1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 struct TranslationBlock; 78 79 /** 80 * CPUClass: 81 * @class_by_name: Callback to map -cpu command line model name to an 82 * instantiatable CPU type. 83 * @parse_features: Callback to parse command line arguments. 84 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 85 * @has_work: Callback for checking if there is work to do. 86 * @do_interrupt: Callback for interrupt handling. 87 * @do_unaligned_access: Callback for unaligned access handling, if 88 * the target defines #TARGET_ALIGNED_ONLY. 89 * @do_transaction_failed: Callback for handling failed memory transactions 90 * (ie bus faults or external aborts; not MMU faults) 91 * @virtio_is_big_endian: Callback to return %true if a CPU which supports 92 * runtime configurable endianness is currently big-endian. Non-configurable 93 * CPUs can use the default implementation of this method. This method should 94 * not be used by any callers other than the pre-1.0 virtio devices. 95 * @memory_rw_debug: Callback for GDB memory access. 96 * @dump_state: Callback for dumping state. 97 * @dump_statistics: Callback for dumping statistics. 98 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 99 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 100 * @get_memory_mapping: Callback for obtaining the memory mappings. 101 * @set_pc: Callback for setting the Program Counter register. This 102 * should have the semantics used by the target architecture when 103 * setting the PC from a source such as an ELF file entry point; 104 * for example on Arm it will also set the Thumb mode bit based 105 * on the least significant bit of the new PC value. 106 * If the target behaviour here is anything other than "set 107 * the PC register to the value passed in" then the target must 108 * also implement the synchronize_from_tb hook. 109 * @synchronize_from_tb: Callback for synchronizing state from a TCG 110 * #TranslationBlock. This is called when we abandon execution 111 * of a TB before starting it, and must set all parts of the CPU 112 * state which the previous TB in the chain may not have updated. 113 * This always includes at least the program counter; some targets 114 * will need to do more. If this hook is not implemented then the 115 * default is to call @set_pc(tb->pc). 116 * @tlb_fill: Callback for handling a softmmu tlb miss or user-only 117 * address fault. For system mode, if the access is valid, call 118 * tlb_set_page and return true; if the access is invalid, and 119 * probe is true, return false; otherwise raise an exception and 120 * do not return. For user-only mode, always raise an exception 121 * and do not return. 122 * @get_phys_page_debug: Callback for obtaining a physical address. 123 * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the 124 * associated memory transaction attributes to use for the access. 125 * CPUs which use memory transaction attributes should implement this 126 * instead of get_phys_page_debug. 127 * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for 128 * a memory access with the specified memory transaction attributes. 129 * @gdb_read_register: Callback for letting GDB read a register. 130 * @gdb_write_register: Callback for letting GDB write a register. 131 * @debug_check_watchpoint: Callback: return true if the architectural 132 * watchpoint whose address has matched should really fire. 133 * @debug_excp_handler: Callback for handling debug exceptions. 134 * @write_elf64_note: Callback for writing a CPU-specific ELF note to a 135 * 64-bit VM coredump. 136 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 137 * note to a 32-bit VM coredump. 138 * @write_elf32_note: Callback for writing a CPU-specific ELF note to a 139 * 32-bit VM coredump. 140 * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF 141 * note to a 32-bit VM coredump. 142 * @vmsd: State description for migration. 143 * @gdb_num_core_regs: Number of core registers accessible to GDB. 144 * @gdb_core_xml_file: File name for core registers GDB XML description. 145 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 146 * before the insn which triggers a watchpoint rather than after it. 147 * @gdb_arch_name: Optional callback that returns the architecture name known 148 * to GDB. The caller must free the returned string with g_free. 149 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 150 * gdb stub. Returns a pointer to the XML contents for the specified XML file 151 * or NULL if the CPU doesn't have a dynamically generated content for it. 152 * @cpu_exec_enter: Callback for cpu_exec preparation. 153 * @cpu_exec_exit: Callback for cpu_exec cleanup. 154 * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec. 155 * @disas_set_info: Setup architecture specific components of disassembly info 156 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 157 * address before attempting to match it against watchpoints. 158 * @deprecation_note: If this CPUClass is deprecated, this field provides 159 * related information. 160 * 161 * Represents a CPU family or model. 162 */ 163 struct CPUClass { 164 /*< private >*/ 165 DeviceClass parent_class; 166 /*< public >*/ 167 168 ObjectClass *(*class_by_name)(const char *cpu_model); 169 void (*parse_features)(const char *typename, char *str, Error **errp); 170 171 int reset_dump_flags; 172 bool (*has_work)(CPUState *cpu); 173 void (*do_interrupt)(CPUState *cpu); 174 void (*do_unaligned_access)(CPUState *cpu, vaddr addr, 175 MMUAccessType access_type, 176 int mmu_idx, uintptr_t retaddr); 177 void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr, 178 unsigned size, MMUAccessType access_type, 179 int mmu_idx, MemTxAttrs attrs, 180 MemTxResult response, uintptr_t retaddr); 181 bool (*virtio_is_big_endian)(CPUState *cpu); 182 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 183 uint8_t *buf, int len, bool is_write); 184 void (*dump_state)(CPUState *cpu, FILE *, int flags); 185 GuestPanicInformation* (*get_crash_info)(CPUState *cpu); 186 void (*dump_statistics)(CPUState *cpu, int flags); 187 int64_t (*get_arch_id)(CPUState *cpu); 188 bool (*get_paging_enabled)(const CPUState *cpu); 189 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 190 Error **errp); 191 void (*set_pc)(CPUState *cpu, vaddr value); 192 void (*synchronize_from_tb)(CPUState *cpu, 193 const struct TranslationBlock *tb); 194 bool (*tlb_fill)(CPUState *cpu, vaddr address, int size, 195 MMUAccessType access_type, int mmu_idx, 196 bool probe, uintptr_t retaddr); 197 hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr); 198 hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr, 199 MemTxAttrs *attrs); 200 int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs); 201 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 202 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 203 bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp); 204 void (*debug_excp_handler)(CPUState *cpu); 205 206 int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu, 207 int cpuid, void *opaque); 208 int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 209 void *opaque); 210 int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu, 211 int cpuid, void *opaque); 212 int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu, 213 void *opaque); 214 215 const VMStateDescription *vmsd; 216 const char *gdb_core_xml_file; 217 gchar * (*gdb_arch_name)(CPUState *cpu); 218 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 219 void (*cpu_exec_enter)(CPUState *cpu); 220 void (*cpu_exec_exit)(CPUState *cpu); 221 bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request); 222 223 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 224 vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len); 225 void (*tcg_initialize)(void); 226 227 const char *deprecation_note; 228 /* Keep non-pointer data at the end to minimize holes. */ 229 int gdb_num_core_regs; 230 bool gdb_stop_before_watchpoint; 231 }; 232 233 /* 234 * Low 16 bits: number of cycles left, used only in icount mode. 235 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 236 * for this CPU and return to its top level loop (even in non-icount mode). 237 * This allows a single read-compare-cbranch-write sequence to test 238 * for both decrementer underflow and exceptions. 239 */ 240 typedef union IcountDecr { 241 uint32_t u32; 242 struct { 243 #ifdef HOST_WORDS_BIGENDIAN 244 uint16_t high; 245 uint16_t low; 246 #else 247 uint16_t low; 248 uint16_t high; 249 #endif 250 } u16; 251 } IcountDecr; 252 253 typedef struct CPUBreakpoint { 254 vaddr pc; 255 int flags; /* BP_* */ 256 QTAILQ_ENTRY(CPUBreakpoint) entry; 257 } CPUBreakpoint; 258 259 struct CPUWatchpoint { 260 vaddr vaddr; 261 vaddr len; 262 vaddr hitaddr; 263 MemTxAttrs hitattrs; 264 int flags; /* BP_* */ 265 QTAILQ_ENTRY(CPUWatchpoint) entry; 266 }; 267 268 #ifdef CONFIG_PLUGIN 269 /* 270 * For plugins we sometime need to save the resolved iotlb data before 271 * the memory regions get moved around by io_writex. 272 */ 273 typedef struct SavedIOTLB { 274 hwaddr addr; 275 MemoryRegionSection *section; 276 hwaddr mr_offset; 277 } SavedIOTLB; 278 #endif 279 280 struct KVMState; 281 struct kvm_run; 282 283 struct hax_vcpu_state; 284 285 #define TB_JMP_CACHE_BITS 12 286 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 287 288 /* work queue */ 289 290 /* The union type allows passing of 64 bit target pointers on 32 bit 291 * hosts in a single parameter 292 */ 293 typedef union { 294 int host_int; 295 unsigned long host_ulong; 296 void *host_ptr; 297 vaddr target_ptr; 298 } run_on_cpu_data; 299 300 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 301 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 302 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 303 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 304 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 305 306 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 307 308 struct qemu_work_item; 309 310 #define CPU_UNSET_NUMA_NODE_ID -1 311 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 312 313 /** 314 * CPUState: 315 * @cpu_index: CPU index (informative). 316 * @cluster_index: Identifies which cluster this CPU is in. 317 * For boards which don't define clusters or for "loose" CPUs not assigned 318 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 319 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 320 * QOM parent. 321 * @nr_cores: Number of cores within this CPU package. 322 * @nr_threads: Number of threads within this CPU. 323 * @running: #true if CPU is currently running (lockless). 324 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 325 * valid under cpu_list_lock. 326 * @created: Indicates whether the CPU thread has been successfully created. 327 * @interrupt_request: Indicates a pending interrupt request. 328 * @halted: Nonzero if the CPU is in suspended state. 329 * @stop: Indicates a pending stop request. 330 * @stopped: Indicates the CPU has been artificially stopped. 331 * @unplug: Indicates a pending CPU unplug request. 332 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 333 * @singlestep_enabled: Flags for single-stepping. 334 * @icount_extra: Instructions until next timer event. 335 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 336 * requires that IO only be performed on the last instruction of a TB 337 * so that interrupts take effect immediately. 338 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 339 * AddressSpaces this CPU has) 340 * @num_ases: number of CPUAddressSpaces in @cpu_ases 341 * @as: Pointer to the first AddressSpace, for the convenience of targets which 342 * only have a single AddressSpace 343 * @env_ptr: Pointer to subclass-specific CPUArchState field. 344 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 345 * @gdb_regs: Additional GDB registers. 346 * @gdb_num_regs: Number of total registers accessible to GDB. 347 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 348 * @next_cpu: Next CPU sharing TB cache. 349 * @opaque: User data. 350 * @mem_io_pc: Host Program Counter at which the memory was accessed. 351 * @kvm_fd: vCPU file descriptor for KVM. 352 * @work_mutex: Lock to prevent multiple access to @work_list. 353 * @work_list: List of pending asynchronous work. 354 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 355 * to @trace_dstate). 356 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 357 * @plugin_mask: Plugin event bitmap. Modified only via async work. 358 * @ignore_memory_transaction_failures: Cached copy of the MachineState 359 * flag of the same name: allows the board to suppress calling of the 360 * CPU do_transaction_failed hook function. 361 * 362 * State of one CPU core or thread. 363 */ 364 struct CPUState { 365 /*< private >*/ 366 DeviceState parent_obj; 367 /*< public >*/ 368 369 int nr_cores; 370 int nr_threads; 371 372 struct QemuThread *thread; 373 #ifdef _WIN32 374 HANDLE hThread; 375 #endif 376 int thread_id; 377 bool running, has_waiter; 378 struct QemuCond *halt_cond; 379 bool thread_kicked; 380 bool created; 381 bool stop; 382 bool stopped; 383 384 /* Should CPU start in powered-off state? */ 385 bool start_powered_off; 386 387 bool unplug; 388 bool crash_occurred; 389 bool exit_request; 390 bool in_exclusive_context; 391 uint32_t cflags_next_tb; 392 /* updates protected by BQL */ 393 uint32_t interrupt_request; 394 int singlestep_enabled; 395 int64_t icount_budget; 396 int64_t icount_extra; 397 uint64_t random_seed; 398 sigjmp_buf jmp_env; 399 400 QemuMutex work_mutex; 401 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 402 403 CPUAddressSpace *cpu_ases; 404 int num_ases; 405 AddressSpace *as; 406 MemoryRegion *memory; 407 408 void *env_ptr; /* CPUArchState */ 409 IcountDecr *icount_decr_ptr; 410 411 /* Accessed in parallel; all accesses must be atomic */ 412 struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 413 414 struct GDBRegisterState *gdb_regs; 415 int gdb_num_regs; 416 int gdb_num_g_regs; 417 QTAILQ_ENTRY(CPUState) node; 418 419 /* ice debug support */ 420 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 421 422 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 423 CPUWatchpoint *watchpoint_hit; 424 425 void *opaque; 426 427 /* In order to avoid passing too many arguments to the MMIO helpers, 428 * we store some rarely used information in the CPU context. 429 */ 430 uintptr_t mem_io_pc; 431 432 int kvm_fd; 433 struct KVMState *kvm_state; 434 struct kvm_run *kvm_run; 435 436 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 437 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 438 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 439 440 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 441 442 #ifdef CONFIG_PLUGIN 443 GArray *plugin_mem_cbs; 444 /* saved iotlb data from io_writex */ 445 SavedIOTLB saved_iotlb; 446 #endif 447 448 /* TODO Move common fields from CPUArchState here. */ 449 int cpu_index; 450 int cluster_index; 451 uint32_t halted; 452 uint32_t can_do_io; 453 int32_t exception_index; 454 455 /* shared by kvm, hax and hvf */ 456 bool vcpu_dirty; 457 458 /* Used to keep track of an outstanding cpu throttle thread for migration 459 * autoconverge 460 */ 461 bool throttle_thread_scheduled; 462 463 bool ignore_memory_transaction_failures; 464 465 struct hax_vcpu_state *hax_vcpu; 466 467 int hvf_fd; 468 469 /* track IOMMUs whose translations we've cached in the TCG TLB */ 470 GArray *iommu_notifiers; 471 }; 472 473 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 474 extern CPUTailQ cpus; 475 476 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 477 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 478 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 479 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 480 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 481 482 extern __thread CPUState *current_cpu; 483 484 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 485 { 486 unsigned int i; 487 488 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 489 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 490 } 491 } 492 493 /** 494 * qemu_tcg_mttcg_enabled: 495 * Check whether we are running MultiThread TCG or not. 496 * 497 * Returns: %true if we are in MTTCG mode %false otherwise. 498 */ 499 extern bool mttcg_enabled; 500 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 501 502 /** 503 * cpu_paging_enabled: 504 * @cpu: The CPU whose state is to be inspected. 505 * 506 * Returns: %true if paging is enabled, %false otherwise. 507 */ 508 bool cpu_paging_enabled(const CPUState *cpu); 509 510 /** 511 * cpu_get_memory_mapping: 512 * @cpu: The CPU whose memory mappings are to be obtained. 513 * @list: Where to write the memory mappings to. 514 * @errp: Pointer for reporting an #Error. 515 */ 516 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 517 Error **errp); 518 519 #if !defined(CONFIG_USER_ONLY) 520 521 /** 522 * cpu_write_elf64_note: 523 * @f: pointer to a function that writes memory to a file 524 * @cpu: The CPU whose memory is to be dumped 525 * @cpuid: ID number of the CPU 526 * @opaque: pointer to the CPUState struct 527 */ 528 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 529 int cpuid, void *opaque); 530 531 /** 532 * cpu_write_elf64_qemunote: 533 * @f: pointer to a function that writes memory to a file 534 * @cpu: The CPU whose memory is to be dumped 535 * @cpuid: ID number of the CPU 536 * @opaque: pointer to the CPUState struct 537 */ 538 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 539 void *opaque); 540 541 /** 542 * cpu_write_elf32_note: 543 * @f: pointer to a function that writes memory to a file 544 * @cpu: The CPU whose memory is to be dumped 545 * @cpuid: ID number of the CPU 546 * @opaque: pointer to the CPUState struct 547 */ 548 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 549 int cpuid, void *opaque); 550 551 /** 552 * cpu_write_elf32_qemunote: 553 * @f: pointer to a function that writes memory to a file 554 * @cpu: The CPU whose memory is to be dumped 555 * @cpuid: ID number of the CPU 556 * @opaque: pointer to the CPUState struct 557 */ 558 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 559 void *opaque); 560 561 /** 562 * cpu_get_crash_info: 563 * @cpu: The CPU to get crash information for 564 * 565 * Gets the previously saved crash information. 566 * Caller is responsible for freeing the data. 567 */ 568 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 569 570 #endif /* !CONFIG_USER_ONLY */ 571 572 /** 573 * CPUDumpFlags: 574 * @CPU_DUMP_CODE: 575 * @CPU_DUMP_FPU: dump FPU register state, not just integer 576 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 577 */ 578 enum CPUDumpFlags { 579 CPU_DUMP_CODE = 0x00010000, 580 CPU_DUMP_FPU = 0x00020000, 581 CPU_DUMP_CCOP = 0x00040000, 582 }; 583 584 /** 585 * cpu_dump_state: 586 * @cpu: The CPU whose state is to be dumped. 587 * @f: If non-null, dump to this stream, else to current print sink. 588 * 589 * Dumps CPU state. 590 */ 591 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 592 593 /** 594 * cpu_dump_statistics: 595 * @cpu: The CPU whose state is to be dumped. 596 * @flags: Flags what to dump. 597 * 598 * Dump CPU statistics to the current monitor if we have one, else to 599 * stdout. 600 */ 601 void cpu_dump_statistics(CPUState *cpu, int flags); 602 603 #ifndef CONFIG_USER_ONLY 604 /** 605 * cpu_get_phys_page_attrs_debug: 606 * @cpu: The CPU to obtain the physical page address for. 607 * @addr: The virtual address. 608 * @attrs: Updated on return with the memory transaction attributes to use 609 * for this access. 610 * 611 * Obtains the physical page corresponding to a virtual one, together 612 * with the corresponding memory transaction attributes to use for the access. 613 * Use it only for debugging because no protection checks are done. 614 * 615 * Returns: Corresponding physical page address or -1 if no page found. 616 */ 617 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 618 MemTxAttrs *attrs) 619 { 620 CPUClass *cc = CPU_GET_CLASS(cpu); 621 622 if (cc->get_phys_page_attrs_debug) { 623 return cc->get_phys_page_attrs_debug(cpu, addr, attrs); 624 } 625 /* Fallback for CPUs which don't implement the _attrs_ hook */ 626 *attrs = MEMTXATTRS_UNSPECIFIED; 627 return cc->get_phys_page_debug(cpu, addr); 628 } 629 630 /** 631 * cpu_get_phys_page_debug: 632 * @cpu: The CPU to obtain the physical page address for. 633 * @addr: The virtual address. 634 * 635 * Obtains the physical page corresponding to a virtual one. 636 * Use it only for debugging because no protection checks are done. 637 * 638 * Returns: Corresponding physical page address or -1 if no page found. 639 */ 640 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr) 641 { 642 MemTxAttrs attrs = {}; 643 644 return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs); 645 } 646 647 /** cpu_asidx_from_attrs: 648 * @cpu: CPU 649 * @attrs: memory transaction attributes 650 * 651 * Returns the address space index specifying the CPU AddressSpace 652 * to use for a memory access with the given transaction attributes. 653 */ 654 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs) 655 { 656 CPUClass *cc = CPU_GET_CLASS(cpu); 657 int ret = 0; 658 659 if (cc->asidx_from_attrs) { 660 ret = cc->asidx_from_attrs(cpu, attrs); 661 assert(ret < cpu->num_ases && ret >= 0); 662 } 663 return ret; 664 } 665 666 #endif /* CONFIG_USER_ONLY */ 667 668 /** 669 * cpu_list_add: 670 * @cpu: The CPU to be added to the list of CPUs. 671 */ 672 void cpu_list_add(CPUState *cpu); 673 674 /** 675 * cpu_list_remove: 676 * @cpu: The CPU to be removed from the list of CPUs. 677 */ 678 void cpu_list_remove(CPUState *cpu); 679 680 /** 681 * cpu_reset: 682 * @cpu: The CPU whose state is to be reset. 683 */ 684 void cpu_reset(CPUState *cpu); 685 686 /** 687 * cpu_class_by_name: 688 * @typename: The CPU base type. 689 * @cpu_model: The model string without any parameters. 690 * 691 * Looks up a CPU #ObjectClass matching name @cpu_model. 692 * 693 * Returns: A #CPUClass or %NULL if not matching class is found. 694 */ 695 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 696 697 /** 698 * cpu_create: 699 * @typename: The CPU type. 700 * 701 * Instantiates a CPU and realizes the CPU. 702 * 703 * Returns: A #CPUState or %NULL if an error occurred. 704 */ 705 CPUState *cpu_create(const char *typename); 706 707 /** 708 * parse_cpu_option: 709 * @cpu_option: The -cpu option including optional parameters. 710 * 711 * processes optional parameters and registers them as global properties 712 * 713 * Returns: type of CPU to create or prints error and terminates process 714 * if an error occurred. 715 */ 716 const char *parse_cpu_option(const char *cpu_option); 717 718 /** 719 * cpu_has_work: 720 * @cpu: The vCPU to check. 721 * 722 * Checks whether the CPU has work to do. 723 * 724 * Returns: %true if the CPU has work, %false otherwise. 725 */ 726 static inline bool cpu_has_work(CPUState *cpu) 727 { 728 CPUClass *cc = CPU_GET_CLASS(cpu); 729 730 g_assert(cc->has_work); 731 return cc->has_work(cpu); 732 } 733 734 /** 735 * qemu_cpu_is_self: 736 * @cpu: The vCPU to check against. 737 * 738 * Checks whether the caller is executing on the vCPU thread. 739 * 740 * Returns: %true if called from @cpu's thread, %false otherwise. 741 */ 742 bool qemu_cpu_is_self(CPUState *cpu); 743 744 /** 745 * qemu_cpu_kick: 746 * @cpu: The vCPU to kick. 747 * 748 * Kicks @cpu's thread. 749 */ 750 void qemu_cpu_kick(CPUState *cpu); 751 752 /** 753 * cpu_is_stopped: 754 * @cpu: The CPU to check. 755 * 756 * Checks whether the CPU is stopped. 757 * 758 * Returns: %true if run state is not running or if artificially stopped; 759 * %false otherwise. 760 */ 761 bool cpu_is_stopped(CPUState *cpu); 762 763 /** 764 * do_run_on_cpu: 765 * @cpu: The vCPU to run on. 766 * @func: The function to be executed. 767 * @data: Data to pass to the function. 768 * @mutex: Mutex to release while waiting for @func to run. 769 * 770 * Used internally in the implementation of run_on_cpu. 771 */ 772 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 773 QemuMutex *mutex); 774 775 /** 776 * run_on_cpu: 777 * @cpu: The vCPU to run on. 778 * @func: The function to be executed. 779 * @data: Data to pass to the function. 780 * 781 * Schedules the function @func for execution on the vCPU @cpu. 782 */ 783 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 784 785 /** 786 * async_run_on_cpu: 787 * @cpu: The vCPU to run on. 788 * @func: The function to be executed. 789 * @data: Data to pass to the function. 790 * 791 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 792 */ 793 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 794 795 /** 796 * async_safe_run_on_cpu: 797 * @cpu: The vCPU to run on. 798 * @func: The function to be executed. 799 * @data: Data to pass to the function. 800 * 801 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 802 * while all other vCPUs are sleeping. 803 * 804 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 805 * BQL. 806 */ 807 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 808 809 /** 810 * cpu_in_exclusive_context() 811 * @cpu: The vCPU to check 812 * 813 * Returns true if @cpu is an exclusive context, for example running 814 * something which has previously been queued via async_safe_run_on_cpu(). 815 */ 816 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 817 { 818 return cpu->in_exclusive_context; 819 } 820 821 /** 822 * qemu_get_cpu: 823 * @index: The CPUState@cpu_index value of the CPU to obtain. 824 * 825 * Gets a CPU matching @index. 826 * 827 * Returns: The CPU or %NULL if there is no matching CPU. 828 */ 829 CPUState *qemu_get_cpu(int index); 830 831 /** 832 * cpu_exists: 833 * @id: Guest-exposed CPU ID to lookup. 834 * 835 * Search for CPU with specified ID. 836 * 837 * Returns: %true - CPU is found, %false - CPU isn't found. 838 */ 839 bool cpu_exists(int64_t id); 840 841 /** 842 * cpu_by_arch_id: 843 * @id: Guest-exposed CPU ID of the CPU to obtain. 844 * 845 * Get a CPU with matching @id. 846 * 847 * Returns: The CPU or %NULL if there is no matching CPU. 848 */ 849 CPUState *cpu_by_arch_id(int64_t id); 850 851 /** 852 * cpu_interrupt: 853 * @cpu: The CPU to set an interrupt on. 854 * @mask: The interrupts to set. 855 * 856 * Invokes the interrupt handler. 857 */ 858 859 void cpu_interrupt(CPUState *cpu, int mask); 860 861 #ifdef NEED_CPU_H 862 863 #ifdef CONFIG_SOFTMMU 864 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr, 865 MMUAccessType access_type, 866 int mmu_idx, uintptr_t retaddr) 867 { 868 CPUClass *cc = CPU_GET_CLASS(cpu); 869 870 cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr); 871 } 872 873 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr, 874 vaddr addr, unsigned size, 875 MMUAccessType access_type, 876 int mmu_idx, MemTxAttrs attrs, 877 MemTxResult response, 878 uintptr_t retaddr) 879 { 880 CPUClass *cc = CPU_GET_CLASS(cpu); 881 882 if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) { 883 cc->do_transaction_failed(cpu, physaddr, addr, size, access_type, 884 mmu_idx, attrs, response, retaddr); 885 } 886 } 887 #endif 888 889 #endif /* NEED_CPU_H */ 890 891 /** 892 * cpu_set_pc: 893 * @cpu: The CPU to set the program counter for. 894 * @addr: Program counter value. 895 * 896 * Sets the program counter for a CPU. 897 */ 898 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 899 { 900 CPUClass *cc = CPU_GET_CLASS(cpu); 901 902 cc->set_pc(cpu, addr); 903 } 904 905 /** 906 * cpu_reset_interrupt: 907 * @cpu: The CPU to clear the interrupt on. 908 * @mask: The interrupt mask to clear. 909 * 910 * Resets interrupts on the vCPU @cpu. 911 */ 912 void cpu_reset_interrupt(CPUState *cpu, int mask); 913 914 /** 915 * cpu_exit: 916 * @cpu: The CPU to exit. 917 * 918 * Requests the CPU @cpu to exit execution. 919 */ 920 void cpu_exit(CPUState *cpu); 921 922 /** 923 * cpu_resume: 924 * @cpu: The CPU to resume. 925 * 926 * Resumes CPU, i.e. puts CPU into runnable state. 927 */ 928 void cpu_resume(CPUState *cpu); 929 930 /** 931 * cpu_remove_sync: 932 * @cpu: The CPU to remove. 933 * 934 * Requests the CPU to be removed and waits till it is removed. 935 */ 936 void cpu_remove_sync(CPUState *cpu); 937 938 /** 939 * process_queued_cpu_work() - process all items on CPU work queue 940 * @cpu: The CPU which work queue to process. 941 */ 942 void process_queued_cpu_work(CPUState *cpu); 943 944 /** 945 * cpu_exec_start: 946 * @cpu: The CPU for the current thread. 947 * 948 * Record that a CPU has started execution and can be interrupted with 949 * cpu_exit. 950 */ 951 void cpu_exec_start(CPUState *cpu); 952 953 /** 954 * cpu_exec_end: 955 * @cpu: The CPU for the current thread. 956 * 957 * Record that a CPU has stopped execution and exclusive sections 958 * can be executed without interrupting it. 959 */ 960 void cpu_exec_end(CPUState *cpu); 961 962 /** 963 * start_exclusive: 964 * 965 * Wait for a concurrent exclusive section to end, and then start 966 * a section of work that is run while other CPUs are not running 967 * between cpu_exec_start and cpu_exec_end. CPUs that are running 968 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 969 * during the exclusive section go to sleep until this CPU calls 970 * end_exclusive. 971 */ 972 void start_exclusive(void); 973 974 /** 975 * end_exclusive: 976 * 977 * Concludes an exclusive execution section started by start_exclusive. 978 */ 979 void end_exclusive(void); 980 981 /** 982 * qemu_init_vcpu: 983 * @cpu: The vCPU to initialize. 984 * 985 * Initializes a vCPU. 986 */ 987 void qemu_init_vcpu(CPUState *cpu); 988 989 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 990 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 991 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 992 993 /** 994 * cpu_single_step: 995 * @cpu: CPU to the flags for. 996 * @enabled: Flags to enable. 997 * 998 * Enables or disables single-stepping for @cpu. 999 */ 1000 void cpu_single_step(CPUState *cpu, int enabled); 1001 1002 /* Breakpoint/watchpoint flags */ 1003 #define BP_MEM_READ 0x01 1004 #define BP_MEM_WRITE 0x02 1005 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 1006 #define BP_STOP_BEFORE_ACCESS 0x04 1007 /* 0x08 currently unused */ 1008 #define BP_GDB 0x10 1009 #define BP_CPU 0x20 1010 #define BP_ANY (BP_GDB | BP_CPU) 1011 #define BP_WATCHPOINT_HIT_READ 0x40 1012 #define BP_WATCHPOINT_HIT_WRITE 0x80 1013 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 1014 1015 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 1016 CPUBreakpoint **breakpoint); 1017 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 1018 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 1019 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 1020 1021 /* Return true if PC matches an installed breakpoint. */ 1022 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 1023 { 1024 CPUBreakpoint *bp; 1025 1026 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 1027 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 1028 if (bp->pc == pc && (bp->flags & mask)) { 1029 return true; 1030 } 1031 } 1032 } 1033 return false; 1034 } 1035 1036 #ifdef CONFIG_USER_ONLY 1037 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1038 int flags, CPUWatchpoint **watchpoint) 1039 { 1040 return -ENOSYS; 1041 } 1042 1043 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1044 vaddr len, int flags) 1045 { 1046 return -ENOSYS; 1047 } 1048 1049 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 1050 CPUWatchpoint *wp) 1051 { 1052 } 1053 1054 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 1055 { 1056 } 1057 1058 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1059 MemTxAttrs atr, int fl, uintptr_t ra) 1060 { 1061 } 1062 1063 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 1064 vaddr addr, vaddr len) 1065 { 1066 return 0; 1067 } 1068 #else 1069 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 1070 int flags, CPUWatchpoint **watchpoint); 1071 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 1072 vaddr len, int flags); 1073 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 1074 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 1075 1076 /** 1077 * cpu_check_watchpoint: 1078 * @cpu: cpu context 1079 * @addr: guest virtual address 1080 * @len: access length 1081 * @attrs: memory access attributes 1082 * @flags: watchpoint access type 1083 * @ra: unwind return address 1084 * 1085 * Check for a watchpoint hit in [addr, addr+len) of the type 1086 * specified by @flags. Exit via exception with a hit. 1087 */ 1088 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 1089 MemTxAttrs attrs, int flags, uintptr_t ra); 1090 1091 /** 1092 * cpu_watchpoint_address_matches: 1093 * @cpu: cpu context 1094 * @addr: guest virtual address 1095 * @len: access length 1096 * 1097 * Return the watchpoint flags that apply to [addr, addr+len). 1098 * If no watchpoint is registered for the range, the result is 0. 1099 */ 1100 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 1101 #endif 1102 1103 /** 1104 * cpu_get_address_space: 1105 * @cpu: CPU to get address space from 1106 * @asidx: index identifying which address space to get 1107 * 1108 * Return the requested address space of this CPU. @asidx 1109 * specifies which address space to read. 1110 */ 1111 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1112 1113 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1114 GCC_FMT_ATTR(2, 3); 1115 void cpu_exec_initfn(CPUState *cpu); 1116 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1117 void cpu_exec_unrealizefn(CPUState *cpu); 1118 1119 /** 1120 * target_words_bigendian: 1121 * Returns true if the (default) endianness of the target is big endian, 1122 * false otherwise. Note that in target-specific code, you can use 1123 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1124 * code should normally never need to know about the endianness of the 1125 * target, so please do *not* use this function unless you know very well 1126 * what you are doing! 1127 */ 1128 bool target_words_bigendian(void); 1129 1130 #ifdef NEED_CPU_H 1131 1132 #ifdef CONFIG_SOFTMMU 1133 extern const VMStateDescription vmstate_cpu_common; 1134 #else 1135 #define vmstate_cpu_common vmstate_dummy 1136 #endif 1137 1138 #define VMSTATE_CPU() { \ 1139 .name = "parent_obj", \ 1140 .size = sizeof(CPUState), \ 1141 .vmsd = &vmstate_cpu_common, \ 1142 .flags = VMS_STRUCT, \ 1143 .offset = 0, \ 1144 } 1145 1146 #endif /* NEED_CPU_H */ 1147 1148 #define UNASSIGNED_CPU_INDEX -1 1149 #define UNASSIGNED_CLUSTER_INDEX -1 1150 1151 #endif 1152