1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /* see sysemu-cpu-ops.h */ 84 struct SysemuCPUOps; 85 86 /** 87 * CPUClass: 88 * @class_by_name: Callback to map -cpu command line model name to an 89 * instantiatable CPU type. 90 * @parse_features: Callback to parse command line arguments. 91 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 92 * @has_work: Callback for checking if there is work to do. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 96 * @set_pc: Callback for setting the Program Counter register. This 97 * should have the semantics used by the target architecture when 98 * setting the PC from a source such as an ELF file entry point; 99 * for example on Arm it will also set the Thumb mode bit based 100 * on the least significant bit of the new PC value. 101 * If the target behaviour here is anything other than "set 102 * the PC register to the value passed in" then the target must 103 * also implement the synchronize_from_tb hook. 104 * @gdb_read_register: Callback for letting GDB read a register. 105 * @gdb_write_register: Callback for letting GDB write a register. 106 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 107 * breakpoint. Used by AVR to handle a gdb mis-feature with 108 * its Harvard architecture split code and data. 109 * @gdb_num_core_regs: Number of core registers accessible to GDB. 110 * @gdb_core_xml_file: File name for core registers GDB XML description. 111 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 112 * before the insn which triggers a watchpoint rather than after it. 113 * @gdb_arch_name: Optional callback that returns the architecture name known 114 * to GDB. The caller must free the returned string with g_free. 115 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 116 * gdb stub. Returns a pointer to the XML contents for the specified XML file 117 * or NULL if the CPU doesn't have a dynamically generated content for it. 118 * @disas_set_info: Setup architecture specific components of disassembly info 119 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 120 * address before attempting to match it against watchpoints. 121 * @deprecation_note: If this CPUClass is deprecated, this field provides 122 * related information. 123 * 124 * Represents a CPU family or model. 125 */ 126 struct CPUClass { 127 /*< private >*/ 128 DeviceClass parent_class; 129 /*< public >*/ 130 131 ObjectClass *(*class_by_name)(const char *cpu_model); 132 void (*parse_features)(const char *typename, char *str, Error **errp); 133 134 int reset_dump_flags; 135 bool (*has_work)(CPUState *cpu); 136 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 137 uint8_t *buf, int len, bool is_write); 138 void (*dump_state)(CPUState *cpu, FILE *, int flags); 139 int64_t (*get_arch_id)(CPUState *cpu); 140 void (*set_pc)(CPUState *cpu, vaddr value); 141 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 142 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 143 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 144 145 const char *gdb_core_xml_file; 146 gchar * (*gdb_arch_name)(CPUState *cpu); 147 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 148 149 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 150 151 const char *deprecation_note; 152 /* Keep non-pointer data at the end to minimize holes. */ 153 int gdb_num_core_regs; 154 bool gdb_stop_before_watchpoint; 155 struct AccelCPUClass *accel_cpu; 156 157 /* when system emulation is not available, this pointer is NULL */ 158 const struct SysemuCPUOps *sysemu_ops; 159 160 /* when TCG is not available, this pointer is NULL */ 161 const struct TCGCPUOps *tcg_ops; 162 163 /* 164 * if not NULL, this is called in order for the CPUClass to initialize 165 * class data that depends on the accelerator, see accel/accel-common.c. 166 */ 167 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 168 }; 169 170 /* 171 * Low 16 bits: number of cycles left, used only in icount mode. 172 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 173 * for this CPU and return to its top level loop (even in non-icount mode). 174 * This allows a single read-compare-cbranch-write sequence to test 175 * for both decrementer underflow and exceptions. 176 */ 177 typedef union IcountDecr { 178 uint32_t u32; 179 struct { 180 #ifdef HOST_WORDS_BIGENDIAN 181 uint16_t high; 182 uint16_t low; 183 #else 184 uint16_t low; 185 uint16_t high; 186 #endif 187 } u16; 188 } IcountDecr; 189 190 typedef struct CPUBreakpoint { 191 vaddr pc; 192 int flags; /* BP_* */ 193 QTAILQ_ENTRY(CPUBreakpoint) entry; 194 } CPUBreakpoint; 195 196 struct CPUWatchpoint { 197 vaddr vaddr; 198 vaddr len; 199 vaddr hitaddr; 200 MemTxAttrs hitattrs; 201 int flags; /* BP_* */ 202 QTAILQ_ENTRY(CPUWatchpoint) entry; 203 }; 204 205 #ifdef CONFIG_PLUGIN 206 /* 207 * For plugins we sometime need to save the resolved iotlb data before 208 * the memory regions get moved around by io_writex. 209 */ 210 typedef struct SavedIOTLB { 211 hwaddr addr; 212 MemoryRegionSection *section; 213 hwaddr mr_offset; 214 } SavedIOTLB; 215 #endif 216 217 struct KVMState; 218 struct kvm_run; 219 220 struct hax_vcpu_state; 221 struct hvf_vcpu_state; 222 223 #define TB_JMP_CACHE_BITS 12 224 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 225 226 /* work queue */ 227 228 /* The union type allows passing of 64 bit target pointers on 32 bit 229 * hosts in a single parameter 230 */ 231 typedef union { 232 int host_int; 233 unsigned long host_ulong; 234 void *host_ptr; 235 vaddr target_ptr; 236 } run_on_cpu_data; 237 238 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 239 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 240 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 241 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 242 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 243 244 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 245 246 struct qemu_work_item; 247 248 #define CPU_UNSET_NUMA_NODE_ID -1 249 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 250 251 /** 252 * CPUState: 253 * @cpu_index: CPU index (informative). 254 * @cluster_index: Identifies which cluster this CPU is in. 255 * For boards which don't define clusters or for "loose" CPUs not assigned 256 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 257 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 258 * QOM parent. 259 * @tcg_cflags: Pre-computed cflags for this cpu. 260 * @nr_cores: Number of cores within this CPU package. 261 * @nr_threads: Number of threads within this CPU. 262 * @running: #true if CPU is currently running (lockless). 263 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 264 * valid under cpu_list_lock. 265 * @created: Indicates whether the CPU thread has been successfully created. 266 * @interrupt_request: Indicates a pending interrupt request. 267 * @halted: Nonzero if the CPU is in suspended state. 268 * @stop: Indicates a pending stop request. 269 * @stopped: Indicates the CPU has been artificially stopped. 270 * @unplug: Indicates a pending CPU unplug request. 271 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 272 * @singlestep_enabled: Flags for single-stepping. 273 * @icount_extra: Instructions until next timer event. 274 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 275 * requires that IO only be performed on the last instruction of a TB 276 * so that interrupts take effect immediately. 277 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 278 * AddressSpaces this CPU has) 279 * @num_ases: number of CPUAddressSpaces in @cpu_ases 280 * @as: Pointer to the first AddressSpace, for the convenience of targets which 281 * only have a single AddressSpace 282 * @env_ptr: Pointer to subclass-specific CPUArchState field. 283 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 284 * @gdb_regs: Additional GDB registers. 285 * @gdb_num_regs: Number of total registers accessible to GDB. 286 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 287 * @next_cpu: Next CPU sharing TB cache. 288 * @opaque: User data. 289 * @mem_io_pc: Host Program Counter at which the memory was accessed. 290 * @kvm_fd: vCPU file descriptor for KVM. 291 * @work_mutex: Lock to prevent multiple access to @work_list. 292 * @work_list: List of pending asynchronous work. 293 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 294 * to @trace_dstate). 295 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 296 * @plugin_mask: Plugin event bitmap. Modified only via async work. 297 * @ignore_memory_transaction_failures: Cached copy of the MachineState 298 * flag of the same name: allows the board to suppress calling of the 299 * CPU do_transaction_failed hook function. 300 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 301 * ring is enabled. 302 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 303 * dirty ring structure. 304 * 305 * State of one CPU core or thread. 306 */ 307 struct CPUState { 308 /*< private >*/ 309 DeviceState parent_obj; 310 /*< public >*/ 311 312 int nr_cores; 313 int nr_threads; 314 315 struct QemuThread *thread; 316 #ifdef _WIN32 317 HANDLE hThread; 318 #endif 319 int thread_id; 320 bool running, has_waiter; 321 struct QemuCond *halt_cond; 322 bool thread_kicked; 323 bool created; 324 bool stop; 325 bool stopped; 326 327 /* Should CPU start in powered-off state? */ 328 bool start_powered_off; 329 330 bool unplug; 331 bool crash_occurred; 332 bool exit_request; 333 bool in_exclusive_context; 334 uint32_t cflags_next_tb; 335 /* updates protected by BQL */ 336 uint32_t interrupt_request; 337 int singlestep_enabled; 338 int64_t icount_budget; 339 int64_t icount_extra; 340 uint64_t random_seed; 341 sigjmp_buf jmp_env; 342 343 QemuMutex work_mutex; 344 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 345 346 CPUAddressSpace *cpu_ases; 347 int num_ases; 348 AddressSpace *as; 349 MemoryRegion *memory; 350 351 void *env_ptr; /* CPUArchState */ 352 IcountDecr *icount_decr_ptr; 353 354 /* Accessed in parallel; all accesses must be atomic */ 355 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 356 357 struct GDBRegisterState *gdb_regs; 358 int gdb_num_regs; 359 int gdb_num_g_regs; 360 QTAILQ_ENTRY(CPUState) node; 361 362 /* ice debug support */ 363 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 364 365 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 366 CPUWatchpoint *watchpoint_hit; 367 368 void *opaque; 369 370 /* In order to avoid passing too many arguments to the MMIO helpers, 371 * we store some rarely used information in the CPU context. 372 */ 373 uintptr_t mem_io_pc; 374 375 /* Only used in KVM */ 376 int kvm_fd; 377 struct KVMState *kvm_state; 378 struct kvm_run *kvm_run; 379 struct kvm_dirty_gfn *kvm_dirty_gfns; 380 uint32_t kvm_fetch_index; 381 382 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 383 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 384 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 385 386 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 387 388 #ifdef CONFIG_PLUGIN 389 GArray *plugin_mem_cbs; 390 /* saved iotlb data from io_writex */ 391 SavedIOTLB saved_iotlb; 392 #endif 393 394 /* TODO Move common fields from CPUArchState here. */ 395 int cpu_index; 396 int cluster_index; 397 uint32_t tcg_cflags; 398 uint32_t halted; 399 uint32_t can_do_io; 400 int32_t exception_index; 401 402 /* shared by kvm, hax and hvf */ 403 bool vcpu_dirty; 404 405 /* Used to keep track of an outstanding cpu throttle thread for migration 406 * autoconverge 407 */ 408 bool throttle_thread_scheduled; 409 410 bool ignore_memory_transaction_failures; 411 412 struct hax_vcpu_state *hax_vcpu; 413 414 struct hvf_vcpu_state *hvf; 415 416 /* track IOMMUs whose translations we've cached in the TCG TLB */ 417 GArray *iommu_notifiers; 418 }; 419 420 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 421 extern CPUTailQ cpus; 422 423 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 424 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 425 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 426 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 427 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 428 429 extern __thread CPUState *current_cpu; 430 431 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 432 { 433 unsigned int i; 434 435 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 436 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 437 } 438 } 439 440 /** 441 * qemu_tcg_mttcg_enabled: 442 * Check whether we are running MultiThread TCG or not. 443 * 444 * Returns: %true if we are in MTTCG mode %false otherwise. 445 */ 446 extern bool mttcg_enabled; 447 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 448 449 /** 450 * cpu_paging_enabled: 451 * @cpu: The CPU whose state is to be inspected. 452 * 453 * Returns: %true if paging is enabled, %false otherwise. 454 */ 455 bool cpu_paging_enabled(const CPUState *cpu); 456 457 /** 458 * cpu_get_memory_mapping: 459 * @cpu: The CPU whose memory mappings are to be obtained. 460 * @list: Where to write the memory mappings to. 461 * @errp: Pointer for reporting an #Error. 462 */ 463 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 464 Error **errp); 465 466 #if !defined(CONFIG_USER_ONLY) 467 468 /** 469 * cpu_write_elf64_note: 470 * @f: pointer to a function that writes memory to a file 471 * @cpu: The CPU whose memory is to be dumped 472 * @cpuid: ID number of the CPU 473 * @opaque: pointer to the CPUState struct 474 */ 475 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 476 int cpuid, void *opaque); 477 478 /** 479 * cpu_write_elf64_qemunote: 480 * @f: pointer to a function that writes memory to a file 481 * @cpu: The CPU whose memory is to be dumped 482 * @cpuid: ID number of the CPU 483 * @opaque: pointer to the CPUState struct 484 */ 485 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 486 void *opaque); 487 488 /** 489 * cpu_write_elf32_note: 490 * @f: pointer to a function that writes memory to a file 491 * @cpu: The CPU whose memory is to be dumped 492 * @cpuid: ID number of the CPU 493 * @opaque: pointer to the CPUState struct 494 */ 495 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 496 int cpuid, void *opaque); 497 498 /** 499 * cpu_write_elf32_qemunote: 500 * @f: pointer to a function that writes memory to a file 501 * @cpu: The CPU whose memory is to be dumped 502 * @cpuid: ID number of the CPU 503 * @opaque: pointer to the CPUState struct 504 */ 505 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 506 void *opaque); 507 508 /** 509 * cpu_get_crash_info: 510 * @cpu: The CPU to get crash information for 511 * 512 * Gets the previously saved crash information. 513 * Caller is responsible for freeing the data. 514 */ 515 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 516 517 #endif /* !CONFIG_USER_ONLY */ 518 519 /** 520 * CPUDumpFlags: 521 * @CPU_DUMP_CODE: 522 * @CPU_DUMP_FPU: dump FPU register state, not just integer 523 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 524 */ 525 enum CPUDumpFlags { 526 CPU_DUMP_CODE = 0x00010000, 527 CPU_DUMP_FPU = 0x00020000, 528 CPU_DUMP_CCOP = 0x00040000, 529 }; 530 531 /** 532 * cpu_dump_state: 533 * @cpu: The CPU whose state is to be dumped. 534 * @f: If non-null, dump to this stream, else to current print sink. 535 * 536 * Dumps CPU state. 537 */ 538 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 539 540 #ifndef CONFIG_USER_ONLY 541 /** 542 * cpu_get_phys_page_attrs_debug: 543 * @cpu: The CPU to obtain the physical page address for. 544 * @addr: The virtual address. 545 * @attrs: Updated on return with the memory transaction attributes to use 546 * for this access. 547 * 548 * Obtains the physical page corresponding to a virtual one, together 549 * with the corresponding memory transaction attributes to use for the access. 550 * Use it only for debugging because no protection checks are done. 551 * 552 * Returns: Corresponding physical page address or -1 if no page found. 553 */ 554 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 555 MemTxAttrs *attrs); 556 557 /** 558 * cpu_get_phys_page_debug: 559 * @cpu: The CPU to obtain the physical page address for. 560 * @addr: The virtual address. 561 * 562 * Obtains the physical page corresponding to a virtual one. 563 * Use it only for debugging because no protection checks are done. 564 * 565 * Returns: Corresponding physical page address or -1 if no page found. 566 */ 567 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 568 569 /** cpu_asidx_from_attrs: 570 * @cpu: CPU 571 * @attrs: memory transaction attributes 572 * 573 * Returns the address space index specifying the CPU AddressSpace 574 * to use for a memory access with the given transaction attributes. 575 */ 576 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 577 578 /** 579 * cpu_virtio_is_big_endian: 580 * @cpu: CPU 581 582 * Returns %true if a CPU which supports runtime configurable endianness 583 * is currently big-endian. 584 */ 585 bool cpu_virtio_is_big_endian(CPUState *cpu); 586 587 #endif /* CONFIG_USER_ONLY */ 588 589 /** 590 * cpu_list_add: 591 * @cpu: The CPU to be added to the list of CPUs. 592 */ 593 void cpu_list_add(CPUState *cpu); 594 595 /** 596 * cpu_list_remove: 597 * @cpu: The CPU to be removed from the list of CPUs. 598 */ 599 void cpu_list_remove(CPUState *cpu); 600 601 /** 602 * cpu_reset: 603 * @cpu: The CPU whose state is to be reset. 604 */ 605 void cpu_reset(CPUState *cpu); 606 607 /** 608 * cpu_class_by_name: 609 * @typename: The CPU base type. 610 * @cpu_model: The model string without any parameters. 611 * 612 * Looks up a CPU #ObjectClass matching name @cpu_model. 613 * 614 * Returns: A #CPUClass or %NULL if not matching class is found. 615 */ 616 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 617 618 /** 619 * cpu_create: 620 * @typename: The CPU type. 621 * 622 * Instantiates a CPU and realizes the CPU. 623 * 624 * Returns: A #CPUState or %NULL if an error occurred. 625 */ 626 CPUState *cpu_create(const char *typename); 627 628 /** 629 * parse_cpu_option: 630 * @cpu_option: The -cpu option including optional parameters. 631 * 632 * processes optional parameters and registers them as global properties 633 * 634 * Returns: type of CPU to create or prints error and terminates process 635 * if an error occurred. 636 */ 637 const char *parse_cpu_option(const char *cpu_option); 638 639 /** 640 * cpu_has_work: 641 * @cpu: The vCPU to check. 642 * 643 * Checks whether the CPU has work to do. 644 * 645 * Returns: %true if the CPU has work, %false otherwise. 646 */ 647 static inline bool cpu_has_work(CPUState *cpu) 648 { 649 CPUClass *cc = CPU_GET_CLASS(cpu); 650 651 g_assert(cc->has_work); 652 return cc->has_work(cpu); 653 } 654 655 /** 656 * qemu_cpu_is_self: 657 * @cpu: The vCPU to check against. 658 * 659 * Checks whether the caller is executing on the vCPU thread. 660 * 661 * Returns: %true if called from @cpu's thread, %false otherwise. 662 */ 663 bool qemu_cpu_is_self(CPUState *cpu); 664 665 /** 666 * qemu_cpu_kick: 667 * @cpu: The vCPU to kick. 668 * 669 * Kicks @cpu's thread. 670 */ 671 void qemu_cpu_kick(CPUState *cpu); 672 673 /** 674 * cpu_is_stopped: 675 * @cpu: The CPU to check. 676 * 677 * Checks whether the CPU is stopped. 678 * 679 * Returns: %true if run state is not running or if artificially stopped; 680 * %false otherwise. 681 */ 682 bool cpu_is_stopped(CPUState *cpu); 683 684 /** 685 * do_run_on_cpu: 686 * @cpu: The vCPU to run on. 687 * @func: The function to be executed. 688 * @data: Data to pass to the function. 689 * @mutex: Mutex to release while waiting for @func to run. 690 * 691 * Used internally in the implementation of run_on_cpu. 692 */ 693 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 694 QemuMutex *mutex); 695 696 /** 697 * run_on_cpu: 698 * @cpu: The vCPU to run on. 699 * @func: The function to be executed. 700 * @data: Data to pass to the function. 701 * 702 * Schedules the function @func for execution on the vCPU @cpu. 703 */ 704 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 705 706 /** 707 * async_run_on_cpu: 708 * @cpu: The vCPU to run on. 709 * @func: The function to be executed. 710 * @data: Data to pass to the function. 711 * 712 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 713 */ 714 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 715 716 /** 717 * async_safe_run_on_cpu: 718 * @cpu: The vCPU to run on. 719 * @func: The function to be executed. 720 * @data: Data to pass to the function. 721 * 722 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 723 * while all other vCPUs are sleeping. 724 * 725 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 726 * BQL. 727 */ 728 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 729 730 /** 731 * cpu_in_exclusive_context() 732 * @cpu: The vCPU to check 733 * 734 * Returns true if @cpu is an exclusive context, for example running 735 * something which has previously been queued via async_safe_run_on_cpu(). 736 */ 737 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 738 { 739 return cpu->in_exclusive_context; 740 } 741 742 /** 743 * qemu_get_cpu: 744 * @index: The CPUState@cpu_index value of the CPU to obtain. 745 * 746 * Gets a CPU matching @index. 747 * 748 * Returns: The CPU or %NULL if there is no matching CPU. 749 */ 750 CPUState *qemu_get_cpu(int index); 751 752 /** 753 * cpu_exists: 754 * @id: Guest-exposed CPU ID to lookup. 755 * 756 * Search for CPU with specified ID. 757 * 758 * Returns: %true - CPU is found, %false - CPU isn't found. 759 */ 760 bool cpu_exists(int64_t id); 761 762 /** 763 * cpu_by_arch_id: 764 * @id: Guest-exposed CPU ID of the CPU to obtain. 765 * 766 * Get a CPU with matching @id. 767 * 768 * Returns: The CPU or %NULL if there is no matching CPU. 769 */ 770 CPUState *cpu_by_arch_id(int64_t id); 771 772 /** 773 * cpu_interrupt: 774 * @cpu: The CPU to set an interrupt on. 775 * @mask: The interrupts to set. 776 * 777 * Invokes the interrupt handler. 778 */ 779 780 void cpu_interrupt(CPUState *cpu, int mask); 781 782 /** 783 * cpu_set_pc: 784 * @cpu: The CPU to set the program counter for. 785 * @addr: Program counter value. 786 * 787 * Sets the program counter for a CPU. 788 */ 789 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 790 { 791 CPUClass *cc = CPU_GET_CLASS(cpu); 792 793 cc->set_pc(cpu, addr); 794 } 795 796 /** 797 * cpu_reset_interrupt: 798 * @cpu: The CPU to clear the interrupt on. 799 * @mask: The interrupt mask to clear. 800 * 801 * Resets interrupts on the vCPU @cpu. 802 */ 803 void cpu_reset_interrupt(CPUState *cpu, int mask); 804 805 /** 806 * cpu_exit: 807 * @cpu: The CPU to exit. 808 * 809 * Requests the CPU @cpu to exit execution. 810 */ 811 void cpu_exit(CPUState *cpu); 812 813 /** 814 * cpu_resume: 815 * @cpu: The CPU to resume. 816 * 817 * Resumes CPU, i.e. puts CPU into runnable state. 818 */ 819 void cpu_resume(CPUState *cpu); 820 821 /** 822 * cpu_remove_sync: 823 * @cpu: The CPU to remove. 824 * 825 * Requests the CPU to be removed and waits till it is removed. 826 */ 827 void cpu_remove_sync(CPUState *cpu); 828 829 /** 830 * process_queued_cpu_work() - process all items on CPU work queue 831 * @cpu: The CPU which work queue to process. 832 */ 833 void process_queued_cpu_work(CPUState *cpu); 834 835 /** 836 * cpu_exec_start: 837 * @cpu: The CPU for the current thread. 838 * 839 * Record that a CPU has started execution and can be interrupted with 840 * cpu_exit. 841 */ 842 void cpu_exec_start(CPUState *cpu); 843 844 /** 845 * cpu_exec_end: 846 * @cpu: The CPU for the current thread. 847 * 848 * Record that a CPU has stopped execution and exclusive sections 849 * can be executed without interrupting it. 850 */ 851 void cpu_exec_end(CPUState *cpu); 852 853 /** 854 * start_exclusive: 855 * 856 * Wait for a concurrent exclusive section to end, and then start 857 * a section of work that is run while other CPUs are not running 858 * between cpu_exec_start and cpu_exec_end. CPUs that are running 859 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 860 * during the exclusive section go to sleep until this CPU calls 861 * end_exclusive. 862 */ 863 void start_exclusive(void); 864 865 /** 866 * end_exclusive: 867 * 868 * Concludes an exclusive execution section started by start_exclusive. 869 */ 870 void end_exclusive(void); 871 872 /** 873 * qemu_init_vcpu: 874 * @cpu: The vCPU to initialize. 875 * 876 * Initializes a vCPU. 877 */ 878 void qemu_init_vcpu(CPUState *cpu); 879 880 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 881 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 882 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 883 884 /** 885 * cpu_single_step: 886 * @cpu: CPU to the flags for. 887 * @enabled: Flags to enable. 888 * 889 * Enables or disables single-stepping for @cpu. 890 */ 891 void cpu_single_step(CPUState *cpu, int enabled); 892 893 /* Breakpoint/watchpoint flags */ 894 #define BP_MEM_READ 0x01 895 #define BP_MEM_WRITE 0x02 896 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 897 #define BP_STOP_BEFORE_ACCESS 0x04 898 /* 0x08 currently unused */ 899 #define BP_GDB 0x10 900 #define BP_CPU 0x20 901 #define BP_ANY (BP_GDB | BP_CPU) 902 #define BP_WATCHPOINT_HIT_READ 0x40 903 #define BP_WATCHPOINT_HIT_WRITE 0x80 904 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 905 906 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 907 CPUBreakpoint **breakpoint); 908 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 909 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 910 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 911 912 /* Return true if PC matches an installed breakpoint. */ 913 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 914 { 915 CPUBreakpoint *bp; 916 917 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 918 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 919 if (bp->pc == pc && (bp->flags & mask)) { 920 return true; 921 } 922 } 923 } 924 return false; 925 } 926 927 #ifdef CONFIG_USER_ONLY 928 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 929 int flags, CPUWatchpoint **watchpoint) 930 { 931 return -ENOSYS; 932 } 933 934 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 935 vaddr len, int flags) 936 { 937 return -ENOSYS; 938 } 939 940 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 941 CPUWatchpoint *wp) 942 { 943 } 944 945 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 946 { 947 } 948 949 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 950 MemTxAttrs atr, int fl, uintptr_t ra) 951 { 952 } 953 954 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 955 vaddr addr, vaddr len) 956 { 957 return 0; 958 } 959 #else 960 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 961 int flags, CPUWatchpoint **watchpoint); 962 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 963 vaddr len, int flags); 964 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 965 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 966 967 /** 968 * cpu_check_watchpoint: 969 * @cpu: cpu context 970 * @addr: guest virtual address 971 * @len: access length 972 * @attrs: memory access attributes 973 * @flags: watchpoint access type 974 * @ra: unwind return address 975 * 976 * Check for a watchpoint hit in [addr, addr+len) of the type 977 * specified by @flags. Exit via exception with a hit. 978 */ 979 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 980 MemTxAttrs attrs, int flags, uintptr_t ra); 981 982 /** 983 * cpu_watchpoint_address_matches: 984 * @cpu: cpu context 985 * @addr: guest virtual address 986 * @len: access length 987 * 988 * Return the watchpoint flags that apply to [addr, addr+len). 989 * If no watchpoint is registered for the range, the result is 0. 990 */ 991 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 992 #endif 993 994 /** 995 * cpu_get_address_space: 996 * @cpu: CPU to get address space from 997 * @asidx: index identifying which address space to get 998 * 999 * Return the requested address space of this CPU. @asidx 1000 * specifies which address space to read. 1001 */ 1002 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1003 1004 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1005 GCC_FMT_ATTR(2, 3); 1006 1007 /* $(top_srcdir)/cpu.c */ 1008 void cpu_exec_initfn(CPUState *cpu); 1009 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1010 void cpu_exec_unrealizefn(CPUState *cpu); 1011 1012 /** 1013 * target_words_bigendian: 1014 * Returns true if the (default) endianness of the target is big endian, 1015 * false otherwise. Note that in target-specific code, you can use 1016 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1017 * code should normally never need to know about the endianness of the 1018 * target, so please do *not* use this function unless you know very well 1019 * what you are doing! 1020 */ 1021 bool target_words_bigendian(void); 1022 1023 #ifdef NEED_CPU_H 1024 1025 #ifdef CONFIG_SOFTMMU 1026 1027 extern const VMStateDescription vmstate_cpu_common; 1028 1029 #define VMSTATE_CPU() { \ 1030 .name = "parent_obj", \ 1031 .size = sizeof(CPUState), \ 1032 .vmsd = &vmstate_cpu_common, \ 1033 .flags = VMS_STRUCT, \ 1034 .offset = 0, \ 1035 } 1036 #endif /* CONFIG_SOFTMMU */ 1037 1038 #endif /* NEED_CPU_H */ 1039 1040 #define UNASSIGNED_CPU_INDEX -1 1041 #define UNASSIGNED_CLUSTER_INDEX -1 1042 1043 #endif 1044