1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/vaddr.h" 27 #include "exec/memattrs.h" 28 #include "exec/tlb-common.h" 29 #include "qapi/qapi-types-run-state.h" 30 #include "qemu/bitmap.h" 31 #include "qemu/rcu_queue.h" 32 #include "qemu/queue.h" 33 #include "qemu/thread.h" 34 #include "qemu/plugin-event.h" 35 #include "qom/object.h" 36 37 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 38 void *opaque); 39 40 /** 41 * SECTION:cpu 42 * @section_id: QEMU-cpu 43 * @title: CPU Class 44 * @short_description: Base class for all CPUs 45 */ 46 47 #define TYPE_CPU "cpu" 48 49 /* Since this macro is used a lot in hot code paths and in conjunction with 50 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 51 * an unchecked cast. 52 */ 53 #define CPU(obj) ((CPUState *)(obj)) 54 55 /* 56 * The class checkers bring in CPU_GET_CLASS() which is potentially 57 * expensive given the eventual call to 58 * object_class_dynamic_cast_assert(). Because of this the CPUState 59 * has a cached value for the class in cs->cc which is set up in 60 * cpu_exec_realizefn() for use in hot code paths. 61 */ 62 typedef struct CPUClass CPUClass; 63 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 64 TYPE_CPU) 65 66 /** 67 * OBJECT_DECLARE_CPU_TYPE: 68 * @CpuInstanceType: instance struct name 69 * @CpuClassType: class struct name 70 * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators 71 * 72 * This macro is typically used in "cpu-qom.h" header file, and will: 73 * 74 * - create the typedefs for the CPU object and class structs 75 * - register the type for use with g_autoptr 76 * - provide three standard type cast functions 77 * 78 * The object struct and class struct need to be declared manually. 79 */ 80 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \ 81 typedef struct ArchCPU CpuInstanceType; \ 82 OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME); 83 84 typedef enum MMUAccessType { 85 MMU_DATA_LOAD = 0, 86 MMU_DATA_STORE = 1, 87 MMU_INST_FETCH = 2 88 #define MMU_ACCESS_COUNT 3 89 } MMUAccessType; 90 91 typedef struct CPUWatchpoint CPUWatchpoint; 92 93 /* see accel-cpu.h */ 94 struct AccelCPUClass; 95 96 /* see sysemu-cpu-ops.h */ 97 struct SysemuCPUOps; 98 99 /** 100 * CPUClass: 101 * @class_by_name: Callback to map -cpu command line model name to an 102 * instantiatable CPU type. 103 * @parse_features: Callback to parse command line arguments. 104 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 105 * @has_work: Callback for checking if there is work to do. 106 * @memory_rw_debug: Callback for GDB memory access. 107 * @dump_state: Callback for dumping state. 108 * @query_cpu_fast: 109 * Fill in target specific information for the "query-cpus-fast" 110 * QAPI call. 111 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 112 * @set_pc: Callback for setting the Program Counter register. This 113 * should have the semantics used by the target architecture when 114 * setting the PC from a source such as an ELF file entry point; 115 * for example on Arm it will also set the Thumb mode bit based 116 * on the least significant bit of the new PC value. 117 * If the target behaviour here is anything other than "set 118 * the PC register to the value passed in" then the target must 119 * also implement the synchronize_from_tb hook. 120 * @get_pc: Callback for getting the Program Counter register. 121 * As above, with the semantics of the target architecture. 122 * @gdb_read_register: Callback for letting GDB read a register. 123 * @gdb_write_register: Callback for letting GDB write a register. 124 * @gdb_adjust_breakpoint: Callback for adjusting the address of a 125 * breakpoint. Used by AVR to handle a gdb mis-feature with 126 * its Harvard architecture split code and data. 127 * @gdb_num_core_regs: Number of core registers accessible to GDB. 128 * @gdb_core_xml_file: File name for core registers GDB XML description. 129 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 130 * before the insn which triggers a watchpoint rather than after it. 131 * @gdb_arch_name: Optional callback that returns the architecture name known 132 * to GDB. The caller must free the returned string with g_free. 133 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 134 * gdb stub. Returns a pointer to the XML contents for the specified XML file 135 * or NULL if the CPU doesn't have a dynamically generated content for it. 136 * @disas_set_info: Setup architecture specific components of disassembly info 137 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 138 * address before attempting to match it against watchpoints. 139 * @deprecation_note: If this CPUClass is deprecated, this field provides 140 * related information. 141 * 142 * Represents a CPU family or model. 143 */ 144 struct CPUClass { 145 /*< private >*/ 146 DeviceClass parent_class; 147 /*< public >*/ 148 149 ObjectClass *(*class_by_name)(const char *cpu_model); 150 void (*parse_features)(const char *typename, char *str, Error **errp); 151 152 bool (*has_work)(CPUState *cpu); 153 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 154 uint8_t *buf, int len, bool is_write); 155 void (*dump_state)(CPUState *cpu, FILE *, int flags); 156 void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value); 157 int64_t (*get_arch_id)(CPUState *cpu); 158 void (*set_pc)(CPUState *cpu, vaddr value); 159 vaddr (*get_pc)(CPUState *cpu); 160 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 161 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 162 vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr); 163 164 const char *gdb_core_xml_file; 165 const gchar * (*gdb_arch_name)(CPUState *cpu); 166 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 167 168 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 169 170 const char *deprecation_note; 171 struct AccelCPUClass *accel_cpu; 172 173 /* when system emulation is not available, this pointer is NULL */ 174 const struct SysemuCPUOps *sysemu_ops; 175 176 /* when TCG is not available, this pointer is NULL */ 177 const TCGCPUOps *tcg_ops; 178 179 /* 180 * if not NULL, this is called in order for the CPUClass to initialize 181 * class data that depends on the accelerator, see accel/accel-common.c. 182 */ 183 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 184 185 /* 186 * Keep non-pointer data at the end to minimize holes. 187 */ 188 int reset_dump_flags; 189 int gdb_num_core_regs; 190 bool gdb_stop_before_watchpoint; 191 }; 192 193 /* 194 * Fix the number of mmu modes to 16, which is also the maximum 195 * supported by the softmmu tlb api. 196 */ 197 #define NB_MMU_MODES 16 198 199 /* Use a fully associative victim tlb of 8 entries. */ 200 #define CPU_VTLB_SIZE 8 201 202 /* 203 * The full TLB entry, which is not accessed by generated TCG code, 204 * so the layout is not as critical as that of CPUTLBEntry. This is 205 * also why we don't want to combine the two structs. 206 */ 207 typedef struct CPUTLBEntryFull { 208 /* 209 * @xlat_section contains: 210 * - in the lower TARGET_PAGE_BITS, a physical section number 211 * - with the lower TARGET_PAGE_BITS masked off, an offset which 212 * must be added to the virtual address to obtain: 213 * + the ram_addr_t of the target RAM (if the physical section 214 * number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM) 215 * + the offset within the target MemoryRegion (otherwise) 216 */ 217 hwaddr xlat_section; 218 219 /* 220 * @phys_addr contains the physical address in the address space 221 * given by cpu_asidx_from_attrs(cpu, @attrs). 222 */ 223 hwaddr phys_addr; 224 225 /* @attrs contains the memory transaction attributes for the page. */ 226 MemTxAttrs attrs; 227 228 /* @prot contains the complete protections for the page. */ 229 uint8_t prot; 230 231 /* @lg_page_size contains the log2 of the page size. */ 232 uint8_t lg_page_size; 233 234 /* 235 * Additional tlb flags for use by the slow path. If non-zero, 236 * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW. 237 */ 238 uint8_t slow_flags[MMU_ACCESS_COUNT]; 239 240 /* 241 * Allow target-specific additions to this structure. 242 * This may be used to cache items from the guest cpu 243 * page tables for later use by the implementation. 244 */ 245 union { 246 /* 247 * Cache the attrs and shareability fields from the page table entry. 248 * 249 * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2]. 250 * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format. 251 * For shareability and guarded, as in the SH and GP fields respectively 252 * of the VMSAv8-64 PTEs. 253 */ 254 struct { 255 uint8_t pte_attrs; 256 uint8_t shareability; 257 bool guarded; 258 } arm; 259 } extra; 260 } CPUTLBEntryFull; 261 262 /* 263 * Data elements that are per MMU mode, minus the bits accessed by 264 * the TCG fast path. 265 */ 266 typedef struct CPUTLBDesc { 267 /* 268 * Describe a region covering all of the large pages allocated 269 * into the tlb. When any page within this region is flushed, 270 * we must flush the entire tlb. The region is matched if 271 * (addr & large_page_mask) == large_page_addr. 272 */ 273 vaddr large_page_addr; 274 vaddr large_page_mask; 275 /* host time (in ns) at the beginning of the time window */ 276 int64_t window_begin_ns; 277 /* maximum number of entries observed in the window */ 278 size_t window_max_entries; 279 size_t n_used_entries; 280 /* The next index to use in the tlb victim table. */ 281 size_t vindex; 282 /* The tlb victim table, in two parts. */ 283 CPUTLBEntry vtable[CPU_VTLB_SIZE]; 284 CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE]; 285 CPUTLBEntryFull *fulltlb; 286 } CPUTLBDesc; 287 288 /* 289 * Data elements that are shared between all MMU modes. 290 */ 291 typedef struct CPUTLBCommon { 292 /* Serialize updates to f.table and d.vtable, and others as noted. */ 293 QemuSpin lock; 294 /* 295 * Within dirty, for each bit N, modifications have been made to 296 * mmu_idx N since the last time that mmu_idx was flushed. 297 * Protected by tlb_c.lock. 298 */ 299 uint16_t dirty; 300 /* 301 * Statistics. These are not lock protected, but are read and 302 * written atomically. This allows the monitor to print a snapshot 303 * of the stats without interfering with the cpu. 304 */ 305 size_t full_flush_count; 306 size_t part_flush_count; 307 size_t elide_flush_count; 308 } CPUTLBCommon; 309 310 /* 311 * The entire softmmu tlb, for all MMU modes. 312 * The meaning of each of the MMU modes is defined in the target code. 313 * Since this is placed within CPUNegativeOffsetState, the smallest 314 * negative offsets are at the end of the struct. 315 */ 316 typedef struct CPUTLB { 317 #ifdef CONFIG_TCG 318 CPUTLBCommon c; 319 CPUTLBDesc d[NB_MMU_MODES]; 320 CPUTLBDescFast f[NB_MMU_MODES]; 321 #endif 322 } CPUTLB; 323 324 /* 325 * Low 16 bits: number of cycles left, used only in icount mode. 326 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 327 * for this CPU and return to its top level loop (even in non-icount mode). 328 * This allows a single read-compare-cbranch-write sequence to test 329 * for both decrementer underflow and exceptions. 330 */ 331 typedef union IcountDecr { 332 uint32_t u32; 333 struct { 334 #if HOST_BIG_ENDIAN 335 uint16_t high; 336 uint16_t low; 337 #else 338 uint16_t low; 339 uint16_t high; 340 #endif 341 } u16; 342 } IcountDecr; 343 344 /* 345 * Elements of CPUState most efficiently accessed from CPUArchState, 346 * via small negative offsets. 347 */ 348 typedef struct CPUNegativeOffsetState { 349 CPUTLB tlb; 350 IcountDecr icount_decr; 351 bool can_do_io; 352 } CPUNegativeOffsetState; 353 354 typedef struct CPUBreakpoint { 355 vaddr pc; 356 int flags; /* BP_* */ 357 QTAILQ_ENTRY(CPUBreakpoint) entry; 358 } CPUBreakpoint; 359 360 struct CPUWatchpoint { 361 vaddr vaddr; 362 vaddr len; 363 vaddr hitaddr; 364 MemTxAttrs hitattrs; 365 int flags; /* BP_* */ 366 QTAILQ_ENTRY(CPUWatchpoint) entry; 367 }; 368 369 struct KVMState; 370 struct kvm_run; 371 372 /* work queue */ 373 374 /* The union type allows passing of 64 bit target pointers on 32 bit 375 * hosts in a single parameter 376 */ 377 typedef union { 378 int host_int; 379 unsigned long host_ulong; 380 void *host_ptr; 381 vaddr target_ptr; 382 } run_on_cpu_data; 383 384 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 385 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 386 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 387 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 388 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 389 390 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 391 392 struct qemu_work_item; 393 394 #define CPU_UNSET_NUMA_NODE_ID -1 395 396 /** 397 * CPUState: 398 * @cpu_index: CPU index (informative). 399 * @cluster_index: Identifies which cluster this CPU is in. 400 * For boards which don't define clusters or for "loose" CPUs not assigned 401 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 402 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 403 * QOM parent. 404 * Under TCG this value is propagated to @tcg_cflags. 405 * See TranslationBlock::TCG CF_CLUSTER_MASK. 406 * @tcg_cflags: Pre-computed cflags for this cpu. 407 * @nr_cores: Number of cores within this CPU package. 408 * @nr_threads: Number of threads within this CPU core. 409 * @running: #true if CPU is currently running (lockless). 410 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 411 * valid under cpu_list_lock. 412 * @created: Indicates whether the CPU thread has been successfully created. 413 * @interrupt_request: Indicates a pending interrupt request. 414 * @halted: Nonzero if the CPU is in suspended state. 415 * @stop: Indicates a pending stop request. 416 * @stopped: Indicates the CPU has been artificially stopped. 417 * @unplug: Indicates a pending CPU unplug request. 418 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 419 * @singlestep_enabled: Flags for single-stepping. 420 * @icount_extra: Instructions until next timer event. 421 * @neg.can_do_io: True if memory-mapped IO is allowed. 422 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 423 * AddressSpaces this CPU has) 424 * @num_ases: number of CPUAddressSpaces in @cpu_ases 425 * @as: Pointer to the first AddressSpace, for the convenience of targets which 426 * only have a single AddressSpace 427 * @gdb_regs: Additional GDB registers. 428 * @gdb_num_regs: Number of total registers accessible to GDB. 429 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 430 * @node: QTAILQ of CPUs sharing TB cache. 431 * @opaque: User data. 432 * @mem_io_pc: Host Program Counter at which the memory was accessed. 433 * @accel: Pointer to accelerator specific state. 434 * @kvm_fd: vCPU file descriptor for KVM. 435 * @work_mutex: Lock to prevent multiple access to @work_list. 436 * @work_list: List of pending asynchronous work. 437 * @plugin_mask: Plugin event bitmap. Modified only via async work. 438 * @ignore_memory_transaction_failures: Cached copy of the MachineState 439 * flag of the same name: allows the board to suppress calling of the 440 * CPU do_transaction_failed hook function. 441 * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty 442 * ring is enabled. 443 * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU 444 * dirty ring structure. 445 * 446 * State of one CPU core or thread. 447 * 448 * Align, in order to match possible alignment required by CPUArchState, 449 * and eliminate a hole between CPUState and CPUArchState within ArchCPU. 450 */ 451 struct CPUState { 452 /*< private >*/ 453 DeviceState parent_obj; 454 /* cache to avoid expensive CPU_GET_CLASS */ 455 CPUClass *cc; 456 /*< public >*/ 457 458 int nr_cores; 459 int nr_threads; 460 461 struct QemuThread *thread; 462 #ifdef _WIN32 463 QemuSemaphore sem; 464 #endif 465 int thread_id; 466 bool running, has_waiter; 467 struct QemuCond *halt_cond; 468 bool thread_kicked; 469 bool created; 470 bool stop; 471 bool stopped; 472 473 /* Should CPU start in powered-off state? */ 474 bool start_powered_off; 475 476 bool unplug; 477 bool crash_occurred; 478 bool exit_request; 479 int exclusive_context_count; 480 uint32_t cflags_next_tb; 481 /* updates protected by BQL */ 482 uint32_t interrupt_request; 483 int singlestep_enabled; 484 int64_t icount_budget; 485 int64_t icount_extra; 486 uint64_t random_seed; 487 sigjmp_buf jmp_env; 488 489 QemuMutex work_mutex; 490 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 491 492 CPUAddressSpace *cpu_ases; 493 int num_ases; 494 AddressSpace *as; 495 MemoryRegion *memory; 496 497 CPUJumpCache *tb_jmp_cache; 498 499 GArray *gdb_regs; 500 int gdb_num_regs; 501 int gdb_num_g_regs; 502 QTAILQ_ENTRY(CPUState) node; 503 504 /* ice debug support */ 505 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 506 507 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 508 CPUWatchpoint *watchpoint_hit; 509 510 void *opaque; 511 512 /* In order to avoid passing too many arguments to the MMIO helpers, 513 * we store some rarely used information in the CPU context. 514 */ 515 uintptr_t mem_io_pc; 516 517 /* Only used in KVM */ 518 int kvm_fd; 519 struct KVMState *kvm_state; 520 struct kvm_run *kvm_run; 521 struct kvm_dirty_gfn *kvm_dirty_gfns; 522 uint32_t kvm_fetch_index; 523 uint64_t dirty_pages; 524 int kvm_vcpu_stats_fd; 525 526 /* Use by accel-block: CPU is executing an ioctl() */ 527 QemuLockCnt in_ioctl_lock; 528 529 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 530 531 #ifdef CONFIG_PLUGIN 532 GArray *plugin_mem_cbs; 533 #endif 534 535 /* TODO Move common fields from CPUArchState here. */ 536 int cpu_index; 537 int cluster_index; 538 uint32_t tcg_cflags; 539 uint32_t halted; 540 int32_t exception_index; 541 542 AccelCPUState *accel; 543 /* shared by kvm and hvf */ 544 bool vcpu_dirty; 545 546 /* Used to keep track of an outstanding cpu throttle thread for migration 547 * autoconverge 548 */ 549 bool throttle_thread_scheduled; 550 551 /* 552 * Sleep throttle_us_per_full microseconds once dirty ring is full 553 * if dirty page rate limit is enabled. 554 */ 555 int64_t throttle_us_per_full; 556 557 bool ignore_memory_transaction_failures; 558 559 /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */ 560 bool prctl_unalign_sigbus; 561 562 /* track IOMMUs whose translations we've cached in the TCG TLB */ 563 GArray *iommu_notifiers; 564 565 /* 566 * MUST BE LAST in order to minimize the displacement to CPUArchState. 567 */ 568 char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16); 569 CPUNegativeOffsetState neg; 570 }; 571 572 /* Validate placement of CPUNegativeOffsetState. */ 573 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) != 574 sizeof(CPUState) - sizeof(CPUNegativeOffsetState)); 575 576 static inline CPUArchState *cpu_env(CPUState *cpu) 577 { 578 /* We validate that CPUArchState follows CPUState in cpu-all.h. */ 579 return (CPUArchState *)(cpu + 1); 580 } 581 582 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 583 extern CPUTailQ cpus_queue; 584 585 #define first_cpu QTAILQ_FIRST_RCU(&cpus_queue) 586 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 587 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node) 588 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 589 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu) 590 591 extern __thread CPUState *current_cpu; 592 593 /** 594 * qemu_tcg_mttcg_enabled: 595 * Check whether we are running MultiThread TCG or not. 596 * 597 * Returns: %true if we are in MTTCG mode %false otherwise. 598 */ 599 extern bool mttcg_enabled; 600 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 601 602 /** 603 * cpu_paging_enabled: 604 * @cpu: The CPU whose state is to be inspected. 605 * 606 * Returns: %true if paging is enabled, %false otherwise. 607 */ 608 bool cpu_paging_enabled(const CPUState *cpu); 609 610 /** 611 * cpu_get_memory_mapping: 612 * @cpu: The CPU whose memory mappings are to be obtained. 613 * @list: Where to write the memory mappings to. 614 * @errp: Pointer for reporting an #Error. 615 * 616 * Returns: %true on success, %false otherwise. 617 */ 618 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 619 Error **errp); 620 621 #if !defined(CONFIG_USER_ONLY) 622 623 /** 624 * cpu_write_elf64_note: 625 * @f: pointer to a function that writes memory to a file 626 * @cpu: The CPU whose memory is to be dumped 627 * @cpuid: ID number of the CPU 628 * @opaque: pointer to the CPUState struct 629 */ 630 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 631 int cpuid, void *opaque); 632 633 /** 634 * cpu_write_elf64_qemunote: 635 * @f: pointer to a function that writes memory to a file 636 * @cpu: The CPU whose memory is to be dumped 637 * @cpuid: ID number of the CPU 638 * @opaque: pointer to the CPUState struct 639 */ 640 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 641 void *opaque); 642 643 /** 644 * cpu_write_elf32_note: 645 * @f: pointer to a function that writes memory to a file 646 * @cpu: The CPU whose memory is to be dumped 647 * @cpuid: ID number of the CPU 648 * @opaque: pointer to the CPUState struct 649 */ 650 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 651 int cpuid, void *opaque); 652 653 /** 654 * cpu_write_elf32_qemunote: 655 * @f: pointer to a function that writes memory to a file 656 * @cpu: The CPU whose memory is to be dumped 657 * @cpuid: ID number of the CPU 658 * @opaque: pointer to the CPUState struct 659 */ 660 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 661 void *opaque); 662 663 /** 664 * cpu_get_crash_info: 665 * @cpu: The CPU to get crash information for 666 * 667 * Gets the previously saved crash information. 668 * Caller is responsible for freeing the data. 669 */ 670 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 671 672 #endif /* !CONFIG_USER_ONLY */ 673 674 /** 675 * CPUDumpFlags: 676 * @CPU_DUMP_CODE: 677 * @CPU_DUMP_FPU: dump FPU register state, not just integer 678 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 679 * @CPU_DUMP_VPU: dump VPU registers 680 */ 681 enum CPUDumpFlags { 682 CPU_DUMP_CODE = 0x00010000, 683 CPU_DUMP_FPU = 0x00020000, 684 CPU_DUMP_CCOP = 0x00040000, 685 CPU_DUMP_VPU = 0x00080000, 686 }; 687 688 /** 689 * cpu_dump_state: 690 * @cpu: The CPU whose state is to be dumped. 691 * @f: If non-null, dump to this stream, else to current print sink. 692 * 693 * Dumps CPU state. 694 */ 695 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 696 697 #ifndef CONFIG_USER_ONLY 698 /** 699 * cpu_get_phys_page_attrs_debug: 700 * @cpu: The CPU to obtain the physical page address for. 701 * @addr: The virtual address. 702 * @attrs: Updated on return with the memory transaction attributes to use 703 * for this access. 704 * 705 * Obtains the physical page corresponding to a virtual one, together 706 * with the corresponding memory transaction attributes to use for the access. 707 * Use it only for debugging because no protection checks are done. 708 * 709 * Returns: Corresponding physical page address or -1 if no page found. 710 */ 711 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 712 MemTxAttrs *attrs); 713 714 /** 715 * cpu_get_phys_page_debug: 716 * @cpu: The CPU to obtain the physical page address for. 717 * @addr: The virtual address. 718 * 719 * Obtains the physical page corresponding to a virtual one. 720 * Use it only for debugging because no protection checks are done. 721 * 722 * Returns: Corresponding physical page address or -1 if no page found. 723 */ 724 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 725 726 /** cpu_asidx_from_attrs: 727 * @cpu: CPU 728 * @attrs: memory transaction attributes 729 * 730 * Returns the address space index specifying the CPU AddressSpace 731 * to use for a memory access with the given transaction attributes. 732 */ 733 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 734 735 /** 736 * cpu_virtio_is_big_endian: 737 * @cpu: CPU 738 739 * Returns %true if a CPU which supports runtime configurable endianness 740 * is currently big-endian. 741 */ 742 bool cpu_virtio_is_big_endian(CPUState *cpu); 743 744 #endif /* CONFIG_USER_ONLY */ 745 746 /** 747 * cpu_list_add: 748 * @cpu: The CPU to be added to the list of CPUs. 749 */ 750 void cpu_list_add(CPUState *cpu); 751 752 /** 753 * cpu_list_remove: 754 * @cpu: The CPU to be removed from the list of CPUs. 755 */ 756 void cpu_list_remove(CPUState *cpu); 757 758 /** 759 * cpu_reset: 760 * @cpu: The CPU whose state is to be reset. 761 */ 762 void cpu_reset(CPUState *cpu); 763 764 /** 765 * cpu_class_by_name: 766 * @typename: The CPU base type. 767 * @cpu_model: The model string without any parameters. 768 * 769 * Looks up a concrete CPU #ObjectClass matching name @cpu_model. 770 * 771 * Returns: A concrete #CPUClass or %NULL if no matching class is found 772 * or if the matching class is abstract. 773 */ 774 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 775 776 /** 777 * cpu_model_from_type: 778 * @typename: The CPU type name 779 * 780 * Extract the CPU model name from the CPU type name. The 781 * CPU type name is either the combination of the CPU model 782 * name and suffix, or same to the CPU model name. 783 * 784 * Returns: CPU model name or NULL if the CPU class doesn't exist 785 * The user should g_free() the string once no longer needed. 786 */ 787 char *cpu_model_from_type(const char *typename); 788 789 /** 790 * cpu_create: 791 * @typename: The CPU type. 792 * 793 * Instantiates a CPU and realizes the CPU. 794 * 795 * Returns: A #CPUState or %NULL if an error occurred. 796 */ 797 CPUState *cpu_create(const char *typename); 798 799 /** 800 * parse_cpu_option: 801 * @cpu_option: The -cpu option including optional parameters. 802 * 803 * processes optional parameters and registers them as global properties 804 * 805 * Returns: type of CPU to create or prints error and terminates process 806 * if an error occurred. 807 */ 808 const char *parse_cpu_option(const char *cpu_option); 809 810 /** 811 * cpu_has_work: 812 * @cpu: The vCPU to check. 813 * 814 * Checks whether the CPU has work to do. 815 * 816 * Returns: %true if the CPU has work, %false otherwise. 817 */ 818 static inline bool cpu_has_work(CPUState *cpu) 819 { 820 CPUClass *cc = CPU_GET_CLASS(cpu); 821 822 g_assert(cc->has_work); 823 return cc->has_work(cpu); 824 } 825 826 /** 827 * qemu_cpu_is_self: 828 * @cpu: The vCPU to check against. 829 * 830 * Checks whether the caller is executing on the vCPU thread. 831 * 832 * Returns: %true if called from @cpu's thread, %false otherwise. 833 */ 834 bool qemu_cpu_is_self(CPUState *cpu); 835 836 /** 837 * qemu_cpu_kick: 838 * @cpu: The vCPU to kick. 839 * 840 * Kicks @cpu's thread. 841 */ 842 void qemu_cpu_kick(CPUState *cpu); 843 844 /** 845 * cpu_is_stopped: 846 * @cpu: The CPU to check. 847 * 848 * Checks whether the CPU is stopped. 849 * 850 * Returns: %true if run state is not running or if artificially stopped; 851 * %false otherwise. 852 */ 853 bool cpu_is_stopped(CPUState *cpu); 854 855 /** 856 * do_run_on_cpu: 857 * @cpu: The vCPU to run on. 858 * @func: The function to be executed. 859 * @data: Data to pass to the function. 860 * @mutex: Mutex to release while waiting for @func to run. 861 * 862 * Used internally in the implementation of run_on_cpu. 863 */ 864 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 865 QemuMutex *mutex); 866 867 /** 868 * run_on_cpu: 869 * @cpu: The vCPU to run on. 870 * @func: The function to be executed. 871 * @data: Data to pass to the function. 872 * 873 * Schedules the function @func for execution on the vCPU @cpu. 874 */ 875 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 876 877 /** 878 * async_run_on_cpu: 879 * @cpu: The vCPU to run on. 880 * @func: The function to be executed. 881 * @data: Data to pass to the function. 882 * 883 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 884 */ 885 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 886 887 /** 888 * async_safe_run_on_cpu: 889 * @cpu: The vCPU to run on. 890 * @func: The function to be executed. 891 * @data: Data to pass to the function. 892 * 893 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 894 * while all other vCPUs are sleeping. 895 * 896 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 897 * BQL. 898 */ 899 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 900 901 /** 902 * cpu_in_exclusive_context() 903 * @cpu: The vCPU to check 904 * 905 * Returns true if @cpu is an exclusive context, for example running 906 * something which has previously been queued via async_safe_run_on_cpu(). 907 */ 908 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 909 { 910 return cpu->exclusive_context_count; 911 } 912 913 /** 914 * qemu_get_cpu: 915 * @index: The CPUState@cpu_index value of the CPU to obtain. 916 * 917 * Gets a CPU matching @index. 918 * 919 * Returns: The CPU or %NULL if there is no matching CPU. 920 */ 921 CPUState *qemu_get_cpu(int index); 922 923 /** 924 * cpu_exists: 925 * @id: Guest-exposed CPU ID to lookup. 926 * 927 * Search for CPU with specified ID. 928 * 929 * Returns: %true - CPU is found, %false - CPU isn't found. 930 */ 931 bool cpu_exists(int64_t id); 932 933 /** 934 * cpu_by_arch_id: 935 * @id: Guest-exposed CPU ID of the CPU to obtain. 936 * 937 * Get a CPU with matching @id. 938 * 939 * Returns: The CPU or %NULL if there is no matching CPU. 940 */ 941 CPUState *cpu_by_arch_id(int64_t id); 942 943 /** 944 * cpu_interrupt: 945 * @cpu: The CPU to set an interrupt on. 946 * @mask: The interrupts to set. 947 * 948 * Invokes the interrupt handler. 949 */ 950 951 void cpu_interrupt(CPUState *cpu, int mask); 952 953 /** 954 * cpu_set_pc: 955 * @cpu: The CPU to set the program counter for. 956 * @addr: Program counter value. 957 * 958 * Sets the program counter for a CPU. 959 */ 960 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 961 { 962 CPUClass *cc = CPU_GET_CLASS(cpu); 963 964 cc->set_pc(cpu, addr); 965 } 966 967 /** 968 * cpu_reset_interrupt: 969 * @cpu: The CPU to clear the interrupt on. 970 * @mask: The interrupt mask to clear. 971 * 972 * Resets interrupts on the vCPU @cpu. 973 */ 974 void cpu_reset_interrupt(CPUState *cpu, int mask); 975 976 /** 977 * cpu_exit: 978 * @cpu: The CPU to exit. 979 * 980 * Requests the CPU @cpu to exit execution. 981 */ 982 void cpu_exit(CPUState *cpu); 983 984 /** 985 * cpu_resume: 986 * @cpu: The CPU to resume. 987 * 988 * Resumes CPU, i.e. puts CPU into runnable state. 989 */ 990 void cpu_resume(CPUState *cpu); 991 992 /** 993 * cpu_remove_sync: 994 * @cpu: The CPU to remove. 995 * 996 * Requests the CPU to be removed and waits till it is removed. 997 */ 998 void cpu_remove_sync(CPUState *cpu); 999 1000 /** 1001 * process_queued_cpu_work() - process all items on CPU work queue 1002 * @cpu: The CPU which work queue to process. 1003 */ 1004 void process_queued_cpu_work(CPUState *cpu); 1005 1006 /** 1007 * cpu_exec_start: 1008 * @cpu: The CPU for the current thread. 1009 * 1010 * Record that a CPU has started execution and can be interrupted with 1011 * cpu_exit. 1012 */ 1013 void cpu_exec_start(CPUState *cpu); 1014 1015 /** 1016 * cpu_exec_end: 1017 * @cpu: The CPU for the current thread. 1018 * 1019 * Record that a CPU has stopped execution and exclusive sections 1020 * can be executed without interrupting it. 1021 */ 1022 void cpu_exec_end(CPUState *cpu); 1023 1024 /** 1025 * start_exclusive: 1026 * 1027 * Wait for a concurrent exclusive section to end, and then start 1028 * a section of work that is run while other CPUs are not running 1029 * between cpu_exec_start and cpu_exec_end. CPUs that are running 1030 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 1031 * during the exclusive section go to sleep until this CPU calls 1032 * end_exclusive. 1033 */ 1034 void start_exclusive(void); 1035 1036 /** 1037 * end_exclusive: 1038 * 1039 * Concludes an exclusive execution section started by start_exclusive. 1040 */ 1041 void end_exclusive(void); 1042 1043 /** 1044 * qemu_init_vcpu: 1045 * @cpu: The vCPU to initialize. 1046 * 1047 * Initializes a vCPU. 1048 */ 1049 void qemu_init_vcpu(CPUState *cpu); 1050 1051 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 1052 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 1053 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 1054 1055 /** 1056 * cpu_single_step: 1057 * @cpu: CPU to the flags for. 1058 * @enabled: Flags to enable. 1059 * 1060 * Enables or disables single-stepping for @cpu. 1061 */ 1062 void cpu_single_step(CPUState *cpu, int enabled); 1063 1064 /* Breakpoint/watchpoint flags */ 1065 #define BP_MEM_READ 0x01 1066 #define BP_MEM_WRITE 0x02 1067 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1068 #define BP_STOP_BEFORE_ACCESS 0x04 1069 /* 0x08 currently unused */ 1070 #define BP_GDB 0x10 1071 #define BP_CPU 0x20 1072 #define BP_ANY (BP_GDB | BP_CPU) 1073 #define BP_HIT_SHIFT 6 1074 #define BP_WATCHPOINT_HIT_READ (BP_MEM_READ << BP_HIT_SHIFT) 1075 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT) 1076 #define BP_WATCHPOINT_HIT (BP_MEM_ACCESS << BP_HIT_SHIFT) 1077 1078 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1079 CPUBreakpoint **breakpoint); 1080 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1081 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1082 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1083 1084 /* Return true if PC matches an installed breakpoint. */ 1085 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1086 { 1087 CPUBreakpoint *bp; 1088 1089 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1090 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1091 if (bp->pc == pc && (bp->flags & mask)) { 1092 return true; 1093 } 1094 } 1095 } 1096 return false; 1097 } 1098 1099 #if defined(CONFIG_USER_ONLY) 1100 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1101 int flags, CPUWatchpoint **watchpoint) 1102 { 1103 return -ENOSYS; 1104 } 1105 1106 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1107 vaddr len, int flags) 1108 { 1109 return -ENOSYS; 1110 } 1111 1112 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1113 CPUWatchpoint *wp) 1114 { 1115 } 1116 1117 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1118 { 1119 } 1120 #else 1121 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1122 int flags, CPUWatchpoint **watchpoint); 1123 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1124 vaddr len, int flags); 1125 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1126 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1127 #endif 1128 1129 /** 1130 * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled? 1131 * @cs: CPUState pointer 1132 * 1133 * The memory callbacks are installed if a plugin has instrumented an 1134 * instruction for memory. This can be useful to know if you want to 1135 * force a slow path for a series of memory accesses. 1136 */ 1137 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu) 1138 { 1139 #ifdef CONFIG_PLUGIN 1140 return !!cpu->plugin_mem_cbs; 1141 #else 1142 return false; 1143 #endif 1144 } 1145 1146 /** 1147 * cpu_get_address_space: 1148 * @cpu: CPU to get address space from 1149 * @asidx: index identifying which address space to get 1150 * 1151 * Return the requested address space of this CPU. @asidx 1152 * specifies which address space to read. 1153 */ 1154 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1155 1156 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...) 1157 G_GNUC_PRINTF(2, 3); 1158 1159 /* $(top_srcdir)/cpu.c */ 1160 void cpu_class_init_props(DeviceClass *dc); 1161 void cpu_exec_initfn(CPUState *cpu); 1162 bool cpu_exec_realizefn(CPUState *cpu, Error **errp); 1163 void cpu_exec_unrealizefn(CPUState *cpu); 1164 void cpu_exec_reset_hold(CPUState *cpu); 1165 1166 /** 1167 * target_words_bigendian: 1168 * Returns true if the (default) endianness of the target is big endian, 1169 * false otherwise. Note that in target-specific code, you can use 1170 * TARGET_BIG_ENDIAN directly instead. On the other hand, common 1171 * code should normally never need to know about the endianness of the 1172 * target, so please do *not* use this function unless you know very well 1173 * what you are doing! 1174 */ 1175 bool target_words_bigendian(void); 1176 1177 const char *target_name(void); 1178 1179 void page_size_init(void); 1180 1181 #ifdef NEED_CPU_H 1182 1183 #ifndef CONFIG_USER_ONLY 1184 1185 extern const VMStateDescription vmstate_cpu_common; 1186 1187 #define VMSTATE_CPU() { \ 1188 .name = "parent_obj", \ 1189 .size = sizeof(CPUState), \ 1190 .vmsd = &vmstate_cpu_common, \ 1191 .flags = VMS_STRUCT, \ 1192 .offset = 0, \ 1193 } 1194 #endif /* !CONFIG_USER_ONLY */ 1195 1196 #endif /* NEED_CPU_H */ 1197 1198 #define UNASSIGNED_CPU_INDEX -1 1199 #define UNASSIGNED_CLUSTER_INDEX -1 1200 1201 #endif 1202