1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /** 84 * CPUClass: 85 * @class_by_name: Callback to map -cpu command line model name to an 86 * instantiatable CPU type. 87 * @parse_features: Callback to parse command line arguments. 88 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 89 * @has_work: Callback for checking if there is work to do. 90 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 91 * runtime configurable endianness is currently big-endian. Non-configurable 92 * CPUs can use the default implementation of this method. This method should 93 * not be used by any callers other than the pre-1.0 virtio devices. 94 * @memory_rw_debug: Callback for GDB memory access. 95 * @dump_state: Callback for dumping state. 96 * @dump_statistics: Callback for dumping statistics. 97 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 98 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 99 * @get_memory_mapping: Callback for obtaining the memory mappings. 100 * @set_pc: Callback for setting the Program Counter register. This 101 * should have the semantics used by the target architecture when 102 * setting the PC from a source such as an ELF file entry point; 103 * for example on Arm it will also set the Thumb mode bit based 104 * on the least significant bit of the new PC value. 105 * If the target behaviour here is anything other than "set 106 * the PC register to the value passed in" then the target must 107 * also implement the synchronize_from_tb hook. 108 * @get_phys_page_debug: Callback for obtaining a physical address. 109 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 110 * associated memory transaction attributes to use for the access. 111 * CPUs which use memory transaction attributes should implement this 112 * instead of get_phys_page_debug. 113 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 114 * a memory access with the specified memory transaction attributes. 115 * @gdb_read_register: Callback for letting GDB read a register. 116 * @gdb_write_register: Callback for letting GDB write a register. 117 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 118 * 64-bit VM coredump. 119 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 120 * note to a 32-bit VM coredump. 121 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 122 * 32-bit VM coredump. 123 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 124 * note to a 32-bit VM coredump. 125 * @vmsd: State description for migration. 126 * @gdb_num_core_regs: Number of core registers accessible to GDB. 127 * @gdb_core_xml_file: File name for core registers GDB XML description. 128 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 129 * before the insn which triggers a watchpoint rather than after it. 130 * @gdb_arch_name: Optional callback that returns the architecture name known 131 * to GDB. The caller must free the returned string with g_free. 132 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 133 * gdb stub. Returns a pointer to the XML contents for the specified XML file 134 * or NULL if the CPU doesn't have a dynamically generated content for it. 135 * @disas_set_info: Setup architecture specific components of disassembly info 136 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 137 * address before attempting to match it against watchpoints. 138 * @deprecation_note: If this CPUClass is deprecated, this field provides 139 * related information. 140 * 141 * Represents a CPU family or model. 142 */ 143 struct CPUClass { 144 /*< private >*/ 145 DeviceClass parent_class; 146 /*< public >*/ 147 148 ObjectClass *(*class_by_name)(const char *cpu_model); 149 void (*parse_features)(const char *typename, char *str, Error **errp); 150 151 int reset_dump_flags; 152 bool (*has_work)(CPUState *cpu); 153 bool (*virtio_is_big_endian)(CPUState *cpu); 154 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 155 uint8_t *buf, int len, bool is_write); 156 void (*dump_state)(CPUState *cpu, FILE *, int flags); 157 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 158 void (*dump_statistics)(CPUState *cpu, int flags); 159 int64_t (*get_arch_id)(CPUState *cpu); 160 bool (*get_paging_enabled)(const CPUState *cpu); 161 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 162 Error **errp); 163 void (*set_pc)(CPUState *cpu, vaddr value); 164 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 165 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 166 MemTxAttrs *attrs); 167 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 168 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 169 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 170 171 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 172 int cpuid, void *opaque); 173 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 174 void *opaque); 175 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 176 int cpuid, void *opaque); 177 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 178 void *opaque); 179 180 const VMStateDescription *vmsd; 181 const char *gdb_core_xml_file; 182 gchar * (*gdb_arch_name)(CPUState *cpu); 183 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 184 185 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 186 187 const char *deprecation_note; 188 /* Keep non-pointer data at the end to minimize holes. */ 189 int gdb_num_core_regs; 190 bool gdb_stop_before_watchpoint; 191 struct AccelCPUClass *accel_cpu; 192 193 /* when TCG is not available, this pointer is NULL */ 194 struct TCGCPUOps *tcg_ops; 195 }; 196 197 /* 198 * Low 16 bits: number of cycles left, used only in icount mode. 199 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 200 * for this CPU and return to its top level loop (even in non-icount mode). 201 * This allows a single read-compare-cbranch-write sequence to test 202 * for both decrementer underflow and exceptions. 203 */ 204 typedef union IcountDecr { 205 uint32_t u32; 206 struct { 207 #ifdef HOST_WORDS_BIGENDIAN 208 uint16_t high; 209 uint16_t low; 210 #else 211 uint16_t low; 212 uint16_t high; 213 #endif 214 } u16; 215 } IcountDecr; 216 217 typedef struct CPUBreakpoint { 218 vaddr pc; 219 int flags; /* BP_* */ 220 QTAILQ_ENTRY(CPUBreakpoint) entry; 221 } CPUBreakpoint; 222 223 struct CPUWatchpoint { 224 vaddr vaddr; 225 vaddr len; 226 vaddr hitaddr; 227 MemTxAttrs hitattrs; 228 int flags; /* BP_* */ 229 QTAILQ_ENTRY(CPUWatchpoint) entry; 230 }; 231 232 #ifdef CONFIG_PLUGIN 233 /* 234 * For plugins we sometime need to save the resolved iotlb data before 235 * the memory regions get moved around by io_writex. 236 */ 237 typedef struct SavedIOTLB { 238 hwaddr addr; 239 MemoryRegionSection *section; 240 hwaddr mr_offset; 241 } SavedIOTLB; 242 #endif 243 244 struct KVMState; 245 struct kvm_run; 246 247 struct hax_vcpu_state; 248 249 #define TB_JMP_CACHE_BITS 12 250 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 251 252 /* work queue */ 253 254 /* The union type allows passing of 64 bit target pointers on 32 bit 255 * hosts in a single parameter 256 */ 257 typedef union { 258 int host_int; 259 unsigned long host_ulong; 260 void *host_ptr; 261 vaddr target_ptr; 262 } run_on_cpu_data; 263 264 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 265 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 266 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 267 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 268 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 269 270 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 271 272 struct qemu_work_item; 273 274 #define CPU_UNSET_NUMA_NODE_ID -1 275 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 276 277 /** 278 * CPUState: 279 * @cpu_index: CPU index (informative). 280 * @cluster_index: Identifies which cluster this CPU is in. 281 * For boards which don't define clusters or for "loose" CPUs not assigned 282 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 283 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 284 * QOM parent. 285 * @nr_cores: Number of cores within this CPU package. 286 * @nr_threads: Number of threads within this CPU. 287 * @running: #true if CPU is currently running (lockless). 288 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 289 * valid under cpu_list_lock. 290 * @created: Indicates whether the CPU thread has been successfully created. 291 * @interrupt_request: Indicates a pending interrupt request. 292 * @halted: Nonzero if the CPU is in suspended state. 293 * @stop: Indicates a pending stop request. 294 * @stopped: Indicates the CPU has been artificially stopped. 295 * @unplug: Indicates a pending CPU unplug request. 296 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 297 * @singlestep_enabled: Flags for single-stepping. 298 * @icount_extra: Instructions until next timer event. 299 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 300 * requires that IO only be performed on the last instruction of a TB 301 * so that interrupts take effect immediately. 302 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 303 * AddressSpaces this CPU has) 304 * @num_ases: number of CPUAddressSpaces in @cpu_ases 305 * @as: Pointer to the first AddressSpace, for the convenience of targets which 306 * only have a single AddressSpace 307 * @env_ptr: Pointer to subclass-specific CPUArchState field. 308 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 309 * @gdb_regs: Additional GDB registers. 310 * @gdb_num_regs: Number of total registers accessible to GDB. 311 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 312 * @next_cpu: Next CPU sharing TB cache. 313 * @opaque: User data. 314 * @mem_io_pc: Host Program Counter at which the memory was accessed. 315 * @kvm_fd: vCPU file descriptor for KVM. 316 * @work_mutex: Lock to prevent multiple access to @work_list. 317 * @work_list: List of pending asynchronous work. 318 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 319 * to @trace_dstate). 320 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 321 * @plugin_mask: Plugin event bitmap. Modified only via async work. 322 * @ignore_memory_transaction_failures: Cached copy of the MachineState 323 * flag of the same name: allows the board to suppress calling of the 324 * CPU do_transaction_failed hook function. 325 * 326 * State of one CPU core or thread. 327 */ 328 struct CPUState { 329 /*< private >*/ 330 DeviceState parent_obj; 331 /*< public >*/ 332 333 int nr_cores; 334 int nr_threads; 335 336 struct QemuThread *thread; 337 #ifdef _WIN32 338 HANDLE hThread; 339 #endif 340 int thread_id; 341 bool running, has_waiter; 342 struct QemuCond *halt_cond; 343 bool thread_kicked; 344 bool created; 345 bool stop; 346 bool stopped; 347 348 /* Should CPU start in powered-off state? */ 349 bool start_powered_off; 350 351 bool unplug; 352 bool crash_occurred; 353 bool exit_request; 354 bool in_exclusive_context; 355 uint32_t cflags_next_tb; 356 /* updates protected by BQL */ 357 uint32_t interrupt_request; 358 int singlestep_enabled; 359 int64_t icount_budget; 360 int64_t icount_extra; 361 uint64_t random_seed; 362 sigjmp_buf jmp_env; 363 364 QemuMutex work_mutex; 365 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 366 367 CPUAddressSpace *cpu_ases; 368 int num_ases; 369 AddressSpace *as; 370 MemoryRegion *memory; 371 372 void *env_ptr; /* CPUArchState */ 373 IcountDecr *icount_decr_ptr; 374 375 /* Accessed in parallel; all accesses must be atomic */ 376 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 377 378 struct GDBRegisterState *gdb_regs; 379 int gdb_num_regs; 380 int gdb_num_g_regs; 381 QTAILQ_ENTRY(CPUState) node; 382 383 /* ice debug support */ 384 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 385 386 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 387 CPUWatchpoint *watchpoint_hit; 388 389 void *opaque; 390 391 /* In order to avoid passing too many arguments to the MMIO helpers, 392 * we store some rarely used information in the CPU context. 393 */ 394 uintptr_t mem_io_pc; 395 396 int kvm_fd; 397 struct KVMState *kvm_state; 398 struct kvm_run *kvm_run; 399 400 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 401 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 402 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 403 404 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 405 406 #ifdef CONFIG_PLUGIN 407 GArray *plugin_mem_cbs; 408 /* saved iotlb data from io_writex */ 409 SavedIOTLB saved_iotlb; 410 #endif 411 412 /* TODO Move common fields from CPUArchState here. */ 413 int cpu_index; 414 int cluster_index; 415 uint32_t halted; 416 uint32_t can_do_io; 417 int32_t exception_index; 418 419 /* shared by kvm, hax and hvf */ 420 bool vcpu_dirty; 421 422 /* Used to keep track of an outstanding cpu throttle thread for migration 423 * autoconverge 424 */ 425 bool throttle_thread_scheduled; 426 427 bool ignore_memory_transaction_failures; 428 429 struct hax_vcpu_state *hax_vcpu; 430 431 int hvf_fd; 432 433 /* track IOMMUs whose translations we've cached in the TCG TLB */ 434 GArray *iommu_notifiers; 435 }; 436 437 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 438 extern CPUTailQ cpus; 439 440 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 441 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 442 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 443 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 444 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 445 446 extern __thread CPUState *current_cpu; 447 448 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 449 { 450 unsigned int i; 451 452 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 453 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 454 } 455 } 456 457 /** 458 * qemu_tcg_mttcg_enabled: 459 * Check whether we are running MultiThread TCG or not. 460 * 461 * Returns: %true if we are in MTTCG mode %false otherwise. 462 */ 463 extern bool mttcg_enabled; 464 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 465 466 /** 467 * cpu_paging_enabled: 468 * @cpu: The CPU whose state is to be inspected. 469 * 470 * Returns: %true if paging is enabled, %false otherwise. 471 */ 472 bool cpu_paging_enabled(const CPUState *cpu); 473 474 /** 475 * cpu_get_memory_mapping: 476 * @cpu: The CPU whose memory mappings are to be obtained. 477 * @list: Where to write the memory mappings to. 478 * @errp: Pointer for reporting an #Error. 479 */ 480 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 481 Error **errp); 482 483 #if !defined(CONFIG_USER_ONLY) 484 485 /** 486 * cpu_write_elf64_note: 487 * @f: pointer to a function that writes memory to a file 488 * @cpu: The CPU whose memory is to be dumped 489 * @cpuid: ID number of the CPU 490 * @opaque: pointer to the CPUState struct 491 */ 492 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 493 int cpuid, void *opaque); 494 495 /** 496 * cpu_write_elf64_qemunote: 497 * @f: pointer to a function that writes memory to a file 498 * @cpu: The CPU whose memory is to be dumped 499 * @cpuid: ID number of the CPU 500 * @opaque: pointer to the CPUState struct 501 */ 502 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 503 void *opaque); 504 505 /** 506 * cpu_write_elf32_note: 507 * @f: pointer to a function that writes memory to a file 508 * @cpu: The CPU whose memory is to be dumped 509 * @cpuid: ID number of the CPU 510 * @opaque: pointer to the CPUState struct 511 */ 512 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 513 int cpuid, void *opaque); 514 515 /** 516 * cpu_write_elf32_qemunote: 517 * @f: pointer to a function that writes memory to a file 518 * @cpu: The CPU whose memory is to be dumped 519 * @cpuid: ID number of the CPU 520 * @opaque: pointer to the CPUState struct 521 */ 522 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 523 void *opaque); 524 525 /** 526 * cpu_get_crash_info: 527 * @cpu: The CPU to get crash information for 528 * 529 * Gets the previously saved crash information. 530 * Caller is responsible for freeing the data. 531 */ 532 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 533 534 #endif /* !CONFIG_USER_ONLY */ 535 536 /** 537 * CPUDumpFlags: 538 * @CPU_DUMP_CODE: 539 * @CPU_DUMP_FPU: dump FPU register state, not just integer 540 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 541 */ 542 enum CPUDumpFlags { 543 CPU_DUMP_CODE = 0x00010000, 544 CPU_DUMP_FPU = 0x00020000, 545 CPU_DUMP_CCOP = 0x00040000, 546 }; 547 548 /** 549 * cpu_dump_state: 550 * @cpu: The CPU whose state is to be dumped. 551 * @f: If non-null, dump to this stream, else to current print sink. 552 * 553 * Dumps CPU state. 554 */ 555 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 556 557 /** 558 * cpu_dump_statistics: 559 * @cpu: The CPU whose state is to be dumped. 560 * @flags: Flags what to dump. 561 * 562 * Dump CPU statistics to the current monitor if we have one, else to 563 * stdout. 564 */ 565 void cpu_dump_statistics(CPUState *cpu, int flags); 566 567 #ifndef CONFIG_USER_ONLY 568 /** 569 * cpu_get_phys_page_attrs_debug: 570 * @cpu: The CPU to obtain the physical page address for. 571 * @addr: The virtual address. 572 * @attrs: Updated on return with the memory transaction attributes to use 573 * for this access. 574 * 575 * Obtains the physical page corresponding to a virtual one, together 576 * with the corresponding memory transaction attributes to use for the access. 577 * Use it only for debugging because no protection checks are done. 578 * 579 * Returns: Corresponding physical page address or -1 if no page found. 580 */ 581 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 582 MemTxAttrs *attrs) 583 { 584 CPUClass *cc = CPU_GET_CLASS(cpu); 585 586 if (cc->get_phys_page_attrs_debug) { 587 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 588 } 589 /* Fallback for CPUs which don't implement the _attrs_ hook */ 590 *attrs = MEMTXATTRS_UNSPECIFIED; 591 return cc->get_phys_page_debug(cpu, addr); 592 } 593 594 /** 595 * cpu_get_phys_page_debug: 596 * @cpu: The CPU to obtain the physical page address for. 597 * @addr: The virtual address. 598 * 599 * Obtains the physical page corresponding to a virtual one. 600 * Use it only for debugging because no protection checks are done. 601 * 602 * Returns: Corresponding physical page address or -1 if no page found. 603 */ 604 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 605 { 606 MemTxAttrs attrs = {}; 607 608 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 609 } 610 611 /** cpu_asidx_from_attrs: 612 * @cpu: CPU 613 * @attrs: memory transaction attributes 614 * 615 * Returns the address space index specifying the CPU AddressSpace 616 * to use for a memory access with the given transaction attributes. 617 */ 618 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 619 { 620 CPUClass *cc = CPU_GET_CLASS(cpu); 621 int ret = 0; 622 623 if (cc->asidx_from_attrs) { 624 ret = cc->asidx_from_attrs(cpu, attrs); 625 assert(ret < cpu->num_ases && ret >= 0); 626 } 627 return ret; 628 } 629 630 #endif /* CONFIG_USER_ONLY */ 631 632 /** 633 * cpu_list_add: 634 * @cpu: The CPU to be added to the list of CPUs. 635 */ 636 void cpu_list_add(CPUState *cpu); 637 638 /** 639 * cpu_list_remove: 640 * @cpu: The CPU to be removed from the list of CPUs. 641 */ 642 void cpu_list_remove(CPUState *cpu); 643 644 /** 645 * cpu_reset: 646 * @cpu: The CPU whose state is to be reset. 647 */ 648 void cpu_reset(CPUState *cpu); 649 650 /** 651 * cpu_class_by_name: 652 * @typename: The CPU base type. 653 * @cpu_model: The model string without any parameters. 654 * 655 * Looks up a CPU #ObjectClass matching name @cpu_model. 656 * 657 * Returns: A #CPUClass or %NULL if not matching class is found. 658 */ 659 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 660 661 /** 662 * cpu_create: 663 * @typename: The CPU type. 664 * 665 * Instantiates a CPU and realizes the CPU. 666 * 667 * Returns: A #CPUState or %NULL if an error occurred. 668 */ 669 CPUState *cpu_create(const char *typename); 670 671 /** 672 * parse_cpu_option: 673 * @cpu_option: The -cpu option including optional parameters. 674 * 675 * processes optional parameters and registers them as global properties 676 * 677 * Returns: type of CPU to create or prints error and terminates process 678 * if an error occurred. 679 */ 680 const char *parse_cpu_option(const char *cpu_option); 681 682 /** 683 * cpu_has_work: 684 * @cpu: The vCPU to check. 685 * 686 * Checks whether the CPU has work to do. 687 * 688 * Returns: %true if the CPU has work, %false otherwise. 689 */ 690 static inline bool cpu_has_work(CPUState *cpu) 691 { 692 CPUClass *cc = CPU_GET_CLASS(cpu); 693 694 g_assert(cc->has_work); 695 return cc->has_work(cpu); 696 } 697 698 /** 699 * qemu_cpu_is_self: 700 * @cpu: The vCPU to check against. 701 * 702 * Checks whether the caller is executing on the vCPU thread. 703 * 704 * Returns: %true if called from @cpu's thread, %false otherwise. 705 */ 706 bool qemu_cpu_is_self(CPUState *cpu); 707 708 /** 709 * qemu_cpu_kick: 710 * @cpu: The vCPU to kick. 711 * 712 * Kicks @cpu's thread. 713 */ 714 void qemu_cpu_kick(CPUState *cpu); 715 716 /** 717 * cpu_is_stopped: 718 * @cpu: The CPU to check. 719 * 720 * Checks whether the CPU is stopped. 721 * 722 * Returns: %true if run state is not running or if artificially stopped; 723 * %false otherwise. 724 */ 725 bool cpu_is_stopped(CPUState *cpu); 726 727 /** 728 * do_run_on_cpu: 729 * @cpu: The vCPU to run on. 730 * @func: The function to be executed. 731 * @data: Data to pass to the function. 732 * @mutex: Mutex to release while waiting for @func to run. 733 * 734 * Used internally in the implementation of run_on_cpu. 735 */ 736 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 737 QemuMutex *mutex); 738 739 /** 740 * run_on_cpu: 741 * @cpu: The vCPU to run on. 742 * @func: The function to be executed. 743 * @data: Data to pass to the function. 744 * 745 * Schedules the function @func for execution on the vCPU @cpu. 746 */ 747 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 748 749 /** 750 * async_run_on_cpu: 751 * @cpu: The vCPU to run on. 752 * @func: The function to be executed. 753 * @data: Data to pass to the function. 754 * 755 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 756 */ 757 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 758 759 /** 760 * async_safe_run_on_cpu: 761 * @cpu: The vCPU to run on. 762 * @func: The function to be executed. 763 * @data: Data to pass to the function. 764 * 765 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 766 * while all other vCPUs are sleeping. 767 * 768 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 769 * BQL. 770 */ 771 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 772 773 /** 774 * cpu_in_exclusive_context() 775 * @cpu: The vCPU to check 776 * 777 * Returns true if @cpu is an exclusive context, for example running 778 * something which has previously been queued via async_safe_run_on_cpu(). 779 */ 780 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 781 { 782 return cpu->in_exclusive_context; 783 } 784 785 /** 786 * qemu_get_cpu: 787 * @index: The CPUState@cpu_index value of the CPU to obtain. 788 * 789 * Gets a CPU matching @index. 790 * 791 * Returns: The CPU or %NULL if there is no matching CPU. 792 */ 793 CPUState *qemu_get_cpu(int index); 794 795 /** 796 * cpu_exists: 797 * @id: Guest-exposed CPU ID to lookup. 798 * 799 * Search for CPU with specified ID. 800 * 801 * Returns: %true - CPU is found, %false - CPU isn't found. 802 */ 803 bool cpu_exists(int64_t id); 804 805 /** 806 * cpu_by_arch_id: 807 * @id: Guest-exposed CPU ID of the CPU to obtain. 808 * 809 * Get a CPU with matching @id. 810 * 811 * Returns: The CPU or %NULL if there is no matching CPU. 812 */ 813 CPUState *cpu_by_arch_id(int64_t id); 814 815 /** 816 * cpu_interrupt: 817 * @cpu: The CPU to set an interrupt on. 818 * @mask: The interrupts to set. 819 * 820 * Invokes the interrupt handler. 821 */ 822 823 void cpu_interrupt(CPUState *cpu, int mask); 824 825 /** 826 * cpu_set_pc: 827 * @cpu: The CPU to set the program counter for. 828 * @addr: Program counter value. 829 * 830 * Sets the program counter for a CPU. 831 */ 832 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 833 { 834 CPUClass *cc = CPU_GET_CLASS(cpu); 835 836 cc->set_pc(cpu, addr); 837 } 838 839 /** 840 * cpu_reset_interrupt: 841 * @cpu: The CPU to clear the interrupt on. 842 * @mask: The interrupt mask to clear. 843 * 844 * Resets interrupts on the vCPU @cpu. 845 */ 846 void cpu_reset_interrupt(CPUState *cpu, int mask); 847 848 /** 849 * cpu_exit: 850 * @cpu: The CPU to exit. 851 * 852 * Requests the CPU @cpu to exit execution. 853 */ 854 void cpu_exit(CPUState *cpu); 855 856 /** 857 * cpu_resume: 858 * @cpu: The CPU to resume. 859 * 860 * Resumes CPU, i.e. puts CPU into runnable state. 861 */ 862 void cpu_resume(CPUState *cpu); 863 864 /** 865 * cpu_remove_sync: 866 * @cpu: The CPU to remove. 867 * 868 * Requests the CPU to be removed and waits till it is removed. 869 */ 870 void cpu_remove_sync(CPUState *cpu); 871 872 /** 873 * process_queued_cpu_work() - process all items on CPU work queue 874 * @cpu: The CPU which work queue to process. 875 */ 876 void process_queued_cpu_work(CPUState *cpu); 877 878 /** 879 * cpu_exec_start: 880 * @cpu: The CPU for the current thread. 881 * 882 * Record that a CPU has started execution and can be interrupted with 883 * cpu_exit. 884 */ 885 void cpu_exec_start(CPUState *cpu); 886 887 /** 888 * cpu_exec_end: 889 * @cpu: The CPU for the current thread. 890 * 891 * Record that a CPU has stopped execution and exclusive sections 892 * can be executed without interrupting it. 893 */ 894 void cpu_exec_end(CPUState *cpu); 895 896 /** 897 * start_exclusive: 898 * 899 * Wait for a concurrent exclusive section to end, and then start 900 * a section of work that is run while other CPUs are not running 901 * between cpu_exec_start and cpu_exec_end. CPUs that are running 902 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 903 * during the exclusive section go to sleep until this CPU calls 904 * end_exclusive. 905 */ 906 void start_exclusive(void); 907 908 /** 909 * end_exclusive: 910 * 911 * Concludes an exclusive execution section started by start_exclusive. 912 */ 913 void end_exclusive(void); 914 915 /** 916 * qemu_init_vcpu: 917 * @cpu: The vCPU to initialize. 918 * 919 * Initializes a vCPU. 920 */ 921 void qemu_init_vcpu(CPUState *cpu); 922 923 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 924 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 925 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 926 927 /** 928 * cpu_single_step: 929 * @cpu: CPU to the flags for. 930 * @enabled: Flags to enable. 931 * 932 * Enables or disables single-stepping for @cpu. 933 */ 934 void cpu_single_step(CPUState *cpu, int enabled); 935 936 /* Breakpoint/watchpoint flags */ 937 #define BP_MEM_READ 0x01 938 #define BP_MEM_WRITE 0x02 939 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 940 #define BP_STOP_BEFORE_ACCESS 0x04 941 /* 0x08 currently unused */ 942 #define BP_GDB 0x10 943 #define BP_CPU 0x20 944 #define BP_ANY (BP_GDB | BP_CPU) 945 #define BP_WATCHPOINT_HIT_READ 0x40 946 #define BP_WATCHPOINT_HIT_WRITE 0x80 947 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 948 949 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 950 CPUBreakpoint **breakpoint); 951 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 952 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 953 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 954 955 /* Return true if PC matches an installed breakpoint. */ 956 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 957 { 958 CPUBreakpoint *bp; 959 960 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 961 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 962 if (bp->pc == pc && (bp->flags & mask)) { 963 return true; 964 } 965 } 966 } 967 return false; 968 } 969 970 #ifdef CONFIG_USER_ONLY 971 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 972 int flags, CPUWatchpoint **watchpoint) 973 { 974 return -ENOSYS; 975 } 976 977 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 978 vaddr len, int flags) 979 { 980 return -ENOSYS; 981 } 982 983 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 984 CPUWatchpoint *wp) 985 { 986 } 987 988 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 989 { 990 } 991 992 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 993 MemTxAttrs atr, int fl, uintptr_t ra) 994 { 995 } 996 997 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 998 vaddr addr, vaddr len) 999 { 1000 return 0; 1001 } 1002 #else 1003 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1004 int flags, CPUWatchpoint **watchpoint); 1005 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1006 vaddr len, int flags); 1007 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1008 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1009 1010 /** 1011 * cpu_check_watchpoint: 1012 * @cpu: cpu context 1013 * @addr: guest virtual address 1014 * @len: access length 1015 * @attrs: memory access attributes 1016 * @flags: watchpoint access type 1017 * @ra: unwind return address 1018 * 1019 * Check for a watchpoint hit in [addr, addr+len) of the type 1020 * specified by @flags. Exit via exception with a hit. 1021 */ 1022 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1023 MemTxAttrs attrs, int flags, uintptr_t ra); 1024 1025 /** 1026 * cpu_watchpoint_address_matches: 1027 * @cpu: cpu context 1028 * @addr: guest virtual address 1029 * @len: access length 1030 * 1031 * Return the watchpoint flags that apply to [addr, addr+len). 1032 * If no watchpoint is registered for the range, the result is 0. 1033 */ 1034 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1035 #endif 1036 1037 /** 1038 * cpu_get_address_space: 1039 * @cpu: CPU to get address space from 1040 * @asidx: index identifying which address space to get 1041 * 1042 * Return the requested address space of this CPU. @asidx 1043 * specifies which address space to read. 1044 */ 1045 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1046 1047 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1048 GCC_FMT_ATTR(2, 3); 1049 1050 /* $(top_srcdir)/cpu.c */ 1051 void cpu_exec_initfn(CPUState *cpu); 1052 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1053 void cpu_exec_unrealizefn(CPUState *cpu); 1054 1055 /** 1056 * target_words_bigendian: 1057 * Returns true if the (default) endianness of the target is big endian, 1058 * false otherwise. Note that in target-specific code, you can use 1059 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1060 * code should normally never need to know about the endianness of the 1061 * target, so please do *not* use this function unless you know very well 1062 * what you are doing! 1063 */ 1064 bool target_words_bigendian(void); 1065 1066 #ifdef NEED_CPU_H 1067 1068 #ifdef CONFIG_SOFTMMU 1069 extern const VMStateDescription vmstate_cpu_common; 1070 #else 1071 #define vmstate_cpu_common vmstate_dummy 1072 #endif 1073 1074 #define VMSTATE_CPU() { \ 1075 .name = "parent_obj", \ 1076 .size = sizeof(CPUState), \ 1077 .vmsd = &vmstate_cpu_common, \ 1078 .flags = VMS_STRUCT, \ 1079 .offset = 0, \ 1080 } 1081 1082 #endif /* NEED_CPU_H */ 1083 1084 #define UNASSIGNED_CPU_INDEX -1 1085 #define UNASSIGNED_CLUSTER_INDEX -1 1086 1087 #endif 1088