 * Gets a CPU matching @index. 908 * 909 * Returns: The CPU or %NULL if there is no matching CPU. 910 */ 911 CPUState *qemu_get_cpu(int index); 912 913 /** 914 * cpu_exists: 915 * @id: Guest-exposed CPU ID to lookup. 916 * 917 * Search for CPU with specified ID. 918 * 919 * Returns: %true - CPU is found, %false - CPU isn't found. 920 */ 921 bool cpu_exists(int64_t id); 922 923 /** 924 * cpu_by_arch_id: 925 * @id: Guest-exposed CPU ID of the CPU to obtain. 926 * 927 * Get a CPU with matching @id. 928 * 929 * Returns: The CPU or %NULL if there is no matching CPU. 930 */ 931 CPUState *cpu_by_arch_id(int64_t id); 932 933 /** 934 * cpu_interrupt: 935 * @cpu: The CPU to set an interrupt on. 936 * @mask: The interrupts to set. 937 * 938 * Invokes the interrupt handler. 939 */ 940 941 void cpu_interrupt(CPUState *cpu, int mask); 942 943 /** 944 * cpu_set_pc: 945 * @cpu: The CPU to set the program counter for. 946 * @addr: Program counter value. 947 * 948 * Sets the program counter for a CPU. 949 */ 950 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 951 { 952 CPUClass *cc = CPU_GET_CLASS(cpu); 953 954 cc->set_pc(cpu, addr); 955 } 956 957 /** 958 * cpu_reset_interrupt: 959 * @cpu: The CPU to clear the interrupt on. 960 * @mask: The interrupt mask to clear. 961 * 962 * Resets interrupts on the vCPU @cpu. 963 */ 964 void cpu_reset_interrupt(CPUState *cpu, int mask); 965 966 /** 967 * cpu_exit: 968 * @cpu: The CPU to exit. 969 * 970 * Requests the CPU @cpu to exit execution. 971 */ 972 void cpu_exit(CPUState *cpu); 973 974 /** 975 * cpu_resume: 976 * @cpu: The CPU to resume. 977 * 978 * Resumes CPU, i.e. puts CPU into runnable state. 979 */ 980 void cpu_resume(CPUState *cpu); 981 982 /** 983 * cpu_remove_sync: 984 * @cpu: The CPU to remove. 985 * 986 * Requests the CPU to be removed and waits till it is removed. 987 */ 988 void cpu_remove_sync(CPUState *cpu); 989 990 /** 991 * process_queued_cpu_work() - process all items on CPU work queue 992 * @cpu: The CPU which work queue to process. 993 */ 994 void process_queued_cpu_work(CPUState *cpu); 995 996 /** 997 * cpu_exec_start: 998 * @cpu: The CPU for the current thread. 999 * 1000 * Record that a CPU has started execution and can be interrupted with 1001 * cpu_exit. 1002 */ 1003 void cpu_exec_start(CPUState *cpu); 1004 1005 /** 1006 * cpu_exec_end: 1007 * @cpu: The CPU for the current thread. 1008 * 1009 * Record that a CPU has stopped execution and exclusive sections 1010 * can be executed without interrupting it. 1011 */ 1012 void cpu_exec_end(CPUState *cpu); 1013 1014 /** 1015 * start_exclusive: 1016 * 1017 * Wait for a concurrent exclusive section to end, and then start 1018 * a section of work that is run while other CPUs are not running 1019 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1020 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1021 * during the exclusive section go to sleep until this CPU calls 1022 * end_exclusive. 1023 */ 1024 void start_exclusive(void); 1025 1026 /** 1027 * end_exclusive: 1028 * 1029 * Concludes an exclusive execution section started by start_exclusive. 1030 */ 1031 void end_exclusive(void); 1032 1033 /** 1034 * qemu_init_vcpu: 1035 * @cpu: The vCPU to initialize. 1036 * 1037 * Initializes a vCPU. 1038 */ 1039 void qemu_init_vcpu(CPUState *cpu); 1040 1041 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1042 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1043 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1044 1045 /** 1046 * cpu_single_step: 1047 * @cpu: CPU to the flags for. 1048 * @enabled: Flags to enable. 1049 * 1050 * Enables or disables single-stepping for @cpu. 1051 */ 1052 void cpu_single_step(CPUState *cpu, int enabled); 1053 1054 /* Breakpoint/watchpoint flags */ 1055 #define BP_MEM_READ 0x01 1056 #define BP_MEM_WRITE 0x02 1057 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1058 #define BP_STOP_BEFORE_ACCESS 0x04 1059 /* 0x08 currently unused */ 1060 #define BP_GDB 0x10 1061 #define BP_CPU 0x20 1062 #define BP_ANY (BP_GDB | BP_CPU) 1063 #define BP_HIT_SHIFT 6 1064 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1065 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1066 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1067 1068 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1069 CPUBreakpoint **breakpoint); 1070 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1071 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1072 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1073 1074 /* Return true if PC matches an installed breakpoint. */ 1075 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1076 { 1077 CPUBreakpoint *bp; 1078 1079 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1080 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1081 if (bp->pc == pc && (bp->flags & mask)) { 1082 return true; 1083 } 1084 } 1085 } 1086 return false; 1087 } 1088 1089 #if defined(CONFIG_USER_ONLY) 1090 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1091 int flags, CPUWatchpoint **watchpoint) 1092 { 1093 return -ENOSYS; 1094 } 1095 1096 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1097 vaddr len, int flags) 1098 { 1099 return -ENOSYS; 1100 } 1101 1102 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1103 CPUWatchpoint *wp) 1104 { 1105 } 1106 1107 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1108 { 1109 } 1110 #else 1111 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1112 int flags, CPUWatchpoint **watchpoint); 1113 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1114 vaddr len, int flags); 1115 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1116 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1117 #endif 1118 1119 /** 1120 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled? 1121 * @cs: CPUState pointer 1122 * 1123 * The memory callbacks are installed if a plugin has instrumented an 1124 * instruction for memory. This can be useful to know if you want to 1125 * force a slow path for a series of memory accesses. 1126 */ 1127 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu) 1128 { 1129 #ifdef CONFIG_PLUGIN 1130 return !!cpu->plugin_mem_cbs; 1131 #else 1132 return false; 1133 #endif 1134 } 1135 1136 /** 1137 * cpu_get_address_space: 1138 * @cpu: CPU to get address space from 1139 * @asidx: index identifying which address space to get 1140 * 1141 * Return the requested address space of this CPU. @asidx 1142 * specifies which address space to read. 1143 */ 1144 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1145 1146 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1147 G_GNUC_PRINTF(2, 3); 1148 1149 /* $(top_srcdir)/cpu.c */ 1150 void cpu_class_init_props(DeviceClass *dc); 1151 void cpu_exec_initfn(CPUState *cpu); 1152 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1153 void cpu_exec_unrealizefn(CPUState *cpu); 1154 1155 /** 1156 * target_words_bigendian: 1157 * Returns true if the (default) endianness of the target is big endian, 1158 * false otherwise. Note that in target-specific code, you can use 1159 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1160 * code should normally never need to know about the endianness of the 1161 * target, so please do *not* use this function unless you know very well 1162 * what you are doing! 1163 */ 1164 bool target_words_bigendian(void); 1165 1166 const char *target_name(void); 1167 1168 void page_size_init(void); 1169 1170 #ifdef NEED_CPU_H 1171 1172 #ifndef CONFIG_USER_ONLY 1173 1174 extern const VMStateDescription vmstate_cpu_common; 1175 1176 #define VMSTATE_CPU() { \ 1177 .name = "parent_obj", \ 1178 .size = sizeof(CPUState), \ 1179 .vmsd = &vmstate_cpu_common, \ 1180 .flags = VMS_STRUCT, \ 1181 .offset = 0, \ 1182 } 1183 #endif /* !CONFIG_USER_ONLY */ 1184 1185 #endif /* NEED_CPU_H */ 1186 1187 #define UNASSIGNED_CPU_INDEX -1 1188 #define UNASSIGNED_CLUSTER_INDEX -1 1189 1190 #endif 1191