1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 34 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 35 void *opaque); 36 37 /** 38 * vaddr: 39 * Type wide enough to contain any #target_ulong virtual address. 40 */ 41 typedef uint64_t vaddr; 42 #define VADDR_PRId PRId64 43 #define VADDR_PRIu PRIu64 44 #define VADDR_PRIo PRIo64 45 #define VADDR_PRIx PRIx64 46 #define VADDR_PRIX PRIX64 47 #define VADDR_MAX UINT64_MAX 48 49 /** 50 * SECTION:cpu 51 * @section_id: QEMU-cpu 52 * @title: CPU Class 53 * @short_description: Base class for all CPUs 54 */ 55 56 #define TYPE_CPU "cpu" 57 58 /* Since this macro is used a lot in hot code paths and in conjunction with 59 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 60 * an unchecked cast. 61 */ 62 #define CPU(obj) ((CPUState *)(obj)) 63 64 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU) 65 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU) 66 67 typedef enum MMUAccessType { 68 MMU_DATA_LOAD = 0, 69 MMU_DATA_STORE = 1, 70 MMU_INST_FETCH = 2 71 } MMUAccessType; 72 73 typedef struct CPUWatchpoint CPUWatchpoint; 74 75 struct TranslationBlock; 76 77 /** 78 * CPUClass: 79 * @class_by_name: Callback to map -cpu command line model name to an 80 * instantiatable CPU type. 81 * @parse_features: Callback to parse command line arguments. 82 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 83 * @has_work: Callback for checking if there is work to do. 84 * @do_interrupt: Callback for interrupt handling. 85 * @do_unaligned_access: Callback for unaligned access handling, if 86 * the target defines #TARGET_ALIGNED_ONLY. 87 * @do_transaction_failed: Callback for handling failed memory transactions 88 * (ie bus faults or external aborts; not MMU faults) 89 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 90 * runtime configurable endianness is currently big-endian. Non-configurable 91 * CPUs can use the default implementation of this method. This method should 92 * not be used by any callers other than the pre-1.0 virtio devices. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @dump_statistics: Callback for dumping statistics. 96 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 97 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 98 * @get_memory_mapping: Callback for obtaining the memory mappings. 99 * @set_pc: Callback for setting the Program Counter register. This 100 * should have the semantics used by the target architecture when 101 * setting the PC from a source such as an ELF file entry point; 102 * for example on Arm it will also set the Thumb mode bit based 103 * on the least significant bit of the new PC value. 104 * If the target behaviour here is anything other than "set 105 * the PC register to the value passed in" then the target must 106 * also implement the synchronize_from_tb hook. 107 * @synchronize_from_tb: Callback for synchronizing state from a TCG 108 * #TranslationBlock. This is called when we abandon execution 109 * of a TB before starting it, and must set all parts of the CPU 110 * state which the previous TB in the chain may not have updated. 111 * This always includes at least the program counter; some targets 112 * will need to do more. If this hook is not implemented then the 113 * default is to call @set_pc(tb->pc). 114 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only 115 * address fault. For system mode, if the access is valid, call 116 * tlb_set_page and return true; if the access is invalid, and 117 * probe is true, return false; otherwise raise an exception and 118 * do not return. For user-only mode, always raise an exception 119 * and do not return. 120 * @get_phys_page_debug: Callback for obtaining a physical address. 121 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 122 * associated memory transaction attributes to use for the access. 123 * CPUs which use memory transaction attributes should implement this 124 * instead of get_phys_page_debug. 125 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 126 * a memory access with the specified memory transaction attributes. 127 * @gdb_read_register: Callback for letting GDB read a register. 128 * @gdb_write_register: Callback for letting GDB write a register. 129 * @debug_check_watchpoint: Callback: return true if the architectural 130 * watchpoint whose address has matched should really fire. 131 * @debug_excp_handler: Callback for handling debug exceptions. 132 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 133 * 64-bit VM coredump. 134 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 135 * note to a 32-bit VM coredump. 136 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 137 * 32-bit VM coredump. 138 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 139 * note to a 32-bit VM coredump. 140 * @vmsd: State description for migration. 141 * @gdb_num_core_regs: Number of core registers accessible to GDB. 142 * @gdb_core_xml_file: File name for core registers GDB XML description. 143 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 144 * before the insn which triggers a watchpoint rather than after it. 145 * @gdb_arch_name: Optional callback that returns the architecture name known 146 * to GDB. The caller must free the returned string with g_free. 147 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 148 * gdb stub. Returns a pointer to the XML contents for the specified XML file 149 * or NULL if the CPU doesn't have a dynamically generated content for it. 150 * @cpu_exec_enter: Callback for cpu_exec preparation. 151 * @cpu_exec_exit: Callback for cpu_exec cleanup. 152 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. 153 * @disas_set_info: Setup architecture specific components of disassembly info 154 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 155 * address before attempting to match it against watchpoints. 156 * 157 * Represents a CPU family or model. 158 */ 159 typedef struct CPUClass { 160 /*< private >*/ 161 DeviceClass parent_class; 162 /*< public >*/ 163 164 ObjectClass *(*class_by_name)(const char *cpu_model); 165 void (*parse_features)(const char *typename, char *str, Error **errp); 166 167 int reset_dump_flags; 168 bool (*has_work)(CPUState *cpu); 169 void (*do_interrupt)(CPUState *cpu); 170 void (*do_unaligned_access)(CPUState *cpu, vaddr addr, 171 MMUAccessType access_type, 172 int mmu_idx, uintptr_t retaddr); 173 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, 174 unsigned size, MMUAccessType access_type, 175 int mmu_idx, MemTxAttrs attrs, 176 MemTxResult response, uintptr_t retaddr); 177 bool (*virtio_is_big_endian)(CPUState *cpu); 178 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 179 uint8_t *buf, int len, bool is_write); 180 void (*dump_state)(CPUState *cpu, FILE *, int flags); 181 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 182 void (*dump_statistics)(CPUState *cpu, int flags); 183 int64_t (*get_arch_id)(CPUState *cpu); 184 bool (*get_paging_enabled)(const CPUState *cpu); 185 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 186 Error **errp); 187 void (*set_pc)(CPUState *cpu, vaddr value); 188 void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb); 189 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, 190 MMUAccessType access_type, int mmu_idx, 191 bool probe, uintptr_t retaddr); 192 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 193 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 194 MemTxAttrs *attrs); 195 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 196 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 197 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 198 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); 199 void (*debug_excp_handler)(CPUState *cpu); 200 201 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 202 int cpuid, void *opaque); 203 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 204 void *opaque); 205 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 206 int cpuid, void *opaque); 207 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 208 void *opaque); 209 210 const VMStateDescription *vmsd; 211 const char *gdb_core_xml_file; 212 gchar * (*gdb_arch_name)(CPUState *cpu); 213 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 214 void (*cpu_exec_enter)(CPUState *cpu); 215 void (*cpu_exec_exit)(CPUState *cpu); 216 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); 217 218 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 219 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); 220 void (*tcg_initialize)(void); 221 222 /* Keep non-pointer data at the end to minimize holes. */ 223 int gdb_num_core_regs; 224 bool gdb_stop_before_watchpoint; 225 } CPUClass; 226 227 /* 228 * Low 16 bits: number of cycles left, used only in icount mode. 229 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 230 * for this CPU and return to its top level loop (even in non-icount mode). 231 * This allows a single read-compare-cbranch-write sequence to test 232 * for both decrementer underflow and exceptions. 233 */ 234 typedef union IcountDecr { 235 uint32_t u32; 236 struct { 237 #ifdef HOST_WORDS_BIGENDIAN 238 uint16_t high; 239 uint16_t low; 240 #else 241 uint16_t low; 242 uint16_t high; 243 #endif 244 } u16; 245 } IcountDecr; 246 247 typedef struct CPUBreakpoint { 248 vaddr pc; 249 int flags; /* BP_* */ 250 QTAILQ_ENTRY(CPUBreakpoint) entry; 251 } CPUBreakpoint; 252 253 struct CPUWatchpoint { 254 vaddr vaddr; 255 vaddr len; 256 vaddr hitaddr; 257 MemTxAttrs hitattrs; 258 int flags; /* BP_* */ 259 QTAILQ_ENTRY(CPUWatchpoint) entry; 260 }; 261 262 #ifdef CONFIG_PLUGIN 263 /* 264 * For plugins we sometime need to save the resolved iotlb data before 265 * the memory regions get moved around by io_writex. 266 */ 267 typedef struct SavedIOTLB { 268 hwaddr addr; 269 MemoryRegionSection *section; 270 hwaddr mr_offset; 271 } SavedIOTLB; 272 #endif 273 274 struct KVMState; 275 struct kvm_run; 276 277 struct hax_vcpu_state; 278 279 #define TB_JMP_CACHE_BITS 12 280 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 281 282 /* work queue */ 283 284 /* The union type allows passing of 64 bit target pointers on 32 bit 285 * hosts in a single parameter 286 */ 287 typedef union { 288 int host_int; 289 unsigned long host_ulong; 290 void *host_ptr; 291 vaddr target_ptr; 292 } run_on_cpu_data; 293 294 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 295 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 296 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 297 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 298 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 299 300 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 301 302 struct qemu_work_item; 303 304 #define CPU_UNSET_NUMA_NODE_ID -1 305 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 306 307 /** 308 * CPUState: 309 * @cpu_index: CPU index (informative). 310 * @cluster_index: Identifies which cluster this CPU is in. 311 * For boards which don't define clusters or for "loose" CPUs not assigned 312 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 313 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 314 * QOM parent. 315 * @nr_cores: Number of cores within this CPU package. 316 * @nr_threads: Number of threads within this CPU. 317 * @running: #true if CPU is currently running (lockless). 318 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 319 * valid under cpu_list_lock. 320 * @created: Indicates whether the CPU thread has been successfully created. 321 * @interrupt_request: Indicates a pending interrupt request. 322 * @halted: Nonzero if the CPU is in suspended state. 323 * @stop: Indicates a pending stop request. 324 * @stopped: Indicates the CPU has been artificially stopped. 325 * @unplug: Indicates a pending CPU unplug request. 326 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 327 * @singlestep_enabled: Flags for single-stepping. 328 * @icount_extra: Instructions until next timer event. 329 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 330 * requires that IO only be performed on the last instruction of a TB 331 * so that interrupts take effect immediately. 332 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 333 * AddressSpaces this CPU has) 334 * @num_ases: number of CPUAddressSpaces in @cpu_ases 335 * @as: Pointer to the first AddressSpace, for the convenience of targets which 336 * only have a single AddressSpace 337 * @env_ptr: Pointer to subclass-specific CPUArchState field. 338 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 339 * @gdb_regs: Additional GDB registers. 340 * @gdb_num_regs: Number of total registers accessible to GDB. 341 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 342 * @next_cpu: Next CPU sharing TB cache. 343 * @opaque: User data. 344 * @mem_io_pc: Host Program Counter at which the memory was accessed. 345 * @kvm_fd: vCPU file descriptor for KVM. 346 * @work_mutex: Lock to prevent multiple access to @work_list. 347 * @work_list: List of pending asynchronous work. 348 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 349 * to @trace_dstate). 350 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 351 * @plugin_mask: Plugin event bitmap. Modified only via async work. 352 * @ignore_memory_transaction_failures: Cached copy of the MachineState 353 * flag of the same name: allows the board to suppress calling of the 354 * CPU do_transaction_failed hook function. 355 * 356 * State of one CPU core or thread. 357 */ 358 struct CPUState { 359 /*< private >*/ 360 DeviceState parent_obj; 361 /*< public >*/ 362 363 int nr_cores; 364 int nr_threads; 365 366 struct QemuThread *thread; 367 #ifdef _WIN32 368 HANDLE hThread; 369 #endif 370 int thread_id; 371 bool running, has_waiter; 372 struct QemuCond *halt_cond; 373 bool thread_kicked; 374 bool created; 375 bool stop; 376 bool stopped; 377 bool unplug; 378 bool crash_occurred; 379 bool exit_request; 380 bool in_exclusive_context; 381 uint32_t cflags_next_tb; 382 /* updates protected by BQL */ 383 uint32_t interrupt_request; 384 int singlestep_enabled; 385 int64_t icount_budget; 386 int64_t icount_extra; 387 uint64_t random_seed; 388 sigjmp_buf jmp_env; 389 390 QemuMutex work_mutex; 391 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 392 393 CPUAddressSpace *cpu_ases; 394 int num_ases; 395 AddressSpace *as; 396 MemoryRegion *memory; 397 398 void *env_ptr; /* CPUArchState */ 399 IcountDecr *icount_decr_ptr; 400 401 /* Accessed in parallel; all accesses must be atomic */ 402 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 403 404 struct GDBRegisterState *gdb_regs; 405 int gdb_num_regs; 406 int gdb_num_g_regs; 407 QTAILQ_ENTRY(CPUState) node; 408 409 /* ice debug support */ 410 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 411 412 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 413 CPUWatchpoint *watchpoint_hit; 414 415 void *opaque; 416 417 /* In order to avoid passing too many arguments to the MMIO helpers, 418 * we store some rarely used information in the CPU context. 419 */ 420 uintptr_t mem_io_pc; 421 422 int kvm_fd; 423 struct KVMState *kvm_state; 424 struct kvm_run *kvm_run; 425 426 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 427 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 428 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 429 430 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 431 432 #ifdef CONFIG_PLUGIN 433 GArray *plugin_mem_cbs; 434 /* saved iotlb data from io_writex */ 435 SavedIOTLB saved_iotlb; 436 #endif 437 438 /* TODO Move common fields from CPUArchState here. */ 439 int cpu_index; 440 int cluster_index; 441 uint32_t halted; 442 uint32_t can_do_io; 443 int32_t exception_index; 444 445 /* shared by kvm, hax and hvf */ 446 bool vcpu_dirty; 447 448 /* Used to keep track of an outstanding cpu throttle thread for migration 449 * autoconverge 450 */ 451 bool throttle_thread_scheduled; 452 453 bool ignore_memory_transaction_failures; 454 455 struct hax_vcpu_state *hax_vcpu; 456 457 int hvf_fd; 458 459 /* track IOMMUs whose translations we've cached in the TCG TLB */ 460 GArray *iommu_notifiers; 461 }; 462 463 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 464 extern CPUTailQ cpus; 465 466 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 467 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 468 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 469 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 470 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 471 472 extern __thread CPUState *current_cpu; 473 474 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 475 { 476 unsigned int i; 477 478 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 479 atomic_set(&cpu->tb_jmp_cache[i], NULL); 480 } 481 } 482 483 /** 484 * qemu_tcg_mttcg_enabled: 485 * Check whether we are running MultiThread TCG or not. 486 * 487 * Returns: %true if we are in MTTCG mode %false otherwise. 488 */ 489 extern bool mttcg_enabled; 490 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 491 492 /** 493 * cpu_paging_enabled: 494 * @cpu: The CPU whose state is to be inspected. 495 * 496 * Returns: %true if paging is enabled, %false otherwise. 497 */ 498 bool cpu_paging_enabled(const CPUState *cpu); 499 500 /** 501 * cpu_get_memory_mapping: 502 * @cpu: The CPU whose memory mappings are to be obtained. 503 * @list: Where to write the memory mappings to. 504 * @errp: Pointer for reporting an #Error. 505 */ 506 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 507 Error **errp); 508 509 #if !defined(CONFIG_USER_ONLY) 510 511 /** 512 * cpu_write_elf64_note: 513 * @f: pointer to a function that writes memory to a file 514 * @cpu: The CPU whose memory is to be dumped 515 * @cpuid: ID number of the CPU 516 * @opaque: pointer to the CPUState struct 517 */ 518 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 519 int cpuid, void *opaque); 520 521 /** 522 * cpu_write_elf64_qemunote: 523 * @f: pointer to a function that writes memory to a file 524 * @cpu: The CPU whose memory is to be dumped 525 * @cpuid: ID number of the CPU 526 * @opaque: pointer to the CPUState struct 527 */ 528 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 529 void *opaque); 530 531 /** 532 * cpu_write_elf32_note: 533 * @f: pointer to a function that writes memory to a file 534 * @cpu: The CPU whose memory is to be dumped 535 * @cpuid: ID number of the CPU 536 * @opaque: pointer to the CPUState struct 537 */ 538 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 539 int cpuid, void *opaque); 540 541 /** 542 * cpu_write_elf32_qemunote: 543 * @f: pointer to a function that writes memory to a file 544 * @cpu: The CPU whose memory is to be dumped 545 * @cpuid: ID number of the CPU 546 * @opaque: pointer to the CPUState struct 547 */ 548 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 549 void *opaque); 550 551 /** 552 * cpu_get_crash_info: 553 * @cpu: The CPU to get crash information for 554 * 555 * Gets the previously saved crash information. 556 * Caller is responsible for freeing the data. 557 */ 558 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 559 560 #endif /* !CONFIG_USER_ONLY */ 561 562 /** 563 * CPUDumpFlags: 564 * @CPU_DUMP_CODE: 565 * @CPU_DUMP_FPU: dump FPU register state, not just integer 566 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 567 */ 568 enum CPUDumpFlags { 569 CPU_DUMP_CODE = 0x00010000, 570 CPU_DUMP_FPU = 0x00020000, 571 CPU_DUMP_CCOP = 0x00040000, 572 }; 573 574 /** 575 * cpu_dump_state: 576 * @cpu: The CPU whose state is to be dumped. 577 * @f: If non-null, dump to this stream, else to current print sink. 578 * 579 * Dumps CPU state. 580 */ 581 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 582 583 /** 584 * cpu_dump_statistics: 585 * @cpu: The CPU whose state is to be dumped. 586 * @flags: Flags what to dump. 587 * 588 * Dump CPU statistics to the current monitor if we have one, else to 589 * stdout. 590 */ 591 void cpu_dump_statistics(CPUState *cpu, int flags); 592 593 #ifndef CONFIG_USER_ONLY 594 /** 595 * cpu_get_phys_page_attrs_debug: 596 * @cpu: The CPU to obtain the physical page address for. 597 * @addr: The virtual address. 598 * @attrs: Updated on return with the memory transaction attributes to use 599 * for this access. 600 * 601 * Obtains the physical page corresponding to a virtual one, together 602 * with the corresponding memory transaction attributes to use for the access. 603 * Use it only for debugging because no protection checks are done. 604 * 605 * Returns: Corresponding physical page address or -1 if no page found. 606 */ 607 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 608 MemTxAttrs *attrs) 609 { 610 CPUClass *cc = CPU_GET_CLASS(cpu); 611 612 if (cc->get_phys_page_attrs_debug) { 613 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 614 } 615 /* Fallback for CPUs which don't implement the _attrs_ hook */ 616 *attrs = MEMTXATTRS_UNSPECIFIED; 617 return cc->get_phys_page_debug(cpu, addr); 618 } 619 620 /** 621 * cpu_get_phys_page_debug: 622 * @cpu: The CPU to obtain the physical page address for. 623 * @addr: The virtual address. 624 * 625 * Obtains the physical page corresponding to a virtual one. 626 * Use it only for debugging because no protection checks are done. 627 * 628 * Returns: Corresponding physical page address or -1 if no page found. 629 */ 630 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 631 { 632 MemTxAttrs attrs = {}; 633 634 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 635 } 636 637 /** cpu_asidx_from_attrs: 638 * @cpu: CPU 639 * @attrs: memory transaction attributes 640 * 641 * Returns the address space index specifying the CPU AddressSpace 642 * to use for a memory access with the given transaction attributes. 643 */ 644 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 645 { 646 CPUClass *cc = CPU_GET_CLASS(cpu); 647 int ret = 0; 648 649 if (cc->asidx_from_attrs) { 650 ret = cc->asidx_from_attrs(cpu, attrs); 651 assert(ret < cpu->num_ases && ret >= 0); 652 } 653 return ret; 654 } 655 656 #endif /* CONFIG_USER_ONLY */ 657 658 /** 659 * cpu_list_add: 660 * @cpu: The CPU to be added to the list of CPUs. 661 */ 662 void cpu_list_add(CPUState *cpu); 663 664 /** 665 * cpu_list_remove: 666 * @cpu: The CPU to be removed from the list of CPUs. 667 */ 668 void cpu_list_remove(CPUState *cpu); 669 670 /** 671 * cpu_reset: 672 * @cpu: The CPU whose state is to be reset. 673 */ 674 void cpu_reset(CPUState *cpu); 675 676 /** 677 * cpu_class_by_name: 678 * @typename: The CPU base type. 679 * @cpu_model: The model string without any parameters. 680 * 681 * Looks up a CPU #ObjectClass matching name @cpu_model. 682 * 683 * Returns: A #CPUClass or %NULL if not matching class is found. 684 */ 685 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 686 687 /** 688 * cpu_create: 689 * @typename: The CPU type. 690 * 691 * Instantiates a CPU and realizes the CPU. 692 * 693 * Returns: A #CPUState or %NULL if an error occurred. 694 */ 695 CPUState *cpu_create(const char *typename); 696 697 /** 698 * parse_cpu_option: 699 * @cpu_option: The -cpu option including optional parameters. 700 * 701 * processes optional parameters and registers them as global properties 702 * 703 * Returns: type of CPU to create or prints error and terminates process 704 * if an error occurred. 705 */ 706 const char *parse_cpu_option(const char *cpu_option); 707 708 /** 709 * cpu_has_work: 710 * @cpu: The vCPU to check. 711 * 712 * Checks whether the CPU has work to do. 713 * 714 * Returns: %true if the CPU has work, %false otherwise. 715 */ 716 static inline bool cpu_has_work(CPUState *cpu) 717 { 718 CPUClass *cc = CPU_GET_CLASS(cpu); 719 720 g_assert(cc->has_work); 721 return cc->has_work(cpu); 722 } 723 724 /** 725 * qemu_cpu_is_self: 726 * @cpu: The vCPU to check against. 727 * 728 * Checks whether the caller is executing on the vCPU thread. 729 * 730 * Returns: %true if called from @cpu's thread, %false otherwise. 731 */ 732 bool qemu_cpu_is_self(CPUState *cpu); 733 734 /** 735 * qemu_cpu_kick: 736 * @cpu: The vCPU to kick. 737 * 738 * Kicks @cpu's thread. 739 */ 740 void qemu_cpu_kick(CPUState *cpu); 741 742 /** 743 * cpu_is_stopped: 744 * @cpu: The CPU to check. 745 * 746 * Checks whether the CPU is stopped. 747 * 748 * Returns: %true if run state is not running or if artificially stopped; 749 * %false otherwise. 750 */ 751 bool cpu_is_stopped(CPUState *cpu); 752 753 /** 754 * do_run_on_cpu: 755 * @cpu: The vCPU to run on. 756 * @func: The function to be executed. 757 * @data: Data to pass to the function. 758 * @mutex: Mutex to release while waiting for @func to run. 759 * 760 * Used internally in the implementation of run_on_cpu. 761 */ 762 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 763 QemuMutex *mutex); 764 765 /** 766 * run_on_cpu: 767 * @cpu: The vCPU to run on. 768 * @func: The function to be executed. 769 * @data: Data to pass to the function. 770 * 771 * Schedules the function @func for execution on the vCPU @cpu. 772 */ 773 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 774 775 /** 776 * async_run_on_cpu: 777 * @cpu: The vCPU to run on. 778 * @func: The function to be executed. 779 * @data: Data to pass to the function. 780 * 781 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 782 */ 783 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 784 785 /** 786 * async_safe_run_on_cpu: 787 * @cpu: The vCPU to run on. 788 * @func: The function to be executed. 789 * @data: Data to pass to the function. 790 * 791 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 792 * while all other vCPUs are sleeping. 793 * 794 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 795 * BQL. 796 */ 797 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 798 799 /** 800 * cpu_in_exclusive_context() 801 * @cpu: The vCPU to check 802 * 803 * Returns true if @cpu is an exclusive context, for example running 804 * something which has previously been queued via async_safe_run_on_cpu(). 805 */ 806 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 807 { 808 return cpu->in_exclusive_context; 809 } 810 811 /** 812 * qemu_get_cpu: 813 * @index: The CPUState@cpu_index value of the CPU to obtain. 814 * 815 * Gets a CPU matching @index. 816 * 817 * Returns: The CPU or %NULL if there is no matching CPU. 818 */ 819 CPUState *qemu_get_cpu(int index); 820 821 /** 822 * cpu_exists: 823 * @id: Guest-exposed CPU ID to lookup. 824 * 825 * Search for CPU with specified ID. 826 * 827 * Returns: %true - CPU is found, %false - CPU isn't found. 828 */ 829 bool cpu_exists(int64_t id); 830 831 /** 832 * cpu_by_arch_id: 833 * @id: Guest-exposed CPU ID of the CPU to obtain. 834 * 835 * Get a CPU with matching @id. 836 * 837 * Returns: The CPU or %NULL if there is no matching CPU. 838 */ 839 CPUState *cpu_by_arch_id(int64_t id); 840 841 #ifndef CONFIG_USER_ONLY 842 843 typedef void (*CPUInterruptHandler)(CPUState *, int); 844 845 extern CPUInterruptHandler cpu_interrupt_handler; 846 847 /** 848 * cpu_interrupt: 849 * @cpu: The CPU to set an interrupt on. 850 * @mask: The interrupts to set. 851 * 852 * Invokes the interrupt handler. 853 */ 854 static inline void cpu_interrupt(CPUState *cpu, int mask) 855 { 856 cpu_interrupt_handler(cpu, mask); 857 } 858 859 #else /* USER_ONLY */ 860 861 void cpu_interrupt(CPUState *cpu, int mask); 862 863 #endif /* USER_ONLY */ 864 865 #ifdef NEED_CPU_H 866 867 #ifdef CONFIG_SOFTMMU 868 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 869 MMUAccessType access_type, 870 int mmu_idx, uintptr_t retaddr) 871 { 872 CPUClass *cc = CPU_GET_CLASS(cpu); 873 874 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 875 } 876 877 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 878 vaddr addr, unsigned size, 879 MMUAccessType access_type, 880 int mmu_idx, MemTxAttrs attrs, 881 MemTxResult response, 882 uintptr_t retaddr) 883 { 884 CPUClass *cc = CPU_GET_CLASS(cpu); 885 886 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { 887 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, 888 mmu_idx, attrs, response, retaddr); 889 } 890 } 891 #endif 892 893 #endif /* NEED_CPU_H */ 894 895 /** 896 * cpu_set_pc: 897 * @cpu: The CPU to set the program counter for. 898 * @addr: Program counter value. 899 * 900 * Sets the program counter for a CPU. 901 */ 902 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 903 { 904 CPUClass *cc = CPU_GET_CLASS(cpu); 905 906 cc->set_pc(cpu, addr); 907 } 908 909 /** 910 * cpu_reset_interrupt: 911 * @cpu: The CPU to clear the interrupt on. 912 * @mask: The interrupt mask to clear. 913 * 914 * Resets interrupts on the vCPU @cpu. 915 */ 916 void cpu_reset_interrupt(CPUState *cpu, int mask); 917 918 /** 919 * cpu_exit: 920 * @cpu: The CPU to exit. 921 * 922 * Requests the CPU @cpu to exit execution. 923 */ 924 void cpu_exit(CPUState *cpu); 925 926 /** 927 * cpu_resume: 928 * @cpu: The CPU to resume. 929 * 930 * Resumes CPU, i.e. puts CPU into runnable state. 931 */ 932 void cpu_resume(CPUState *cpu); 933 934 /** 935 * cpu_remove: 936 * @cpu: The CPU to remove. 937 * 938 * Requests the CPU to be removed. 939 */ 940 void cpu_remove(CPUState *cpu); 941 942 /** 943 * cpu_remove_sync: 944 * @cpu: The CPU to remove. 945 * 946 * Requests the CPU to be removed and waits till it is removed. 947 */ 948 void cpu_remove_sync(CPUState *cpu); 949 950 /** 951 * process_queued_cpu_work() - process all items on CPU work queue 952 * @cpu: The CPU which work queue to process. 953 */ 954 void process_queued_cpu_work(CPUState *cpu); 955 956 /** 957 * cpu_exec_start: 958 * @cpu: The CPU for the current thread. 959 * 960 * Record that a CPU has started execution and can be interrupted with 961 * cpu_exit. 962 */ 963 void cpu_exec_start(CPUState *cpu); 964 965 /** 966 * cpu_exec_end: 967 * @cpu: The CPU for the current thread. 968 * 969 * Record that a CPU has stopped execution and exclusive sections 970 * can be executed without interrupting it. 971 */ 972 void cpu_exec_end(CPUState *cpu); 973 974 /** 975 * start_exclusive: 976 * 977 * Wait for a concurrent exclusive section to end, and then start 978 * a section of work that is run while other CPUs are not running 979 * between cpu_exec_start and cpu_exec_end. CPUs that are running 980 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 981 * during the exclusive section go to sleep until this CPU calls 982 * end_exclusive. 983 */ 984 void start_exclusive(void); 985 986 /** 987 * end_exclusive: 988 * 989 * Concludes an exclusive execution section started by start_exclusive. 990 */ 991 void end_exclusive(void); 992 993 /** 994 * qemu_init_vcpu: 995 * @cpu: The vCPU to initialize. 996 * 997 * Initializes a vCPU. 998 */ 999 void qemu_init_vcpu(CPUState *cpu); 1000 1001 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1002 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1003 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1004 1005 /** 1006 * cpu_single_step: 1007 * @cpu: CPU to the flags for. 1008 * @enabled: Flags to enable. 1009 * 1010 * Enables or disables single-stepping for @cpu. 1011 */ 1012 void cpu_single_step(CPUState *cpu, int enabled); 1013 1014 /* Breakpoint/watchpoint flags */ 1015 #define BP_MEM_READ 0x01 1016 #define BP_MEM_WRITE 0x02 1017 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1018 #define BP_STOP_BEFORE_ACCESS 0x04 1019 /* 0x08 currently unused */ 1020 #define BP_GDB 0x10 1021 #define BP_CPU 0x20 1022 #define BP_ANY (BP_GDB | BP_CPU) 1023 #define BP_WATCHPOINT_HIT_READ 0x40 1024 #define BP_WATCHPOINT_HIT_WRITE 0x80 1025 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 1026 1027 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1028 CPUBreakpoint **breakpoint); 1029 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1030 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1031 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1032 1033 /* Return true if PC matches an installed breakpoint. */ 1034 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1035 { 1036 CPUBreakpoint *bp; 1037 1038 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1039 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1040 if (bp->pc == pc && (bp->flags & mask)) { 1041 return true; 1042 } 1043 } 1044 } 1045 return false; 1046 } 1047 1048 #ifdef CONFIG_USER_ONLY 1049 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1050 int flags, CPUWatchpoint **watchpoint) 1051 { 1052 return -ENOSYS; 1053 } 1054 1055 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1056 vaddr len, int flags) 1057 { 1058 return -ENOSYS; 1059 } 1060 1061 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1062 CPUWatchpoint *wp) 1063 { 1064 } 1065 1066 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1067 { 1068 } 1069 1070 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1071 MemTxAttrs atr, int fl, uintptr_t ra) 1072 { 1073 } 1074 1075 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1076 vaddr addr, vaddr len) 1077 { 1078 return 0; 1079 } 1080 #else 1081 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1082 int flags, CPUWatchpoint **watchpoint); 1083 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1084 vaddr len, int flags); 1085 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1086 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1087 1088 /** 1089 * cpu_check_watchpoint: 1090 * @cpu: cpu context 1091 * @addr: guest virtual address 1092 * @len: access length 1093 * @attrs: memory access attributes 1094 * @flags: watchpoint access type 1095 * @ra: unwind return address 1096 * 1097 * Check for a watchpoint hit in [addr, addr+len) of the type 1098 * specified by @flags. Exit via exception with a hit. 1099 */ 1100 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1101 MemTxAttrs attrs, int flags, uintptr_t ra); 1102 1103 /** 1104 * cpu_watchpoint_address_matches: 1105 * @cpu: cpu context 1106 * @addr: guest virtual address 1107 * @len: access length 1108 * 1109 * Return the watchpoint flags that apply to [addr, addr+len). 1110 * If no watchpoint is registered for the range, the result is 0. 1111 */ 1112 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1113 #endif 1114 1115 /** 1116 * cpu_get_address_space: 1117 * @cpu: CPU to get address space from 1118 * @asidx: index identifying which address space to get 1119 * 1120 * Return the requested address space of this CPU. @asidx 1121 * specifies which address space to read. 1122 */ 1123 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1124 1125 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1126 GCC_FMT_ATTR(2, 3); 1127 extern Property cpu_common_props[]; 1128 void cpu_exec_initfn(CPUState *cpu); 1129 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1130 void cpu_exec_unrealizefn(CPUState *cpu); 1131 1132 /** 1133 * target_words_bigendian: 1134 * Returns true if the (default) endianness of the target is big endian, 1135 * false otherwise. Note that in target-specific code, you can use 1136 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1137 * code should normally never need to know about the endianness of the 1138 * target, so please do *not* use this function unless you know very well 1139 * what you are doing! 1140 */ 1141 bool target_words_bigendian(void); 1142 1143 #ifdef NEED_CPU_H 1144 1145 #ifdef CONFIG_SOFTMMU 1146 extern const VMStateDescription vmstate_cpu_common; 1147 #else 1148 #define vmstate_cpu_common vmstate_dummy 1149 #endif 1150 1151 #define VMSTATE_CPU() { \ 1152 .name = "parent_obj", \ 1153 .size = sizeof(CPUState), \ 1154 .vmsd = &vmstate_cpu_common, \ 1155 .flags = VMS_STRUCT, \ 1156 .offset = 0, \ 1157 } 1158 1159 #endif /* NEED_CPU_H */ 1160 1161 #define UNASSIGNED_CPU_INDEX -1 1162 #define UNASSIGNED_CLUSTER_INDEX -1 1163 1164 #endif 1165