1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/cpu-common.h" 26 #include "exec/hwaddr.h" 27 #include "exec/memattrs.h" 28 #include "qapi/qapi-types-run-state.h" 29 #include "qemu/bitmap.h" 30 #include "qemu/rcu_queue.h" 31 #include "qemu/queue.h" 32 #include "qemu/thread.h" 33 #include "qemu/plugin.h" 34 #include "qom/object.h" 35 36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 37 void *opaque); 38 39 /** 40 * SECTION:cpu 41 * @section_id: QEMU-cpu 42 * @title: CPU Class 43 * @short_description: Base class for all CPUs 44 */ 45 46 #define TYPE_CPU "cpu" 47 48 /* Since this macro is used a lot in hot code paths and in conjunction with 49 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 50 * an unchecked cast. 51 */ 52 #define CPU(obj) ((CPUState *)(obj)) 53 54 /* 55 * The class checkers bring in CPU_GET_CLASS() which is potentially 56 * expensive given the eventual call to 57 * object_class_dynamic_cast_assert(). Because of this the CPUState 58 * has a cached value for the class in cs->cc which is set up in 59 * cpu_exec_realizefn() for use in hot code paths. 60 */ 61 typedef struct CPUClass CPUClass; 62 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 63 TYPE_CPU) 64 65 /** 66 * OBJECT_DECLARE_CPU_TYPE: 67 * @CpuInstanceType: instance struct name 68 * @CpuClassType: class struct name 69 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 70 * 71 * This macro is typically used in "cpu-qom.h" header file, and will: 72 * 73 * - create the typedefs for the CPU object and class structs 74 * - register the type for use with g_autoptr 75 * - provide three standard type cast functions 76 * 77 * The object struct and class struct need to be declared manually. 78 */ 79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 80 typedef struct ArchCPU CpuInstanceType; \ 81 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 82 83 typedef enum MMUAccessType { 84 MMU_DATA_LOAD = 0, 85 MMU_DATA_STORE = 1, 86 MMU_INST_FETCH = 2 87 } MMUAccessType; 88 89 typedef struct CPUWatchpoint CPUWatchpoint; 90 91 /* see tcg-cpu-ops.h */ 92 struct TCGCPUOps; 93 94 /* see accel-cpu.h */ 95 struct AccelCPUClass; 96 97 /* see sysemu-cpu-ops.h */ 98 struct SysemuCPUOps; 99 100 /** 101 * CPUClass: 102 * @class_by_name: Callback to map -cpu command line model name to an 103 * instantiatable CPU type. 104 * @parse_features: Callback to parse command line arguments. 105 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 106 * @has_work: Callback for checking if there is work to do. 107 * @memory_rw_debug: Callback for GDB memory access. 108 * @dump_state: Callback for dumping state. 109 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 110 * @set_pc: Callback for setting the Program Counter register. This 111 * should have the semantics used by the target architecture when 112 * setting the PC from a source such as an ELF file entry point; 113 * for example on Arm it will also set the Thumb mode bit based 114 * on the least significant bit of the new PC value. 115 * If the target behaviour here is anything other than "set 116 * the PC register to the value passed in" then the target must 117 * also implement the synchronize_from_tb hook. 118 * @gdb_read_register: Callback for letting GDB read a register. 119 * @gdb_write_register: Callback for letting GDB write a register. 120 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 121 * breakpoint. Used by AVR to handle a gdb mis-feature with 122 * its Harvard architecture split code and data. 123 * @gdb_num_core_regs: Number of core registers accessible to GDB. 124 * @gdb_core_xml_file: File name for core registers GDB XML description. 125 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 126 * before the insn which triggers a watchpoint rather than after it. 127 * @gdb_arch_name: Optional callback that returns the architecture name known 128 * to GDB. The caller must free the returned string with g_free. 129 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 130 * gdb stub. Returns a pointer to the XML contents for the specified XML file 131 * or NULL if the CPU doesn't have a dynamically generated content for it. 132 * @disas_set_info: Setup architecture specific components of disassembly info 133 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 134 * address before attempting to match it against watchpoints. 135 * @deprecation_note: If this CPUClass is deprecated, this field provides 136 * related information. 137 * 138 * Represents a CPU family or model. 139 */ 140 struct CPUClass { 141 /*< private >*/ 142 DeviceClass parent_class; 143 /*< public >*/ 144 145 ObjectClass *(*class_by_name)(const char *cpu_model); 146 void (*parse_features)(const char *typename, char *str, Error **errp); 147 148 bool (*has_work)(CPUState *cpu); 149 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 150 uint8_t *buf, int len, bool is_write); 151 void (*dump_state)(CPUState *cpu, FILE *, int flags); 152 int64_t (*get_arch_id)(CPUState *cpu); 153 void (*set_pc)(CPUState *cpu, vaddr value); 154 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 155 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 156 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 157 158 const char *gdb_core_xml_file; 159 gchar * (*gdb_arch_name)(CPUState *cpu); 160 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 161 162 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 163 164 const char *deprecation_note; 165 struct AccelCPUClass *accel_cpu; 166 167 /* when system emulation is not available, this pointer is NULL */ 168 const struct SysemuCPUOps *sysemu_ops; 169 170 /* when TCG is not available, this pointer is NULL */ 171 const struct TCGCPUOps *tcg_ops; 172 173 /* 174 * if not NULL, this is called in order for the CPUClass to initialize 175 * class data that depends on the accelerator, see accel/accel-common.c. 176 */ 177 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 178 179 /* 180 * Keep non-pointer data at the end to minimize holes. 181 */ 182 int reset_dump_flags; 183 int gdb_num_core_regs; 184 bool gdb_stop_before_watchpoint; 185 }; 186 187 /* 188 * Low 16 bits: number of cycles left, used only in icount mode. 189 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 190 * for this CPU and return to its top level loop (even in non-icount mode). 191 * This allows a single read-compare-cbranch-write sequence to test 192 * for both decrementer underflow and exceptions. 193 */ 194 typedef union IcountDecr { 195 uint32_t u32; 196 struct { 197 #if HOST_BIG_ENDIAN 198 uint16_t high; 199 uint16_t low; 200 #else 201 uint16_t low; 202 uint16_t high; 203 #endif 204 } u16; 205 } IcountDecr; 206 207 typedef struct CPUBreakpoint { 208 vaddr pc; 209 int flags; /* BP_* */ 210 QTAILQ_ENTRY(CPUBreakpoint) entry; 211 } CPUBreakpoint; 212 213 struct CPUWatchpoint { 214 vaddr vaddr; 215 vaddr len; 216 vaddr hitaddr; 217 MemTxAttrs hitattrs; 218 int flags; /* BP_* */ 219 QTAILQ_ENTRY(CPUWatchpoint) entry; 220 }; 221 222 #ifdef CONFIG_PLUGIN 223 /* 224 * For plugins we sometime need to save the resolved iotlb data before 225 * the memory regions get moved around by io_writex. 226 */ 227 typedef struct SavedIOTLB { 228 MemoryRegionSection *section; 229 hwaddr mr_offset; 230 } SavedIOTLB; 231 #endif 232 233 struct KVMState; 234 struct kvm_run; 235 236 struct hax_vcpu_state; 237 struct hvf_vcpu_state; 238 239 #define TB_JMP_CACHE_BITS 12 240 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 241 242 /* work queue */ 243 244 /* The union type allows passing of 64 bit target pointers on 32 bit 245 * hosts in a single parameter 246 */ 247 typedef union { 248 int host_int; 249 unsigned long host_ulong; 250 void *host_ptr; 251 vaddr target_ptr; 252 } run_on_cpu_data; 253 254 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 255 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 256 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 257 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 258 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 259 260 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 261 262 struct qemu_work_item; 263 264 #define CPU_UNSET_NUMA_NODE_ID -1 265 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 266 267 /** 268 * CPUState: 269 * @cpu_index: CPU index (informative). 270 * @cluster_index: Identifies which cluster this CPU is in. 271 * For boards which don't define clusters or for "loose" CPUs not assigned 272 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 273 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 274 * QOM parent. 275 * @tcg_cflags: Pre-computed cflags for this cpu. 276 * @nr_cores: Number of cores within this CPU package. 277 * @nr_threads: Number of threads within this CPU. 278 * @running: #true if CPU is currently running (lockless). 279 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 280 * valid under cpu_list_lock. 281 * @created: Indicates whether the CPU thread has been successfully created. 282 * @interrupt_request: Indicates a pending interrupt request. 283 * @halted: Nonzero if the CPU is in suspended state. 284 * @stop: Indicates a pending stop request. 285 * @stopped: Indicates the CPU has been artificially stopped. 286 * @unplug: Indicates a pending CPU unplug request. 287 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 288 * @singlestep_enabled: Flags for single-stepping. 289 * @icount_extra: Instructions until next timer event. 290 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 291 * requires that IO only be performed on the last instruction of a TB 292 * so that interrupts take effect immediately. 293 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 294 * AddressSpaces this CPU has) 295 * @num_ases: number of CPUAddressSpaces in @cpu_ases 296 * @as: Pointer to the first AddressSpace, for the convenience of targets which 297 * only have a single AddressSpace 298 * @env_ptr: Pointer to subclass-specific CPUArchState field. 299 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 300 * @gdb_regs: Additional GDB registers. 301 * @gdb_num_regs: Number of total registers accessible to GDB. 302 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 303 * @next_cpu: Next CPU sharing TB cache. 304 * @opaque: User data. 305 * @mem_io_pc: Host Program Counter at which the memory was accessed. 306 * @kvm_fd: vCPU file descriptor for KVM. 307 * @work_mutex: Lock to prevent multiple access to @work_list. 308 * @work_list: List of pending asynchronous work. 309 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 310 * to @trace_dstate). 311 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 312 * @plugin_mask: Plugin event bitmap. Modified only via async work. 313 * @ignore_memory_transaction_failures: Cached copy of the MachineState 314 * flag of the same name: allows the board to suppress calling of the 315 * CPU do_transaction_failed hook function. 316 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 317 * ring is enabled. 318 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 319 * dirty ring structure. 320 * 321 * State of one CPU core or thread. 322 */ 323 struct CPUState { 324 /*< private >*/ 325 DeviceState parent_obj; 326 /* cache to avoid expensive CPU_GET_CLASS */ 327 CPUClass *cc; 328 /*< public >*/ 329 330 int nr_cores; 331 int nr_threads; 332 333 struct QemuThread *thread; 334 #ifdef _WIN32 335 HANDLE hThread; 336 #endif 337 int thread_id; 338 bool running, has_waiter; 339 struct QemuCond *halt_cond; 340 bool thread_kicked; 341 bool created; 342 bool stop; 343 bool stopped; 344 345 /* Should CPU start in powered-off state? */ 346 bool start_powered_off; 347 348 bool unplug; 349 bool crash_occurred; 350 bool exit_request; 351 bool in_exclusive_context; 352 uint32_t cflags_next_tb; 353 /* updates protected by BQL */ 354 uint32_t interrupt_request; 355 int singlestep_enabled; 356 int64_t icount_budget; 357 int64_t icount_extra; 358 uint64_t random_seed; 359 sigjmp_buf jmp_env; 360 361 QemuMutex work_mutex; 362 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 363 364 CPUAddressSpace *cpu_ases; 365 int num_ases; 366 AddressSpace *as; 367 MemoryRegion *memory; 368 369 CPUArchState *env_ptr; 370 IcountDecr *icount_decr_ptr; 371 372 /* Accessed in parallel; all accesses must be atomic */ 373 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 374 375 struct GDBRegisterState *gdb_regs; 376 int gdb_num_regs; 377 int gdb_num_g_regs; 378 QTAILQ_ENTRY(CPUState) node; 379 380 /* ice debug support */ 381 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 382 383 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 384 CPUWatchpoint *watchpoint_hit; 385 386 void *opaque; 387 388 /* In order to avoid passing too many arguments to the MMIO helpers, 389 * we store some rarely used information in the CPU context. 390 */ 391 uintptr_t mem_io_pc; 392 393 /* Only used in KVM */ 394 int kvm_fd; 395 struct KVMState *kvm_state; 396 struct kvm_run *kvm_run; 397 struct kvm_dirty_gfn *kvm_dirty_gfns; 398 uint32_t kvm_fetch_index; 399 uint64_t dirty_pages; 400 401 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 402 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 403 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 404 405 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 406 407 #ifdef CONFIG_PLUGIN 408 GArray *plugin_mem_cbs; 409 /* saved iotlb data from io_writex */ 410 SavedIOTLB saved_iotlb; 411 #endif 412 413 /* TODO Move common fields from CPUArchState here. */ 414 int cpu_index; 415 int cluster_index; 416 uint32_t tcg_cflags; 417 uint32_t halted; 418 uint32_t can_do_io; 419 int32_t exception_index; 420 421 /* shared by kvm, hax and hvf */ 422 bool vcpu_dirty; 423 424 /* Used to keep track of an outstanding cpu throttle thread for migration 425 * autoconverge 426 */ 427 bool throttle_thread_scheduled; 428 429 /* 430 * Sleep throttle_us_per_full microseconds once dirty ring is full 431 * if dirty page rate limit is enabled. 432 */ 433 int64_t throttle_us_per_full; 434 435 bool ignore_memory_transaction_failures; 436 437 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 438 bool prctl_unalign_sigbus; 439 440 struct hax_vcpu_state *hax_vcpu; 441 442 struct hvf_vcpu_state *hvf; 443 444 /* track IOMMUs whose translations we've cached in the TCG TLB */ 445 GArray *iommu_notifiers; 446 }; 447 448 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 449 extern CPUTailQ cpus; 450 451 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 452 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 453 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 454 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 455 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 456 457 extern __thread CPUState *current_cpu; 458 459 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 460 { 461 unsigned int i; 462 463 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 464 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 465 } 466 } 467 468 /** 469 * qemu_tcg_mttcg_enabled: 470 * Check whether we are running MultiThread TCG or not. 471 * 472 * Returns: %true if we are in MTTCG mode %false otherwise. 473 */ 474 extern bool mttcg_enabled; 475 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 476 477 /** 478 * cpu_paging_enabled: 479 * @cpu: The CPU whose state is to be inspected. 480 * 481 * Returns: %true if paging is enabled, %false otherwise. 482 */ 483 bool cpu_paging_enabled(const CPUState *cpu); 484 485 /** 486 * cpu_get_memory_mapping: 487 * @cpu: The CPU whose memory mappings are to be obtained. 488 * @list: Where to write the memory mappings to. 489 * @errp: Pointer for reporting an #Error. 490 */ 491 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 492 Error **errp); 493 494 #if !defined(CONFIG_USER_ONLY) 495 496 /** 497 * cpu_write_elf64_note: 498 * @f: pointer to a function that writes memory to a file 499 * @cpu: The CPU whose memory is to be dumped 500 * @cpuid: ID number of the CPU 501 * @opaque: pointer to the CPUState struct 502 */ 503 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 504 int cpuid, void *opaque); 505 506 /** 507 * cpu_write_elf64_qemunote: 508 * @f: pointer to a function that writes memory to a file 509 * @cpu: The CPU whose memory is to be dumped 510 * @cpuid: ID number of the CPU 511 * @opaque: pointer to the CPUState struct 512 */ 513 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 514 void *opaque); 515 516 /** 517 * cpu_write_elf32_note: 518 * @f: pointer to a function that writes memory to a file 519 * @cpu: The CPU whose memory is to be dumped 520 * @cpuid: ID number of the CPU 521 * @opaque: pointer to the CPUState struct 522 */ 523 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 524 int cpuid, void *opaque); 525 526 /** 527 * cpu_write_elf32_qemunote: 528 * @f: pointer to a function that writes memory to a file 529 * @cpu: The CPU whose memory is to be dumped 530 * @cpuid: ID number of the CPU 531 * @opaque: pointer to the CPUState struct 532 */ 533 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 534 void *opaque); 535 536 /** 537 * cpu_get_crash_info: 538 * @cpu: The CPU to get crash information for 539 * 540 * Gets the previously saved crash information. 541 * Caller is responsible for freeing the data. 542 */ 543 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 544 545 #endif /* !CONFIG_USER_ONLY */ 546 547 /** 548 * CPUDumpFlags: 549 * @CPU_DUMP_CODE: 550 * @CPU_DUMP_FPU: dump FPU register state, not just integer 551 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 552 */ 553 enum CPUDumpFlags { 554 CPU_DUMP_CODE = 0x00010000, 555 CPU_DUMP_FPU = 0x00020000, 556 CPU_DUMP_CCOP = 0x00040000, 557 }; 558 559 /** 560 * cpu_dump_state: 561 * @cpu: The CPU whose state is to be dumped. 562 * @f: If non-null, dump to this stream, else to current print sink. 563 * 564 * Dumps CPU state. 565 */ 566 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 567 568 #ifndef CONFIG_USER_ONLY 569 /** 570 * cpu_get_phys_page_attrs_debug: 571 * @cpu: The CPU to obtain the physical page address for. 572 * @addr: The virtual address. 573 * @attrs: Updated on return with the memory transaction attributes to use 574 * for this access. 575 * 576 * Obtains the physical page corresponding to a virtual one, together 577 * with the corresponding memory transaction attributes to use for the access. 578 * Use it only for debugging because no protection checks are done. 579 * 580 * Returns: Corresponding physical page address or -1 if no page found. 581 */ 582 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 583 MemTxAttrs *attrs); 584 585 /** 586 * cpu_get_phys_page_debug: 587 * @cpu: The CPU to obtain the physical page address for. 588 * @addr: The virtual address. 589 * 590 * Obtains the physical page corresponding to a virtual one. 591 * Use it only for debugging because no protection checks are done. 592 * 593 * Returns: Corresponding physical page address or -1 if no page found. 594 */ 595 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 596 597 /** cpu_asidx_from_attrs: 598 * @cpu: CPU 599 * @attrs: memory transaction attributes 600 * 601 * Returns the address space index specifying the CPU AddressSpace 602 * to use for a memory access with the given transaction attributes. 603 */ 604 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 605 606 /** 607 * cpu_virtio_is_big_endian: 608 * @cpu: CPU 609 610 * Returns %true if a CPU which supports runtime configurable endianness 611 * is currently big-endian. 612 */ 613 bool cpu_virtio_is_big_endian(CPUState *cpu); 614 615 #endif /* CONFIG_USER_ONLY */ 616 617 /** 618 * cpu_list_add: 619 * @cpu: The CPU to be added to the list of CPUs. 620 */ 621 void cpu_list_add(CPUState *cpu); 622 623 /** 624 * cpu_list_remove: 625 * @cpu: The CPU to be removed from the list of CPUs. 626 */ 627 void cpu_list_remove(CPUState *cpu); 628 629 /** 630 * cpu_reset: 631 * @cpu: The CPU whose state is to be reset. 632 */ 633 void cpu_reset(CPUState *cpu); 634 635 /** 636 * cpu_class_by_name: 637 * @typename: The CPU base type. 638 * @cpu_model: The model string without any parameters. 639 * 640 * Looks up a CPU #ObjectClass matching name @cpu_model. 641 * 642 * Returns: A #CPUClass or %NULL if not matching class is found. 643 */ 644 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 645 646 /** 647 * cpu_create: 648 * @typename: The CPU type. 649 * 650 * Instantiates a CPU and realizes the CPU. 651 * 652 * Returns: A #CPUState or %NULL if an error occurred. 653 */ 654 CPUState *cpu_create(const char *typename); 655 656 /** 657 * parse_cpu_option: 658 * @cpu_option: The -cpu option including optional parameters. 659 * 660 * processes optional parameters and registers them as global properties 661 * 662 * Returns: type of CPU to create or prints error and terminates process 663 * if an error occurred. 664 */ 665 const char *parse_cpu_option(const char *cpu_option); 666 667 /** 668 * cpu_has_work: 669 * @cpu: The vCPU to check. 670 * 671 * Checks whether the CPU has work to do. 672 * 673 * Returns: %true if the CPU has work, %false otherwise. 674 */ 675 static inline bool cpu_has_work(CPUState *cpu) 676 { 677 CPUClass *cc = CPU_GET_CLASS(cpu); 678 679 g_assert(cc->has_work); 680 return cc->has_work(cpu); 681 } 682 683 /** 684 * qemu_cpu_is_self: 685 * @cpu: The vCPU to check against. 686 * 687 * Checks whether the caller is executing on the vCPU thread. 688 * 689 * Returns: %true if called from @cpu's thread, %false otherwise. 690 */ 691 bool qemu_cpu_is_self(CPUState *cpu); 692 693 /** 694 * qemu_cpu_kick: 695 * @cpu: The vCPU to kick. 696 * 697 * Kicks @cpu's thread. 698 */ 699 void qemu_cpu_kick(CPUState *cpu); 700 701 /** 702 * cpu_is_stopped: 703 * @cpu: The CPU to check. 704 * 705 * Checks whether the CPU is stopped. 706 * 707 * Returns: %true if run state is not running or if artificially stopped; 708 * %false otherwise. 709 */ 710 bool cpu_is_stopped(CPUState *cpu); 711 712 /** 713 * do_run_on_cpu: 714 * @cpu: The vCPU to run on. 715 * @func: The function to be executed. 716 * @data: Data to pass to the function. 717 * @mutex: Mutex to release while waiting for @func to run. 718 * 719 * Used internally in the implementation of run_on_cpu. 720 */ 721 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 722 QemuMutex *mutex); 723 724 /** 725 * run_on_cpu: 726 * @cpu: The vCPU to run on. 727 * @func: The function to be executed. 728 * @data: Data to pass to the function. 729 * 730 * Schedules the function @func for execution on the vCPU @cpu. 731 */ 732 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 733 734 /** 735 * async_run_on_cpu: 736 * @cpu: The vCPU to run on. 737 * @func: The function to be executed. 738 * @data: Data to pass to the function. 739 * 740 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 741 */ 742 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 743 744 /** 745 * async_safe_run_on_cpu: 746 * @cpu: The vCPU to run on. 747 * @func: The function to be executed. 748 * @data: Data to pass to the function. 749 * 750 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 751 * while all other vCPUs are sleeping. 752 * 753 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 754 * BQL. 755 */ 756 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 757 758 /** 759 * cpu_in_exclusive_context() 760 * @cpu: The vCPU to check 761 * 762 * Returns true if @cpu is an exclusive context, for example running 763 * something which has previously been queued via async_safe_run_on_cpu(). 764 */ 765 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 766 { 767 return cpu->in_exclusive_context; 768 } 769 770 /** 771 * qemu_get_cpu: 772 * @index: The CPUState@cpu_index value of the CPU to obtain. 773 * 774 * Gets a CPU matching @index. 775 * 776 * Returns: The CPU or %NULL if there is no matching CPU. 777 */ 778 CPUState *qemu_get_cpu(int index); 779 780 /** 781 * cpu_exists: 782 * @id: Guest-exposed CPU ID to lookup. 783 * 784 * Search for CPU with specified ID. 785 * 786 * Returns: %true - CPU is found, %false - CPU isn't found. 787 */ 788 bool cpu_exists(int64_t id); 789 790 /** 791 * cpu_by_arch_id: 792 * @id: Guest-exposed CPU ID of the CPU to obtain. 793 * 794 * Get a CPU with matching @id. 795 * 796 * Returns: The CPU or %NULL if there is no matching CPU. 797 */ 798 CPUState *cpu_by_arch_id(int64_t id); 799 800 /** 801 * cpu_interrupt: 802 * @cpu: The CPU to set an interrupt on. 803 * @mask: The interrupts to set. 804 * 805 * Invokes the interrupt handler. 806 */ 807 808 void cpu_interrupt(CPUState *cpu, int mask); 809 810 /** 811 * cpu_set_pc: 812 * @cpu: The CPU to set the program counter for. 813 * @addr: Program counter value. 814 * 815 * Sets the program counter for a CPU. 816 */ 817 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 818 { 819 CPUClass *cc = CPU_GET_CLASS(cpu); 820 821 cc->set_pc(cpu, addr); 822 } 823 824 /** 825 * cpu_reset_interrupt: 826 * @cpu: The CPU to clear the interrupt on. 827 * @mask: The interrupt mask to clear. 828 * 829 * Resets interrupts on the vCPU @cpu. 830 */ 831 void cpu_reset_interrupt(CPUState *cpu, int mask); 832 833 /** 834 * cpu_exit: 835 * @cpu: The CPU to exit. 836 * 837 * Requests the CPU @cpu to exit execution. 838 */ 839 void cpu_exit(CPUState *cpu); 840 841 /** 842 * cpu_resume: 843 * @cpu: The CPU to resume. 844 * 845 * Resumes CPU, i.e. puts CPU into runnable state. 846 */ 847 void cpu_resume(CPUState *cpu); 848 849 /** 850 * cpu_remove_sync: 851 * @cpu: The CPU to remove. 852 * 853 * Requests the CPU to be removed and waits till it is removed. 854 */ 855 void cpu_remove_sync(CPUState *cpu); 856 857 /** 858 * process_queued_cpu_work() - process all items on CPU work queue 859 * @cpu: The CPU which work queue to process. 860 */ 861 void process_queued_cpu_work(CPUState *cpu); 862 863 /** 864 * cpu_exec_start: 865 * @cpu: The CPU for the current thread. 866 * 867 * Record that a CPU has started execution and can be interrupted with 868 * cpu_exit. 869 */ 870 void cpu_exec_start(CPUState *cpu); 871 872 /** 873 * cpu_exec_end: 874 * @cpu: The CPU for the current thread. 875 * 876 * Record that a CPU has stopped execution and exclusive sections 877 * can be executed without interrupting it. 878 */ 879 void cpu_exec_end(CPUState *cpu); 880 881 /** 882 * start_exclusive: 883 * 884 * Wait for a concurrent exclusive section to end, and then start 885 * a section of work that is run while other CPUs are not running 886 * between cpu_exec_start and cpu_exec_end. CPUs that are running 887 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 888 * during the exclusive section go to sleep until this CPU calls 889 * end_exclusive. 890 */ 891 void start_exclusive(void); 892 893 /** 894 * end_exclusive: 895 * 896 * Concludes an exclusive execution section started by start_exclusive. 897 */ 898 void end_exclusive(void); 899 900 /** 901 * qemu_init_vcpu: 902 * @cpu: The vCPU to initialize. 903 * 904 * Initializes a vCPU. 905 */ 906 void qemu_init_vcpu(CPUState *cpu); 907 908 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 909 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 910 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 911 912 /** 913 * cpu_single_step: 914 * @cpu: CPU to the flags for. 915 * @enabled: Flags to enable. 916 * 917 * Enables or disables single-stepping for @cpu. 918 */ 919 void cpu_single_step(CPUState *cpu, int enabled); 920 921 /* Breakpoint/watchpoint flags */ 922 #define BP_MEM_READ 0x01 923 #define BP_MEM_WRITE 0x02 924 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 925 #define BP_STOP_BEFORE_ACCESS 0x04 926 /* 0x08 currently unused */ 927 #define BP_GDB 0x10 928 #define BP_CPU 0x20 929 #define BP_ANY (BP_GDB | BP_CPU) 930 #define BP_WATCHPOINT_HIT_READ 0x40 931 #define BP_WATCHPOINT_HIT_WRITE 0x80 932 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 933 934 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 935 CPUBreakpoint **breakpoint); 936 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 937 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 938 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 939 940 /* Return true if PC matches an installed breakpoint. */ 941 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 942 { 943 CPUBreakpoint *bp; 944 945 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 946 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 947 if (bp->pc == pc && (bp->flags & mask)) { 948 return true; 949 } 950 } 951 } 952 return false; 953 } 954 955 #ifdef CONFIG_USER_ONLY 956 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 957 int flags, CPUWatchpoint **watchpoint) 958 { 959 return -ENOSYS; 960 } 961 962 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 963 vaddr len, int flags) 964 { 965 return -ENOSYS; 966 } 967 968 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 969 CPUWatchpoint *wp) 970 { 971 } 972 973 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 974 { 975 } 976 977 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 978 MemTxAttrs atr, int fl, uintptr_t ra) 979 { 980 } 981 982 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 983 vaddr addr, vaddr len) 984 { 985 return 0; 986 } 987 #else 988 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 989 int flags, CPUWatchpoint **watchpoint); 990 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 991 vaddr len, int flags); 992 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 993 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 994 995 /** 996 * cpu_check_watchpoint: 997 * @cpu: cpu context 998 * @addr: guest virtual address 999 * @len: access length 1000 * @attrs: memory access attributes 1001 * @flags: watchpoint access type 1002 * @ra: unwind return address 1003 * 1004 * Check for a watchpoint hit in [addr, addr+len) of the type 1005 * specified by @flags. Exit via exception with a hit. 1006 */ 1007 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1008 MemTxAttrs attrs, int flags, uintptr_t ra); 1009 1010 /** 1011 * cpu_watchpoint_address_matches: 1012 * @cpu: cpu context 1013 * @addr: guest virtual address 1014 * @len: access length 1015 * 1016 * Return the watchpoint flags that apply to [addr, addr+len). 1017 * If no watchpoint is registered for the range, the result is 0. 1018 */ 1019 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1020 #endif 1021 1022 /** 1023 * cpu_get_address_space: 1024 * @cpu: CPU to get address space from 1025 * @asidx: index identifying which address space to get 1026 * 1027 * Return the requested address space of this CPU. @asidx 1028 * specifies which address space to read. 1029 */ 1030 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1031 1032 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1033 G_GNUC_PRINTF(2, 3); 1034 1035 /* $(top_srcdir)/cpu.c */ 1036 void cpu_class_init_props(DeviceClass *dc); 1037 void cpu_exec_initfn(CPUState *cpu); 1038 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1039 void cpu_exec_unrealizefn(CPUState *cpu); 1040 1041 /** 1042 * target_words_bigendian: 1043 * Returns true if the (default) endianness of the target is big endian, 1044 * false otherwise. Note that in target-specific code, you can use 1045 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1046 * code should normally never need to know about the endianness of the 1047 * target, so please do *not* use this function unless you know very well 1048 * what you are doing! 1049 */ 1050 bool target_words_bigendian(void); 1051 1052 void page_size_init(void); 1053 1054 #ifdef NEED_CPU_H 1055 1056 #ifdef CONFIG_SOFTMMU 1057 1058 extern const VMStateDescription vmstate_cpu_common; 1059 1060 #define VMSTATE_CPU() { \ 1061 .name = "parent_obj", \ 1062 .size = sizeof(CPUState), \ 1063 .vmsd = &vmstate_cpu_common, \ 1064 .flags = VMS_STRUCT, \ 1065 .offset = 0, \ 1066 } 1067 #endif /* CONFIG_SOFTMMU */ 1068 1069 #endif /* NEED_CPU_H */ 1070 1071 #define UNASSIGNED_CPU_INDEX -1 1072 #define UNASSIGNED_CLUSTER_INDEX -1 1073 1074 #endif 1075