xref: /openbmc/qemu/include/hw/core/cpu.h (revision 0b84b662)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 
33 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
34                                      void *opaque);
35 
36 /**
37  * vaddr:
38  * Type wide enough to contain any #target_ulong virtual address.
39  */
40 typedef uint64_t vaddr;
41 #define VADDR_PRId PRId64
42 #define VADDR_PRIu PRIu64
43 #define VADDR_PRIo PRIo64
44 #define VADDR_PRIx PRIx64
45 #define VADDR_PRIX PRIX64
46 #define VADDR_MAX UINT64_MAX
47 
48 /**
49  * SECTION:cpu
50  * @section_id: QEMU-cpu
51  * @title: CPU Class
52  * @short_description: Base class for all CPUs
53  */
54 
55 #define TYPE_CPU "cpu"
56 
57 /* Since this macro is used a lot in hot code paths and in conjunction with
58  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
59  * an unchecked cast.
60  */
61 #define CPU(obj) ((CPUState *)(obj))
62 
63 #define CPU_CLASS(class) OBJECT_CLASS_CHECK(CPUClass, (class), TYPE_CPU)
64 #define CPU_GET_CLASS(obj) OBJECT_GET_CLASS(CPUClass, (obj), TYPE_CPU)
65 
66 typedef enum MMUAccessType {
67     MMU_DATA_LOAD  = 0,
68     MMU_DATA_STORE = 1,
69     MMU_INST_FETCH = 2
70 } MMUAccessType;
71 
72 typedef struct CPUWatchpoint CPUWatchpoint;
73 
74 typedef void (*CPUUnassignedAccess)(CPUState *cpu, hwaddr addr,
75                                     bool is_write, bool is_exec, int opaque,
76                                     unsigned size);
77 
78 struct TranslationBlock;
79 
80 /**
81  * CPUClass:
82  * @class_by_name: Callback to map -cpu command line model name to an
83  * instantiatable CPU type.
84  * @parse_features: Callback to parse command line arguments.
85  * @reset: Callback to reset the #CPUState to its initial state.
86  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
87  * @has_work: Callback for checking if there is work to do.
88  * @do_interrupt: Callback for interrupt handling.
89  * @do_unassigned_access: Callback for unassigned access handling.
90  * (this is deprecated: new targets should use do_transaction_failed instead)
91  * @do_unaligned_access: Callback for unaligned access handling, if
92  * the target defines #TARGET_ALIGNED_ONLY.
93  * @do_transaction_failed: Callback for handling failed memory transactions
94  * (ie bus faults or external aborts; not MMU faults)
95  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
96  * runtime configurable endianness is currently big-endian. Non-configurable
97  * CPUs can use the default implementation of this method. This method should
98  * not be used by any callers other than the pre-1.0 virtio devices.
99  * @memory_rw_debug: Callback for GDB memory access.
100  * @dump_state: Callback for dumping state.
101  * @dump_statistics: Callback for dumping statistics.
102  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
103  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
104  * @get_memory_mapping: Callback for obtaining the memory mappings.
105  * @set_pc: Callback for setting the Program Counter register. This
106  *       should have the semantics used by the target architecture when
107  *       setting the PC from a source such as an ELF file entry point;
108  *       for example on Arm it will also set the Thumb mode bit based
109  *       on the least significant bit of the new PC value.
110  *       If the target behaviour here is anything other than "set
111  *       the PC register to the value passed in" then the target must
112  *       also implement the synchronize_from_tb hook.
113  * @synchronize_from_tb: Callback for synchronizing state from a TCG
114  *       #TranslationBlock. This is called when we abandon execution
115  *       of a TB before starting it, and must set all parts of the CPU
116  *       state which the previous TB in the chain may not have updated.
117  *       This always includes at least the program counter; some targets
118  *       will need to do more. If this hook is not implemented then the
119  *       default is to call @set_pc(tb->pc).
120  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
121  *       address fault.  For system mode, if the access is valid, call
122  *       tlb_set_page and return true; if the access is invalid, and
123  *       probe is true, return false; otherwise raise an exception and
124  *       do not return.  For user-only mode, always raise an exception
125  *       and do not return.
126  * @get_phys_page_debug: Callback for obtaining a physical address.
127  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
128  *       associated memory transaction attributes to use for the access.
129  *       CPUs which use memory transaction attributes should implement this
130  *       instead of get_phys_page_debug.
131  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
132  *       a memory access with the specified memory transaction attributes.
133  * @gdb_read_register: Callback for letting GDB read a register.
134  * @gdb_write_register: Callback for letting GDB write a register.
135  * @debug_check_watchpoint: Callback: return true if the architectural
136  *       watchpoint whose address has matched should really fire.
137  * @debug_excp_handler: Callback for handling debug exceptions.
138  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
139  * 64-bit VM coredump.
140  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
141  * note to a 32-bit VM coredump.
142  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
143  * 32-bit VM coredump.
144  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
145  * note to a 32-bit VM coredump.
146  * @vmsd: State description for migration.
147  * @gdb_num_core_regs: Number of core registers accessible to GDB.
148  * @gdb_core_xml_file: File name for core registers GDB XML description.
149  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
150  *           before the insn which triggers a watchpoint rather than after it.
151  * @gdb_arch_name: Optional callback that returns the architecture name known
152  * to GDB. The caller must free the returned string with g_free.
153  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
154  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
155  *   or NULL if the CPU doesn't have a dynamically generated content for it.
156  * @cpu_exec_enter: Callback for cpu_exec preparation.
157  * @cpu_exec_exit: Callback for cpu_exec cleanup.
158  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
159  * @disas_set_info: Setup architecture specific components of disassembly info
160  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
161  * address before attempting to match it against watchpoints.
162  *
163  * Represents a CPU family or model.
164  */
165 typedef struct CPUClass {
166     /*< private >*/
167     DeviceClass parent_class;
168     /*< public >*/
169 
170     ObjectClass *(*class_by_name)(const char *cpu_model);
171     void (*parse_features)(const char *typename, char *str, Error **errp);
172 
173     void (*reset)(CPUState *cpu);
174     int reset_dump_flags;
175     bool (*has_work)(CPUState *cpu);
176     void (*do_interrupt)(CPUState *cpu);
177     CPUUnassignedAccess do_unassigned_access;
178     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
179                                 MMUAccessType access_type,
180                                 int mmu_idx, uintptr_t retaddr);
181     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
182                                   unsigned size, MMUAccessType access_type,
183                                   int mmu_idx, MemTxAttrs attrs,
184                                   MemTxResult response, uintptr_t retaddr);
185     bool (*virtio_is_big_endian)(CPUState *cpu);
186     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
187                            uint8_t *buf, int len, bool is_write);
188     void (*dump_state)(CPUState *cpu, FILE *, int flags);
189     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
190     void (*dump_statistics)(CPUState *cpu, int flags);
191     int64_t (*get_arch_id)(CPUState *cpu);
192     bool (*get_paging_enabled)(const CPUState *cpu);
193     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
194                                Error **errp);
195     void (*set_pc)(CPUState *cpu, vaddr value);
196     void (*synchronize_from_tb)(CPUState *cpu, struct TranslationBlock *tb);
197     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
198                      MMUAccessType access_type, int mmu_idx,
199                      bool probe, uintptr_t retaddr);
200     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
201     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
202                                         MemTxAttrs *attrs);
203     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
204     int (*gdb_read_register)(CPUState *cpu, uint8_t *buf, int reg);
205     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
206     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
207     void (*debug_excp_handler)(CPUState *cpu);
208 
209     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
210                             int cpuid, void *opaque);
211     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
212                                 void *opaque);
213     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
214                             int cpuid, void *opaque);
215     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
216                                 void *opaque);
217 
218     const VMStateDescription *vmsd;
219     const char *gdb_core_xml_file;
220     gchar * (*gdb_arch_name)(CPUState *cpu);
221     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
222     void (*cpu_exec_enter)(CPUState *cpu);
223     void (*cpu_exec_exit)(CPUState *cpu);
224     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
225 
226     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
227     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
228     void (*tcg_initialize)(void);
229 
230     /* Keep non-pointer data at the end to minimize holes.  */
231     int gdb_num_core_regs;
232     bool gdb_stop_before_watchpoint;
233 } CPUClass;
234 
235 /*
236  * Low 16 bits: number of cycles left, used only in icount mode.
237  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
238  * for this CPU and return to its top level loop (even in non-icount mode).
239  * This allows a single read-compare-cbranch-write sequence to test
240  * for both decrementer underflow and exceptions.
241  */
242 typedef union IcountDecr {
243     uint32_t u32;
244     struct {
245 #ifdef HOST_WORDS_BIGENDIAN
246         uint16_t high;
247         uint16_t low;
248 #else
249         uint16_t low;
250         uint16_t high;
251 #endif
252     } u16;
253 } IcountDecr;
254 
255 typedef struct CPUBreakpoint {
256     vaddr pc;
257     int flags; /* BP_* */
258     QTAILQ_ENTRY(CPUBreakpoint) entry;
259 } CPUBreakpoint;
260 
261 struct CPUWatchpoint {
262     vaddr vaddr;
263     vaddr len;
264     vaddr hitaddr;
265     MemTxAttrs hitattrs;
266     int flags; /* BP_* */
267     QTAILQ_ENTRY(CPUWatchpoint) entry;
268 };
269 
270 struct KVMState;
271 struct kvm_run;
272 
273 struct hax_vcpu_state;
274 
275 #define TB_JMP_CACHE_BITS 12
276 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
277 
278 /* work queue */
279 
280 /* The union type allows passing of 64 bit target pointers on 32 bit
281  * hosts in a single parameter
282  */
283 typedef union {
284     int           host_int;
285     unsigned long host_ulong;
286     void         *host_ptr;
287     vaddr         target_ptr;
288 } run_on_cpu_data;
289 
290 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
291 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
292 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
293 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
294 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
295 
296 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
297 
298 struct qemu_work_item;
299 
300 #define CPU_UNSET_NUMA_NODE_ID -1
301 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
302 
303 /**
304  * CPUState:
305  * @cpu_index: CPU index (informative).
306  * @cluster_index: Identifies which cluster this CPU is in.
307  *   For boards which don't define clusters or for "loose" CPUs not assigned
308  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
309  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
310  *   QOM parent.
311  * @nr_cores: Number of cores within this CPU package.
312  * @nr_threads: Number of threads within this CPU.
313  * @running: #true if CPU is currently running (lockless).
314  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
315  * valid under cpu_list_lock.
316  * @created: Indicates whether the CPU thread has been successfully created.
317  * @interrupt_request: Indicates a pending interrupt request.
318  * @halted: Nonzero if the CPU is in suspended state.
319  * @stop: Indicates a pending stop request.
320  * @stopped: Indicates the CPU has been artificially stopped.
321  * @unplug: Indicates a pending CPU unplug request.
322  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
323  * @singlestep_enabled: Flags for single-stepping.
324  * @icount_extra: Instructions until next timer event.
325  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
326  * requires that IO only be performed on the last instruction of a TB
327  * so that interrupts take effect immediately.
328  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
329  *            AddressSpaces this CPU has)
330  * @num_ases: number of CPUAddressSpaces in @cpu_ases
331  * @as: Pointer to the first AddressSpace, for the convenience of targets which
332  *      only have a single AddressSpace
333  * @env_ptr: Pointer to subclass-specific CPUArchState field.
334  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
335  * @gdb_regs: Additional GDB registers.
336  * @gdb_num_regs: Number of total registers accessible to GDB.
337  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
338  * @next_cpu: Next CPU sharing TB cache.
339  * @opaque: User data.
340  * @mem_io_pc: Host Program Counter at which the memory was accessed.
341  * @mem_io_vaddr: Target virtual address at which the memory was accessed.
342  * @kvm_fd: vCPU file descriptor for KVM.
343  * @work_mutex: Lock to prevent multiple access to queued_work_*.
344  * @queued_work_first: First asynchronous work pending.
345  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
346  *                        to @trace_dstate).
347  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
348  * @ignore_memory_transaction_failures: Cached copy of the MachineState
349  *    flag of the same name: allows the board to suppress calling of the
350  *    CPU do_transaction_failed hook function.
351  *
352  * State of one CPU core or thread.
353  */
354 struct CPUState {
355     /*< private >*/
356     DeviceState parent_obj;
357     /*< public >*/
358 
359     int nr_cores;
360     int nr_threads;
361 
362     struct QemuThread *thread;
363 #ifdef _WIN32
364     HANDLE hThread;
365 #endif
366     int thread_id;
367     bool running, has_waiter;
368     struct QemuCond *halt_cond;
369     bool thread_kicked;
370     bool created;
371     bool stop;
372     bool stopped;
373     bool unplug;
374     bool crash_occurred;
375     bool exit_request;
376     uint32_t cflags_next_tb;
377     /* updates protected by BQL */
378     uint32_t interrupt_request;
379     int singlestep_enabled;
380     int64_t icount_budget;
381     int64_t icount_extra;
382     uint64_t random_seed;
383     sigjmp_buf jmp_env;
384 
385     QemuMutex work_mutex;
386     struct qemu_work_item *queued_work_first, *queued_work_last;
387 
388     CPUAddressSpace *cpu_ases;
389     int num_ases;
390     AddressSpace *as;
391     MemoryRegion *memory;
392 
393     void *env_ptr; /* CPUArchState */
394     IcountDecr *icount_decr_ptr;
395 
396     /* Accessed in parallel; all accesses must be atomic */
397     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
398 
399     struct GDBRegisterState *gdb_regs;
400     int gdb_num_regs;
401     int gdb_num_g_regs;
402     QTAILQ_ENTRY(CPUState) node;
403 
404     /* ice debug support */
405     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
406 
407     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
408     CPUWatchpoint *watchpoint_hit;
409 
410     void *opaque;
411 
412     /* In order to avoid passing too many arguments to the MMIO helpers,
413      * we store some rarely used information in the CPU context.
414      */
415     uintptr_t mem_io_pc;
416     vaddr mem_io_vaddr;
417     /*
418      * This is only needed for the legacy cpu_unassigned_access() hook;
419      * when all targets using it have been converted to use
420      * cpu_transaction_failed() instead it can be removed.
421      */
422     MMUAccessType mem_io_access_type;
423 
424     int kvm_fd;
425     struct KVMState *kvm_state;
426     struct kvm_run *kvm_run;
427 
428     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
429     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
430     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
431 
432     /* TODO Move common fields from CPUArchState here. */
433     int cpu_index;
434     int cluster_index;
435     uint32_t halted;
436     uint32_t can_do_io;
437     int32_t exception_index;
438 
439     /* shared by kvm, hax and hvf */
440     bool vcpu_dirty;
441 
442     /* Used to keep track of an outstanding cpu throttle thread for migration
443      * autoconverge
444      */
445     bool throttle_thread_scheduled;
446 
447     bool ignore_memory_transaction_failures;
448 
449     struct hax_vcpu_state *hax_vcpu;
450 
451     int hvf_fd;
452 
453     /* track IOMMUs whose translations we've cached in the TCG TLB */
454     GArray *iommu_notifiers;
455 };
456 
457 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
458 extern CPUTailQ cpus;
459 
460 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
461 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
462 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
463 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
464     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
465 
466 extern __thread CPUState *current_cpu;
467 
468 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
469 {
470     unsigned int i;
471 
472     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
473         atomic_set(&cpu->tb_jmp_cache[i], NULL);
474     }
475 }
476 
477 /**
478  * qemu_tcg_mttcg_enabled:
479  * Check whether we are running MultiThread TCG or not.
480  *
481  * Returns: %true if we are in MTTCG mode %false otherwise.
482  */
483 extern bool mttcg_enabled;
484 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
485 
486 /**
487  * cpu_paging_enabled:
488  * @cpu: The CPU whose state is to be inspected.
489  *
490  * Returns: %true if paging is enabled, %false otherwise.
491  */
492 bool cpu_paging_enabled(const CPUState *cpu);
493 
494 /**
495  * cpu_get_memory_mapping:
496  * @cpu: The CPU whose memory mappings are to be obtained.
497  * @list: Where to write the memory mappings to.
498  * @errp: Pointer for reporting an #Error.
499  */
500 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
501                             Error **errp);
502 
503 /**
504  * cpu_write_elf64_note:
505  * @f: pointer to a function that writes memory to a file
506  * @cpu: The CPU whose memory is to be dumped
507  * @cpuid: ID number of the CPU
508  * @opaque: pointer to the CPUState struct
509  */
510 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
511                          int cpuid, void *opaque);
512 
513 /**
514  * cpu_write_elf64_qemunote:
515  * @f: pointer to a function that writes memory to a file
516  * @cpu: The CPU whose memory is to be dumped
517  * @cpuid: ID number of the CPU
518  * @opaque: pointer to the CPUState struct
519  */
520 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
521                              void *opaque);
522 
523 /**
524  * cpu_write_elf32_note:
525  * @f: pointer to a function that writes memory to a file
526  * @cpu: The CPU whose memory is to be dumped
527  * @cpuid: ID number of the CPU
528  * @opaque: pointer to the CPUState struct
529  */
530 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
531                          int cpuid, void *opaque);
532 
533 /**
534  * cpu_write_elf32_qemunote:
535  * @f: pointer to a function that writes memory to a file
536  * @cpu: The CPU whose memory is to be dumped
537  * @cpuid: ID number of the CPU
538  * @opaque: pointer to the CPUState struct
539  */
540 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
541                              void *opaque);
542 
543 /**
544  * cpu_get_crash_info:
545  * @cpu: The CPU to get crash information for
546  *
547  * Gets the previously saved crash information.
548  * Caller is responsible for freeing the data.
549  */
550 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
551 
552 /**
553  * CPUDumpFlags:
554  * @CPU_DUMP_CODE:
555  * @CPU_DUMP_FPU: dump FPU register state, not just integer
556  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
557  */
558 enum CPUDumpFlags {
559     CPU_DUMP_CODE = 0x00010000,
560     CPU_DUMP_FPU  = 0x00020000,
561     CPU_DUMP_CCOP = 0x00040000,
562 };
563 
564 /**
565  * cpu_dump_state:
566  * @cpu: The CPU whose state is to be dumped.
567  * @f: If non-null, dump to this stream, else to current print sink.
568  *
569  * Dumps CPU state.
570  */
571 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
572 
573 /**
574  * cpu_dump_statistics:
575  * @cpu: The CPU whose state is to be dumped.
576  * @flags: Flags what to dump.
577  *
578  * Dump CPU statistics to the current monitor if we have one, else to
579  * stdout.
580  */
581 void cpu_dump_statistics(CPUState *cpu, int flags);
582 
583 #ifndef CONFIG_USER_ONLY
584 /**
585  * cpu_get_phys_page_attrs_debug:
586  * @cpu: The CPU to obtain the physical page address for.
587  * @addr: The virtual address.
588  * @attrs: Updated on return with the memory transaction attributes to use
589  *         for this access.
590  *
591  * Obtains the physical page corresponding to a virtual one, together
592  * with the corresponding memory transaction attributes to use for the access.
593  * Use it only for debugging because no protection checks are done.
594  *
595  * Returns: Corresponding physical page address or -1 if no page found.
596  */
597 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
598                                                    MemTxAttrs *attrs)
599 {
600     CPUClass *cc = CPU_GET_CLASS(cpu);
601 
602     if (cc->get_phys_page_attrs_debug) {
603         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
604     }
605     /* Fallback for CPUs which don't implement the _attrs_ hook */
606     *attrs = MEMTXATTRS_UNSPECIFIED;
607     return cc->get_phys_page_debug(cpu, addr);
608 }
609 
610 /**
611  * cpu_get_phys_page_debug:
612  * @cpu: The CPU to obtain the physical page address for.
613  * @addr: The virtual address.
614  *
615  * Obtains the physical page corresponding to a virtual one.
616  * Use it only for debugging because no protection checks are done.
617  *
618  * Returns: Corresponding physical page address or -1 if no page found.
619  */
620 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
621 {
622     MemTxAttrs attrs = {};
623 
624     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
625 }
626 
627 /** cpu_asidx_from_attrs:
628  * @cpu: CPU
629  * @attrs: memory transaction attributes
630  *
631  * Returns the address space index specifying the CPU AddressSpace
632  * to use for a memory access with the given transaction attributes.
633  */
634 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
635 {
636     CPUClass *cc = CPU_GET_CLASS(cpu);
637     int ret = 0;
638 
639     if (cc->asidx_from_attrs) {
640         ret = cc->asidx_from_attrs(cpu, attrs);
641         assert(ret < cpu->num_ases && ret >= 0);
642     }
643     return ret;
644 }
645 #endif
646 
647 /**
648  * cpu_list_add:
649  * @cpu: The CPU to be added to the list of CPUs.
650  */
651 void cpu_list_add(CPUState *cpu);
652 
653 /**
654  * cpu_list_remove:
655  * @cpu: The CPU to be removed from the list of CPUs.
656  */
657 void cpu_list_remove(CPUState *cpu);
658 
659 /**
660  * cpu_reset:
661  * @cpu: The CPU whose state is to be reset.
662  */
663 void cpu_reset(CPUState *cpu);
664 
665 /**
666  * cpu_class_by_name:
667  * @typename: The CPU base type.
668  * @cpu_model: The model string without any parameters.
669  *
670  * Looks up a CPU #ObjectClass matching name @cpu_model.
671  *
672  * Returns: A #CPUClass or %NULL if not matching class is found.
673  */
674 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
675 
676 /**
677  * cpu_create:
678  * @typename: The CPU type.
679  *
680  * Instantiates a CPU and realizes the CPU.
681  *
682  * Returns: A #CPUState or %NULL if an error occurred.
683  */
684 CPUState *cpu_create(const char *typename);
685 
686 /**
687  * parse_cpu_option:
688  * @cpu_option: The -cpu option including optional parameters.
689  *
690  * processes optional parameters and registers them as global properties
691  *
692  * Returns: type of CPU to create or prints error and terminates process
693  *          if an error occurred.
694  */
695 const char *parse_cpu_option(const char *cpu_option);
696 
697 /**
698  * cpu_has_work:
699  * @cpu: The vCPU to check.
700  *
701  * Checks whether the CPU has work to do.
702  *
703  * Returns: %true if the CPU has work, %false otherwise.
704  */
705 static inline bool cpu_has_work(CPUState *cpu)
706 {
707     CPUClass *cc = CPU_GET_CLASS(cpu);
708 
709     g_assert(cc->has_work);
710     return cc->has_work(cpu);
711 }
712 
713 /**
714  * qemu_cpu_is_self:
715  * @cpu: The vCPU to check against.
716  *
717  * Checks whether the caller is executing on the vCPU thread.
718  *
719  * Returns: %true if called from @cpu's thread, %false otherwise.
720  */
721 bool qemu_cpu_is_self(CPUState *cpu);
722 
723 /**
724  * qemu_cpu_kick:
725  * @cpu: The vCPU to kick.
726  *
727  * Kicks @cpu's thread.
728  */
729 void qemu_cpu_kick(CPUState *cpu);
730 
731 /**
732  * cpu_is_stopped:
733  * @cpu: The CPU to check.
734  *
735  * Checks whether the CPU is stopped.
736  *
737  * Returns: %true if run state is not running or if artificially stopped;
738  * %false otherwise.
739  */
740 bool cpu_is_stopped(CPUState *cpu);
741 
742 /**
743  * do_run_on_cpu:
744  * @cpu: The vCPU to run on.
745  * @func: The function to be executed.
746  * @data: Data to pass to the function.
747  * @mutex: Mutex to release while waiting for @func to run.
748  *
749  * Used internally in the implementation of run_on_cpu.
750  */
751 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
752                    QemuMutex *mutex);
753 
754 /**
755  * run_on_cpu:
756  * @cpu: The vCPU to run on.
757  * @func: The function to be executed.
758  * @data: Data to pass to the function.
759  *
760  * Schedules the function @func for execution on the vCPU @cpu.
761  */
762 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
763 
764 /**
765  * async_run_on_cpu:
766  * @cpu: The vCPU to run on.
767  * @func: The function to be executed.
768  * @data: Data to pass to the function.
769  *
770  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
771  */
772 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
773 
774 /**
775  * async_safe_run_on_cpu:
776  * @cpu: The vCPU to run on.
777  * @func: The function to be executed.
778  * @data: Data to pass to the function.
779  *
780  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
781  * while all other vCPUs are sleeping.
782  *
783  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
784  * BQL.
785  */
786 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
787 
788 /**
789  * qemu_get_cpu:
790  * @index: The CPUState@cpu_index value of the CPU to obtain.
791  *
792  * Gets a CPU matching @index.
793  *
794  * Returns: The CPU or %NULL if there is no matching CPU.
795  */
796 CPUState *qemu_get_cpu(int index);
797 
798 /**
799  * cpu_exists:
800  * @id: Guest-exposed CPU ID to lookup.
801  *
802  * Search for CPU with specified ID.
803  *
804  * Returns: %true - CPU is found, %false - CPU isn't found.
805  */
806 bool cpu_exists(int64_t id);
807 
808 /**
809  * cpu_by_arch_id:
810  * @id: Guest-exposed CPU ID of the CPU to obtain.
811  *
812  * Get a CPU with matching @id.
813  *
814  * Returns: The CPU or %NULL if there is no matching CPU.
815  */
816 CPUState *cpu_by_arch_id(int64_t id);
817 
818 /**
819  * cpu_throttle_set:
820  * @new_throttle_pct: Percent of sleep time. Valid range is 1 to 99.
821  *
822  * Throttles all vcpus by forcing them to sleep for the given percentage of
823  * time. A throttle_percentage of 25 corresponds to a 75% duty cycle roughly.
824  * (example: 10ms sleep for every 30ms awake).
825  *
826  * cpu_throttle_set can be called as needed to adjust new_throttle_pct.
827  * Once the throttling starts, it will remain in effect until cpu_throttle_stop
828  * is called.
829  */
830 void cpu_throttle_set(int new_throttle_pct);
831 
832 /**
833  * cpu_throttle_stop:
834  *
835  * Stops the vcpu throttling started by cpu_throttle_set.
836  */
837 void cpu_throttle_stop(void);
838 
839 /**
840  * cpu_throttle_active:
841  *
842  * Returns: %true if the vcpus are currently being throttled, %false otherwise.
843  */
844 bool cpu_throttle_active(void);
845 
846 /**
847  * cpu_throttle_get_percentage:
848  *
849  * Returns the vcpu throttle percentage. See cpu_throttle_set for details.
850  *
851  * Returns: The throttle percentage in range 1 to 99.
852  */
853 int cpu_throttle_get_percentage(void);
854 
855 #ifndef CONFIG_USER_ONLY
856 
857 typedef void (*CPUInterruptHandler)(CPUState *, int);
858 
859 extern CPUInterruptHandler cpu_interrupt_handler;
860 
861 /**
862  * cpu_interrupt:
863  * @cpu: The CPU to set an interrupt on.
864  * @mask: The interrupts to set.
865  *
866  * Invokes the interrupt handler.
867  */
868 static inline void cpu_interrupt(CPUState *cpu, int mask)
869 {
870     cpu_interrupt_handler(cpu, mask);
871 }
872 
873 #else /* USER_ONLY */
874 
875 void cpu_interrupt(CPUState *cpu, int mask);
876 
877 #endif /* USER_ONLY */
878 
879 #ifdef NEED_CPU_H
880 
881 #ifdef CONFIG_SOFTMMU
882 static inline void cpu_unassigned_access(CPUState *cpu, hwaddr addr,
883                                          bool is_write, bool is_exec,
884                                          int opaque, unsigned size)
885 {
886     CPUClass *cc = CPU_GET_CLASS(cpu);
887 
888     if (cc->do_unassigned_access) {
889         cc->do_unassigned_access(cpu, addr, is_write, is_exec, opaque, size);
890     }
891 }
892 
893 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
894                                         MMUAccessType access_type,
895                                         int mmu_idx, uintptr_t retaddr)
896 {
897     CPUClass *cc = CPU_GET_CLASS(cpu);
898 
899     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
900 }
901 
902 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
903                                           vaddr addr, unsigned size,
904                                           MMUAccessType access_type,
905                                           int mmu_idx, MemTxAttrs attrs,
906                                           MemTxResult response,
907                                           uintptr_t retaddr)
908 {
909     CPUClass *cc = CPU_GET_CLASS(cpu);
910 
911     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
912         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
913                                   mmu_idx, attrs, response, retaddr);
914     }
915 }
916 #endif
917 
918 #endif /* NEED_CPU_H */
919 
920 /**
921  * cpu_set_pc:
922  * @cpu: The CPU to set the program counter for.
923  * @addr: Program counter value.
924  *
925  * Sets the program counter for a CPU.
926  */
927 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
928 {
929     CPUClass *cc = CPU_GET_CLASS(cpu);
930 
931     cc->set_pc(cpu, addr);
932 }
933 
934 /**
935  * cpu_reset_interrupt:
936  * @cpu: The CPU to clear the interrupt on.
937  * @mask: The interrupt mask to clear.
938  *
939  * Resets interrupts on the vCPU @cpu.
940  */
941 void cpu_reset_interrupt(CPUState *cpu, int mask);
942 
943 /**
944  * cpu_exit:
945  * @cpu: The CPU to exit.
946  *
947  * Requests the CPU @cpu to exit execution.
948  */
949 void cpu_exit(CPUState *cpu);
950 
951 /**
952  * cpu_resume:
953  * @cpu: The CPU to resume.
954  *
955  * Resumes CPU, i.e. puts CPU into runnable state.
956  */
957 void cpu_resume(CPUState *cpu);
958 
959 /**
960  * cpu_remove:
961  * @cpu: The CPU to remove.
962  *
963  * Requests the CPU to be removed.
964  */
965 void cpu_remove(CPUState *cpu);
966 
967  /**
968  * cpu_remove_sync:
969  * @cpu: The CPU to remove.
970  *
971  * Requests the CPU to be removed and waits till it is removed.
972  */
973 void cpu_remove_sync(CPUState *cpu);
974 
975 /**
976  * process_queued_cpu_work() - process all items on CPU work queue
977  * @cpu: The CPU which work queue to process.
978  */
979 void process_queued_cpu_work(CPUState *cpu);
980 
981 /**
982  * cpu_exec_start:
983  * @cpu: The CPU for the current thread.
984  *
985  * Record that a CPU has started execution and can be interrupted with
986  * cpu_exit.
987  */
988 void cpu_exec_start(CPUState *cpu);
989 
990 /**
991  * cpu_exec_end:
992  * @cpu: The CPU for the current thread.
993  *
994  * Record that a CPU has stopped execution and exclusive sections
995  * can be executed without interrupting it.
996  */
997 void cpu_exec_end(CPUState *cpu);
998 
999 /**
1000  * start_exclusive:
1001  *
1002  * Wait for a concurrent exclusive section to end, and then start
1003  * a section of work that is run while other CPUs are not running
1004  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1005  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1006  * during the exclusive section go to sleep until this CPU calls
1007  * end_exclusive.
1008  */
1009 void start_exclusive(void);
1010 
1011 /**
1012  * end_exclusive:
1013  *
1014  * Concludes an exclusive execution section started by start_exclusive.
1015  */
1016 void end_exclusive(void);
1017 
1018 /**
1019  * qemu_init_vcpu:
1020  * @cpu: The vCPU to initialize.
1021  *
1022  * Initializes a vCPU.
1023  */
1024 void qemu_init_vcpu(CPUState *cpu);
1025 
1026 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1027 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1028 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1029 
1030 /**
1031  * cpu_single_step:
1032  * @cpu: CPU to the flags for.
1033  * @enabled: Flags to enable.
1034  *
1035  * Enables or disables single-stepping for @cpu.
1036  */
1037 void cpu_single_step(CPUState *cpu, int enabled);
1038 
1039 /* Breakpoint/watchpoint flags */
1040 #define BP_MEM_READ           0x01
1041 #define BP_MEM_WRITE          0x02
1042 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1043 #define BP_STOP_BEFORE_ACCESS 0x04
1044 /* 0x08 currently unused */
1045 #define BP_GDB                0x10
1046 #define BP_CPU                0x20
1047 #define BP_ANY                (BP_GDB | BP_CPU)
1048 #define BP_WATCHPOINT_HIT_READ 0x40
1049 #define BP_WATCHPOINT_HIT_WRITE 0x80
1050 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1051 
1052 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1053                           CPUBreakpoint **breakpoint);
1054 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1055 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1056 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1057 
1058 /* Return true if PC matches an installed breakpoint.  */
1059 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1060 {
1061     CPUBreakpoint *bp;
1062 
1063     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1064         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1065             if (bp->pc == pc && (bp->flags & mask)) {
1066                 return true;
1067             }
1068         }
1069     }
1070     return false;
1071 }
1072 
1073 #ifdef CONFIG_USER_ONLY
1074 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1075                                         int flags, CPUWatchpoint **watchpoint)
1076 {
1077     return -ENOSYS;
1078 }
1079 
1080 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1081                                         vaddr len, int flags)
1082 {
1083     return -ENOSYS;
1084 }
1085 
1086 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1087                                                 CPUWatchpoint *wp)
1088 {
1089 }
1090 
1091 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1092 {
1093 }
1094 
1095 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1096                                         MemTxAttrs atr, int fl, uintptr_t ra)
1097 {
1098 }
1099 
1100 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1101                                                  vaddr addr, vaddr len)
1102 {
1103     return 0;
1104 }
1105 #else
1106 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1107                           int flags, CPUWatchpoint **watchpoint);
1108 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1109                           vaddr len, int flags);
1110 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1111 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1112 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1113                           MemTxAttrs attrs, int flags, uintptr_t ra);
1114 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1115 #endif
1116 
1117 /**
1118  * cpu_get_address_space:
1119  * @cpu: CPU to get address space from
1120  * @asidx: index identifying which address space to get
1121  *
1122  * Return the requested address space of this CPU. @asidx
1123  * specifies which address space to read.
1124  */
1125 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1126 
1127 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1128     GCC_FMT_ATTR(2, 3);
1129 extern Property cpu_common_props[];
1130 void cpu_exec_initfn(CPUState *cpu);
1131 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1132 void cpu_exec_unrealizefn(CPUState *cpu);
1133 
1134 /**
1135  * target_words_bigendian:
1136  * Returns true if the (default) endianness of the target is big endian,
1137  * false otherwise. Note that in target-specific code, you can use
1138  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1139  * code should normally never need to know about the endianness of the
1140  * target, so please do *not* use this function unless you know very well
1141  * what you are doing!
1142  */
1143 bool target_words_bigendian(void);
1144 
1145 #ifdef NEED_CPU_H
1146 
1147 #ifdef CONFIG_SOFTMMU
1148 extern const VMStateDescription vmstate_cpu_common;
1149 #else
1150 #define vmstate_cpu_common vmstate_dummy
1151 #endif
1152 
1153 #define VMSTATE_CPU() {                                                     \
1154     .name = "parent_obj",                                                   \
1155     .size = sizeof(CPUState),                                               \
1156     .vmsd = &vmstate_cpu_common,                                            \
1157     .flags = VMS_STRUCT,                                                    \
1158     .offset = 0,                                                            \
1159 }
1160 
1161 #endif /* NEED_CPU_H */
1162 
1163 #define UNASSIGNED_CPU_INDEX -1
1164 #define UNASSIGNED_CLUSTER_INDEX -1
1165 
1166 #endif
1167