1 /* 2 * QEMU CPU model 3 * 4 * Copyright (c) 2012 SUSE LINUX Products GmbH 5 * 6 * This program is free software; you can redistribute it and/or 7 * modify it under the terms of the GNU General Public License 8 * as published by the Free Software Foundation; either version 2 9 * of the License, or (at your option) any later version. 10 * 11 * This program is distributed in the hope that it will be useful, 12 * but WITHOUT ANY WARRANTY; without even the implied warranty of 13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 14 * GNU General Public License for more details. 15 * 16 * You should have received a copy of the GNU General Public License 17 * along with this program; if not, see 18 * <http://www.gnu.org/licenses/gpl-2.0.html> 19 */ 20 #ifndef QEMU_CPU_H 21 #define QEMU_CPU_H 22 23 #include "hw/qdev-core.h" 24 #include "disas/dis-asm.h" 25 #include "exec/hwaddr.h" 26 #include "exec/memattrs.h" 27 #include "qapi/qapi-types-run-state.h" 28 #include "qemu/bitmap.h" 29 #include "qemu/rcu_queue.h" 30 #include "qemu/queue.h" 31 #include "qemu/thread.h" 32 #include "qemu/plugin.h" 33 #include "qom/object.h" 34 35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size, 36 void *opaque); 37 38 /** 39 * vaddr: 40 * Type wide enough to contain any #target_ulong virtual address. 41 */ 42 typedef uint64_t vaddr; 43 #define VADDR_PRId PRId64 44 #define VADDR_PRIu PRIu64 45 #define VADDR_PRIo PRIo64 46 #define VADDR_PRIx PRIx64 47 #define VADDR_PRIX PRIX64 48 #define VADDR_MAX UINT64_MAX 49 50 /** 51 * SECTION:cpu 52 * @section_id: QEMU-cpu 53 * @title: CPU Class 54 * @short_description: Base class for all CPUs 55 */ 56 57 #define TYPE_CPU "cpu" 58 59 /* Since this macro is used a lot in hot code paths and in conjunction with 60 * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using 61 * an unchecked cast. 62 */ 63 #define CPU(obj) ((CPUState *)(obj)) 64 65 typedef struct CPUClass CPUClass; 66 DECLARE_CLASS_CHECKERS(CPUClass, CPU, 67 TYPE_CPU) 68 69 typedef enum MMUAccessType { 70 MMU_DATA_LOAD = 0, 71 MMU_DATA_STORE = 1, 72 MMU_INST_FETCH = 2 73 } MMUAccessType; 74 75 typedef struct CPUWatchpoint CPUWatchpoint; 76 77 /* see tcg-cpu-ops.h */ 78 struct TCGCPUOps; 79 80 /* see accel-cpu.h */ 81 struct AccelCPUClass; 82 83 /* see sysemu-cpu-ops.h */ 84 struct SysemuCPUOps; 85 86 /** 87 * CPUClass: 88 * @class_by_name: Callback to map -cpu command line model name to an 89 * instantiatable CPU type. 90 * @parse_features: Callback to parse command line arguments. 91 * @reset_dump_flags: #CPUDumpFlags to use for reset logging. 92 * @has_work: Callback for checking if there is work to do. 93 * @memory_rw_debug: Callback for GDB memory access. 94 * @dump_state: Callback for dumping state. 95 * @dump_statistics: Callback for dumping statistics. 96 * @get_arch_id: Callback for getting architecture-dependent CPU ID. 97 * @get_paging_enabled: Callback for inquiring whether paging is enabled. 98 * @get_memory_mapping: Callback for obtaining the memory mappings. 99 * @set_pc: Callback for setting the Program Counter register. This 100 * should have the semantics used by the target architecture when 101 * setting the PC from a source such as an ELF file entry point; 102 * for example on Arm it will also set the Thumb mode bit based 103 * on the least significant bit of the new PC value. 104 * If the target behaviour here is anything other than "set 105 * the PC register to the value passed in" then the target must 106 * also implement the synchronize_from_tb hook. 107 * @gdb_read_register: Callback for letting GDB read a register. 108 * @gdb_write_register: Callback for letting GDB write a register. 109 * @gdb_num_core_regs: Number of core registers accessible to GDB. 110 * @gdb_core_xml_file: File name for core registers GDB XML description. 111 * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop 112 * before the insn which triggers a watchpoint rather than after it. 113 * @gdb_arch_name: Optional callback that returns the architecture name known 114 * to GDB. The caller must free the returned string with g_free. 115 * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the 116 * gdb stub. Returns a pointer to the XML contents for the specified XML file 117 * or NULL if the CPU doesn't have a dynamically generated content for it. 118 * @disas_set_info: Setup architecture specific components of disassembly info 119 * @adjust_watchpoint_address: Perform a target-specific adjustment to an 120 * address before attempting to match it against watchpoints. 121 * @deprecation_note: If this CPUClass is deprecated, this field provides 122 * related information. 123 * 124 * Represents a CPU family or model. 125 */ 126 struct CPUClass { 127 /*< private >*/ 128 DeviceClass parent_class; 129 /*< public >*/ 130 131 ObjectClass *(*class_by_name)(const char *cpu_model); 132 void (*parse_features)(const char *typename, char *str, Error **errp); 133 134 int reset_dump_flags; 135 bool (*has_work)(CPUState *cpu); 136 int (*memory_rw_debug)(CPUState *cpu, vaddr addr, 137 uint8_t *buf, int len, bool is_write); 138 void (*dump_state)(CPUState *cpu, FILE *, int flags); 139 void (*dump_statistics)(CPUState *cpu, int flags); 140 int64_t (*get_arch_id)(CPUState *cpu); 141 bool (*get_paging_enabled)(const CPUState *cpu); 142 void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list, 143 Error **errp); 144 void (*set_pc)(CPUState *cpu, vaddr value); 145 int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg); 146 int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg); 147 148 const char *gdb_core_xml_file; 149 gchar * (*gdb_arch_name)(CPUState *cpu); 150 const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname); 151 152 void (*disas_set_info)(CPUState *cpu, disassemble_info *info); 153 154 const char *deprecation_note; 155 /* Keep non-pointer data at the end to minimize holes. */ 156 int gdb_num_core_regs; 157 bool gdb_stop_before_watchpoint; 158 struct AccelCPUClass *accel_cpu; 159 160 /* when system emulation is not available, this pointer is NULL */ 161 const struct SysemuCPUOps *sysemu_ops; 162 163 /* when TCG is not available, this pointer is NULL */ 164 struct TCGCPUOps *tcg_ops; 165 166 /* 167 * if not NULL, this is called in order for the CPUClass to initialize 168 * class data that depends on the accelerator, see accel/accel-common.c. 169 */ 170 void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc); 171 }; 172 173 /* 174 * Low 16 bits: number of cycles left, used only in icount mode. 175 * High 16 bits: Set to -1 to force TCG to stop executing linked TBs 176 * for this CPU and return to its top level loop (even in non-icount mode). 177 * This allows a single read-compare-cbranch-write sequence to test 178 * for both decrementer underflow and exceptions. 179 */ 180 typedef union IcountDecr { 181 uint32_t u32; 182 struct { 183 #ifdef HOST_WORDS_BIGENDIAN 184 uint16_t high; 185 uint16_t low; 186 #else 187 uint16_t low; 188 uint16_t high; 189 #endif 190 } u16; 191 } IcountDecr; 192 193 typedef struct CPUBreakpoint { 194 vaddr pc; 195 int flags; /* BP_* */ 196 QTAILQ_ENTRY(CPUBreakpoint) entry; 197 } CPUBreakpoint; 198 199 struct CPUWatchpoint { 200 vaddr vaddr; 201 vaddr len; 202 vaddr hitaddr; 203 MemTxAttrs hitattrs; 204 int flags; /* BP_* */ 205 QTAILQ_ENTRY(CPUWatchpoint) entry; 206 }; 207 208 #ifdef CONFIG_PLUGIN 209 /* 210 * For plugins we sometime need to save the resolved iotlb data before 211 * the memory regions get moved around by io_writex. 212 */ 213 typedef struct SavedIOTLB { 214 hwaddr addr; 215 MemoryRegionSection *section; 216 hwaddr mr_offset; 217 } SavedIOTLB; 218 #endif 219 220 struct KVMState; 221 struct kvm_run; 222 223 struct hax_vcpu_state; 224 225 #define TB_JMP_CACHE_BITS 12 226 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS) 227 228 /* work queue */ 229 230 /* The union type allows passing of 64 bit target pointers on 32 bit 231 * hosts in a single parameter 232 */ 233 typedef union { 234 int host_int; 235 unsigned long host_ulong; 236 void *host_ptr; 237 vaddr target_ptr; 238 } run_on_cpu_data; 239 240 #define RUN_ON_CPU_HOST_PTR(p) ((run_on_cpu_data){.host_ptr = (p)}) 241 #define RUN_ON_CPU_HOST_INT(i) ((run_on_cpu_data){.host_int = (i)}) 242 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)}) 243 #define RUN_ON_CPU_TARGET_PTR(v) ((run_on_cpu_data){.target_ptr = (v)}) 244 #define RUN_ON_CPU_NULL RUN_ON_CPU_HOST_PTR(NULL) 245 246 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data); 247 248 struct qemu_work_item; 249 250 #define CPU_UNSET_NUMA_NODE_ID -1 251 #define CPU_TRACE_DSTATE_MAX_EVENTS 32 252 253 /** 254 * CPUState: 255 * @cpu_index: CPU index (informative). 256 * @cluster_index: Identifies which cluster this CPU is in. 257 * For boards which don't define clusters or for "loose" CPUs not assigned 258 * to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will 259 * be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER 260 * QOM parent. 261 * @tcg_cflags: Pre-computed cflags for this cpu. 262 * @nr_cores: Number of cores within this CPU package. 263 * @nr_threads: Number of threads within this CPU. 264 * @running: #true if CPU is currently running (lockless). 265 * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end; 266 * valid under cpu_list_lock. 267 * @created: Indicates whether the CPU thread has been successfully created. 268 * @interrupt_request: Indicates a pending interrupt request. 269 * @halted: Nonzero if the CPU is in suspended state. 270 * @stop: Indicates a pending stop request. 271 * @stopped: Indicates the CPU has been artificially stopped. 272 * @unplug: Indicates a pending CPU unplug request. 273 * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU 274 * @singlestep_enabled: Flags for single-stepping. 275 * @icount_extra: Instructions until next timer event. 276 * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution 277 * requires that IO only be performed on the last instruction of a TB 278 * so that interrupts take effect immediately. 279 * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the 280 * AddressSpaces this CPU has) 281 * @num_ases: number of CPUAddressSpaces in @cpu_ases 282 * @as: Pointer to the first AddressSpace, for the convenience of targets which 283 * only have a single AddressSpace 284 * @env_ptr: Pointer to subclass-specific CPUArchState field. 285 * @icount_decr_ptr: Pointer to IcountDecr field within subclass. 286 * @gdb_regs: Additional GDB registers. 287 * @gdb_num_regs: Number of total registers accessible to GDB. 288 * @gdb_num_g_regs: Number of registers in GDB 'g' packets. 289 * @next_cpu: Next CPU sharing TB cache. 290 * @opaque: User data. 291 * @mem_io_pc: Host Program Counter at which the memory was accessed. 292 * @kvm_fd: vCPU file descriptor for KVM. 293 * @work_mutex: Lock to prevent multiple access to @work_list. 294 * @work_list: List of pending asynchronous work. 295 * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes 296 * to @trace_dstate). 297 * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask). 298 * @plugin_mask: Plugin event bitmap. Modified only via async work. 299 * @ignore_memory_transaction_failures: Cached copy of the MachineState 300 * flag of the same name: allows the board to suppress calling of the 301 * CPU do_transaction_failed hook function. 302 * 303 * State of one CPU core or thread. 304 */ 305 struct CPUState { 306 /*< private >*/ 307 DeviceState parent_obj; 308 /*< public >*/ 309 310 int nr_cores; 311 int nr_threads; 312 313 struct QemuThread *thread; 314 #ifdef _WIN32 315 HANDLE hThread; 316 #endif 317 int thread_id; 318 bool running, has_waiter; 319 struct QemuCond *halt_cond; 320 bool thread_kicked; 321 bool created; 322 bool stop; 323 bool stopped; 324 325 /* Should CPU start in powered-off state? */ 326 bool start_powered_off; 327 328 bool unplug; 329 bool crash_occurred; 330 bool exit_request; 331 bool in_exclusive_context; 332 uint32_t cflags_next_tb; 333 /* updates protected by BQL */ 334 uint32_t interrupt_request; 335 int singlestep_enabled; 336 int64_t icount_budget; 337 int64_t icount_extra; 338 uint64_t random_seed; 339 sigjmp_buf jmp_env; 340 341 QemuMutex work_mutex; 342 QSIMPLEQ_HEAD(, qemu_work_item) work_list; 343 344 CPUAddressSpace *cpu_ases; 345 int num_ases; 346 AddressSpace *as; 347 MemoryRegion *memory; 348 349 void *env_ptr; /* CPUArchState */ 350 IcountDecr *icount_decr_ptr; 351 352 /* Accessed in parallel; all accesses must be atomic */ 353 TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE]; 354 355 struct GDBRegisterState *gdb_regs; 356 int gdb_num_regs; 357 int gdb_num_g_regs; 358 QTAILQ_ENTRY(CPUState) node; 359 360 /* ice debug support */ 361 QTAILQ_HEAD(, CPUBreakpoint) breakpoints; 362 363 QTAILQ_HEAD(, CPUWatchpoint) watchpoints; 364 CPUWatchpoint *watchpoint_hit; 365 366 void *opaque; 367 368 /* In order to avoid passing too many arguments to the MMIO helpers, 369 * we store some rarely used information in the CPU context. 370 */ 371 uintptr_t mem_io_pc; 372 373 int kvm_fd; 374 struct KVMState *kvm_state; 375 struct kvm_run *kvm_run; 376 377 /* Used for events with 'vcpu' and *without* the 'disabled' properties */ 378 DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS); 379 DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS); 380 381 DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX); 382 383 #ifdef CONFIG_PLUGIN 384 GArray *plugin_mem_cbs; 385 /* saved iotlb data from io_writex */ 386 SavedIOTLB saved_iotlb; 387 #endif 388 389 /* TODO Move common fields from CPUArchState here. */ 390 int cpu_index; 391 int cluster_index; 392 uint32_t tcg_cflags; 393 uint32_t halted; 394 uint32_t can_do_io; 395 int32_t exception_index; 396 397 /* shared by kvm, hax and hvf */ 398 bool vcpu_dirty; 399 400 /* Used to keep track of an outstanding cpu throttle thread for migration 401 * autoconverge 402 */ 403 bool throttle_thread_scheduled; 404 405 bool ignore_memory_transaction_failures; 406 407 struct hax_vcpu_state *hax_vcpu; 408 409 int hvf_fd; 410 411 /* track IOMMUs whose translations we've cached in the TCG TLB */ 412 GArray *iommu_notifiers; 413 }; 414 415 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ; 416 extern CPUTailQ cpus; 417 418 #define first_cpu QTAILQ_FIRST_RCU(&cpus) 419 #define CPU_NEXT(cpu) QTAILQ_NEXT_RCU(cpu, node) 420 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node) 421 #define CPU_FOREACH_SAFE(cpu, next_cpu) \ 422 QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu) 423 424 extern __thread CPUState *current_cpu; 425 426 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu) 427 { 428 unsigned int i; 429 430 for (i = 0; i < TB_JMP_CACHE_SIZE; i++) { 431 qatomic_set(&cpu->tb_jmp_cache[i], NULL); 432 } 433 } 434 435 /** 436 * qemu_tcg_mttcg_enabled: 437 * Check whether we are running MultiThread TCG or not. 438 * 439 * Returns: %true if we are in MTTCG mode %false otherwise. 440 */ 441 extern bool mttcg_enabled; 442 #define qemu_tcg_mttcg_enabled() (mttcg_enabled) 443 444 /** 445 * cpu_paging_enabled: 446 * @cpu: The CPU whose state is to be inspected. 447 * 448 * Returns: %true if paging is enabled, %false otherwise. 449 */ 450 bool cpu_paging_enabled(const CPUState *cpu); 451 452 /** 453 * cpu_get_memory_mapping: 454 * @cpu: The CPU whose memory mappings are to be obtained. 455 * @list: Where to write the memory mappings to. 456 * @errp: Pointer for reporting an #Error. 457 */ 458 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list, 459 Error **errp); 460 461 #if !defined(CONFIG_USER_ONLY) 462 463 /** 464 * cpu_write_elf64_note: 465 * @f: pointer to a function that writes memory to a file 466 * @cpu: The CPU whose memory is to be dumped 467 * @cpuid: ID number of the CPU 468 * @opaque: pointer to the CPUState struct 469 */ 470 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu, 471 int cpuid, void *opaque); 472 473 /** 474 * cpu_write_elf64_qemunote: 475 * @f: pointer to a function that writes memory to a file 476 * @cpu: The CPU whose memory is to be dumped 477 * @cpuid: ID number of the CPU 478 * @opaque: pointer to the CPUState struct 479 */ 480 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 481 void *opaque); 482 483 /** 484 * cpu_write_elf32_note: 485 * @f: pointer to a function that writes memory to a file 486 * @cpu: The CPU whose memory is to be dumped 487 * @cpuid: ID number of the CPU 488 * @opaque: pointer to the CPUState struct 489 */ 490 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu, 491 int cpuid, void *opaque); 492 493 /** 494 * cpu_write_elf32_qemunote: 495 * @f: pointer to a function that writes memory to a file 496 * @cpu: The CPU whose memory is to be dumped 497 * @cpuid: ID number of the CPU 498 * @opaque: pointer to the CPUState struct 499 */ 500 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu, 501 void *opaque); 502 503 /** 504 * cpu_get_crash_info: 505 * @cpu: The CPU to get crash information for 506 * 507 * Gets the previously saved crash information. 508 * Caller is responsible for freeing the data. 509 */ 510 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu); 511 512 #endif /* !CONFIG_USER_ONLY */ 513 514 /** 515 * CPUDumpFlags: 516 * @CPU_DUMP_CODE: 517 * @CPU_DUMP_FPU: dump FPU register state, not just integer 518 * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state 519 */ 520 enum CPUDumpFlags { 521 CPU_DUMP_CODE = 0x00010000, 522 CPU_DUMP_FPU = 0x00020000, 523 CPU_DUMP_CCOP = 0x00040000, 524 }; 525 526 /** 527 * cpu_dump_state: 528 * @cpu: The CPU whose state is to be dumped. 529 * @f: If non-null, dump to this stream, else to current print sink. 530 * 531 * Dumps CPU state. 532 */ 533 void cpu_dump_state(CPUState *cpu, FILE *f, int flags); 534 535 /** 536 * cpu_dump_statistics: 537 * @cpu: The CPU whose state is to be dumped. 538 * @flags: Flags what to dump. 539 * 540 * Dump CPU statistics to the current monitor if we have one, else to 541 * stdout. 542 */ 543 void cpu_dump_statistics(CPUState *cpu, int flags); 544 545 #ifndef CONFIG_USER_ONLY 546 /** 547 * cpu_get_phys_page_attrs_debug: 548 * @cpu: The CPU to obtain the physical page address for. 549 * @addr: The virtual address. 550 * @attrs: Updated on return with the memory transaction attributes to use 551 * for this access. 552 * 553 * Obtains the physical page corresponding to a virtual one, together 554 * with the corresponding memory transaction attributes to use for the access. 555 * Use it only for debugging because no protection checks are done. 556 * 557 * Returns: Corresponding physical page address or -1 if no page found. 558 */ 559 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr, 560 MemTxAttrs *attrs); 561 562 /** 563 * cpu_get_phys_page_debug: 564 * @cpu: The CPU to obtain the physical page address for. 565 * @addr: The virtual address. 566 * 567 * Obtains the physical page corresponding to a virtual one. 568 * Use it only for debugging because no protection checks are done. 569 * 570 * Returns: Corresponding physical page address or -1 if no page found. 571 */ 572 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr); 573 574 /** cpu_asidx_from_attrs: 575 * @cpu: CPU 576 * @attrs: memory transaction attributes 577 * 578 * Returns the address space index specifying the CPU AddressSpace 579 * to use for a memory access with the given transaction attributes. 580 */ 581 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs); 582 583 /** 584 * cpu_virtio_is_big_endian: 585 * @cpu: CPU 586 587 * Returns %true if a CPU which supports runtime configurable endianness 588 * is currently big-endian. 589 */ 590 bool cpu_virtio_is_big_endian(CPUState *cpu); 591 592 #endif /* CONFIG_USER_ONLY */ 593 594 /** 595 * cpu_list_add: 596 * @cpu: The CPU to be added to the list of CPUs. 597 */ 598 void cpu_list_add(CPUState *cpu); 599 600 /** 601 * cpu_list_remove: 602 * @cpu: The CPU to be removed from the list of CPUs. 603 */ 604 void cpu_list_remove(CPUState *cpu); 605 606 /** 607 * cpu_reset: 608 * @cpu: The CPU whose state is to be reset. 609 */ 610 void cpu_reset(CPUState *cpu); 611 612 /** 613 * cpu_class_by_name: 614 * @typename: The CPU base type. 615 * @cpu_model: The model string without any parameters. 616 * 617 * Looks up a CPU #ObjectClass matching name @cpu_model. 618 * 619 * Returns: A #CPUClass or %NULL if not matching class is found. 620 */ 621 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model); 622 623 /** 624 * cpu_create: 625 * @typename: The CPU type. 626 * 627 * Instantiates a CPU and realizes the CPU. 628 * 629 * Returns: A #CPUState or %NULL if an error occurred. 630 */ 631 CPUState *cpu_create(const char *typename); 632 633 /** 634 * parse_cpu_option: 635 * @cpu_option: The -cpu option including optional parameters. 636 * 637 * processes optional parameters and registers them as global properties 638 * 639 * Returns: type of CPU to create or prints error and terminates process 640 * if an error occurred. 641 */ 642 const char *parse_cpu_option(const char *cpu_option); 643 644 /** 645 * cpu_has_work: 646 * @cpu: The vCPU to check. 647 * 648 * Checks whether the CPU has work to do. 649 * 650 * Returns: %true if the CPU has work, %false otherwise. 651 */ 652 static inline bool cpu_has_work(CPUState *cpu) 653 { 654 CPUClass *cc = CPU_GET_CLASS(cpu); 655 656 g_assert(cc->has_work); 657 return cc->has_work(cpu); 658 } 659 660 /** 661 * qemu_cpu_is_self: 662 * @cpu: The vCPU to check against. 663 * 664 * Checks whether the caller is executing on the vCPU thread. 665 * 666 * Returns: %true if called from @cpu's thread, %false otherwise. 667 */ 668 bool qemu_cpu_is_self(CPUState *cpu); 669 670 /** 671 * qemu_cpu_kick: 672 * @cpu: The vCPU to kick. 673 * 674 * Kicks @cpu's thread. 675 */ 676 void qemu_cpu_kick(CPUState *cpu); 677 678 /** 679 * cpu_is_stopped: 680 * @cpu: The CPU to check. 681 * 682 * Checks whether the CPU is stopped. 683 * 684 * Returns: %true if run state is not running or if artificially stopped; 685 * %false otherwise. 686 */ 687 bool cpu_is_stopped(CPUState *cpu); 688 689 /** 690 * do_run_on_cpu: 691 * @cpu: The vCPU to run on. 692 * @func: The function to be executed. 693 * @data: Data to pass to the function. 694 * @mutex: Mutex to release while waiting for @func to run. 695 * 696 * Used internally in the implementation of run_on_cpu. 697 */ 698 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data, 699 QemuMutex *mutex); 700 701 /** 702 * run_on_cpu: 703 * @cpu: The vCPU to run on. 704 * @func: The function to be executed. 705 * @data: Data to pass to the function. 706 * 707 * Schedules the function @func for execution on the vCPU @cpu. 708 */ 709 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 710 711 /** 712 * async_run_on_cpu: 713 * @cpu: The vCPU to run on. 714 * @func: The function to be executed. 715 * @data: Data to pass to the function. 716 * 717 * Schedules the function @func for execution on the vCPU @cpu asynchronously. 718 */ 719 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 720 721 /** 722 * async_safe_run_on_cpu: 723 * @cpu: The vCPU to run on. 724 * @func: The function to be executed. 725 * @data: Data to pass to the function. 726 * 727 * Schedules the function @func for execution on the vCPU @cpu asynchronously, 728 * while all other vCPUs are sleeping. 729 * 730 * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the 731 * BQL. 732 */ 733 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data); 734 735 /** 736 * cpu_in_exclusive_context() 737 * @cpu: The vCPU to check 738 * 739 * Returns true if @cpu is an exclusive context, for example running 740 * something which has previously been queued via async_safe_run_on_cpu(). 741 */ 742 static inline bool cpu_in_exclusive_context(const CPUState *cpu) 743 { 744 return cpu->in_exclusive_context; 745 } 746 747 /** 748 * qemu_get_cpu: 749 * @index: The CPUState@cpu_index value of the CPU to obtain. 750 * 751 * Gets a CPU matching @index. 752 * 753 * Returns: The CPU or %NULL if there is no matching CPU. 754 */ 755 CPUState *qemu_get_cpu(int index); 756 757 /** 758 * cpu_exists: 759 * @id: Guest-exposed CPU ID to lookup. 760 * 761 * Search for CPU with specified ID. 762 * 763 * Returns: %true - CPU is found, %false - CPU isn't found. 764 */ 765 bool cpu_exists(int64_t id); 766 767 /** 768 * cpu_by_arch_id: 769 * @id: Guest-exposed CPU ID of the CPU to obtain. 770 * 771 * Get a CPU with matching @id. 772 * 773 * Returns: The CPU or %NULL if there is no matching CPU. 774 */ 775 CPUState *cpu_by_arch_id(int64_t id); 776 777 /** 778 * cpu_interrupt: 779 * @cpu: The CPU to set an interrupt on. 780 * @mask: The interrupts to set. 781 * 782 * Invokes the interrupt handler. 783 */ 784 785 void cpu_interrupt(CPUState *cpu, int mask); 786 787 /** 788 * cpu_set_pc: 789 * @cpu: The CPU to set the program counter for. 790 * @addr: Program counter value. 791 * 792 * Sets the program counter for a CPU. 793 */ 794 static inline void cpu_set_pc(CPUState *cpu, vaddr addr) 795 { 796 CPUClass *cc = CPU_GET_CLASS(cpu); 797 798 cc->set_pc(cpu, addr); 799 } 800 801 /** 802 * cpu_reset_interrupt: 803 * @cpu: The CPU to clear the interrupt on. 804 * @mask: The interrupt mask to clear. 805 * 806 * Resets interrupts on the vCPU @cpu. 807 */ 808 void cpu_reset_interrupt(CPUState *cpu, int mask); 809 810 /** 811 * cpu_exit: 812 * @cpu: The CPU to exit. 813 * 814 * Requests the CPU @cpu to exit execution. 815 */ 816 void cpu_exit(CPUState *cpu); 817 818 /** 819 * cpu_resume: 820 * @cpu: The CPU to resume. 821 * 822 * Resumes CPU, i.e. puts CPU into runnable state. 823 */ 824 void cpu_resume(CPUState *cpu); 825 826 /** 827 * cpu_remove_sync: 828 * @cpu: The CPU to remove. 829 * 830 * Requests the CPU to be removed and waits till it is removed. 831 */ 832 void cpu_remove_sync(CPUState *cpu); 833 834 /** 835 * process_queued_cpu_work() - process all items on CPU work queue 836 * @cpu: The CPU which work queue to process. 837 */ 838 void process_queued_cpu_work(CPUState *cpu); 839 840 /** 841 * cpu_exec_start: 842 * @cpu: The CPU for the current thread. 843 * 844 * Record that a CPU has started execution and can be interrupted with 845 * cpu_exit. 846 */ 847 void cpu_exec_start(CPUState *cpu); 848 849 /** 850 * cpu_exec_end: 851 * @cpu: The CPU for the current thread. 852 * 853 * Record that a CPU has stopped execution and exclusive sections 854 * can be executed without interrupting it. 855 */ 856 void cpu_exec_end(CPUState *cpu); 857 858 /** 859 * start_exclusive: 860 * 861 * Wait for a concurrent exclusive section to end, and then start 862 * a section of work that is run while other CPUs are not running 863 * between cpu_exec_start and cpu_exec_end. CPUs that are running 864 * cpu_exec are exited immediately. CPUs that call cpu_exec_start 865 * during the exclusive section go to sleep until this CPU calls 866 * end_exclusive. 867 */ 868 void start_exclusive(void); 869 870 /** 871 * end_exclusive: 872 * 873 * Concludes an exclusive execution section started by start_exclusive. 874 */ 875 void end_exclusive(void); 876 877 /** 878 * qemu_init_vcpu: 879 * @cpu: The vCPU to initialize. 880 * 881 * Initializes a vCPU. 882 */ 883 void qemu_init_vcpu(CPUState *cpu); 884 885 #define SSTEP_ENABLE 0x1 /* Enable simulated HW single stepping */ 886 #define SSTEP_NOIRQ 0x2 /* Do not use IRQ while single stepping */ 887 #define SSTEP_NOTIMER 0x4 /* Do not Timers while single stepping */ 888 889 /** 890 * cpu_single_step: 891 * @cpu: CPU to the flags for. 892 * @enabled: Flags to enable. 893 * 894 * Enables or disables single-stepping for @cpu. 895 */ 896 void cpu_single_step(CPUState *cpu, int enabled); 897 898 /* Breakpoint/watchpoint flags */ 899 #define BP_MEM_READ 0x01 900 #define BP_MEM_WRITE 0x02 901 #define BP_MEM_ACCESS (BP_MEM_READ | BP_MEM_WRITE) 902 #define BP_STOP_BEFORE_ACCESS 0x04 903 /* 0x08 currently unused */ 904 #define BP_GDB 0x10 905 #define BP_CPU 0x20 906 #define BP_ANY (BP_GDB | BP_CPU) 907 #define BP_WATCHPOINT_HIT_READ 0x40 908 #define BP_WATCHPOINT_HIT_WRITE 0x80 909 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE) 910 911 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags, 912 CPUBreakpoint **breakpoint); 913 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags); 914 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint); 915 void cpu_breakpoint_remove_all(CPUState *cpu, int mask); 916 917 /* Return true if PC matches an installed breakpoint. */ 918 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask) 919 { 920 CPUBreakpoint *bp; 921 922 if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) { 923 QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) { 924 if (bp->pc == pc && (bp->flags & mask)) { 925 return true; 926 } 927 } 928 } 929 return false; 930 } 931 932 #ifdef CONFIG_USER_ONLY 933 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 934 int flags, CPUWatchpoint **watchpoint) 935 { 936 return -ENOSYS; 937 } 938 939 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 940 vaddr len, int flags) 941 { 942 return -ENOSYS; 943 } 944 945 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu, 946 CPUWatchpoint *wp) 947 { 948 } 949 950 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask) 951 { 952 } 953 954 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 955 MemTxAttrs atr, int fl, uintptr_t ra) 956 { 957 } 958 959 static inline int cpu_watchpoint_address_matches(CPUState *cpu, 960 vaddr addr, vaddr len) 961 { 962 return 0; 963 } 964 #else 965 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len, 966 int flags, CPUWatchpoint **watchpoint); 967 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr, 968 vaddr len, int flags); 969 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint); 970 void cpu_watchpoint_remove_all(CPUState *cpu, int mask); 971 972 /** 973 * cpu_check_watchpoint: 974 * @cpu: cpu context 975 * @addr: guest virtual address 976 * @len: access length 977 * @attrs: memory access attributes 978 * @flags: watchpoint access type 979 * @ra: unwind return address 980 * 981 * Check for a watchpoint hit in [addr, addr+len) of the type 982 * specified by @flags. Exit via exception with a hit. 983 */ 984 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len, 985 MemTxAttrs attrs, int flags, uintptr_t ra); 986 987 /** 988 * cpu_watchpoint_address_matches: 989 * @cpu: cpu context 990 * @addr: guest virtual address 991 * @len: access length 992 * 993 * Return the watchpoint flags that apply to [addr, addr+len). 994 * If no watchpoint is registered for the range, the result is 0. 995 */ 996 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len); 997 #endif 998 999 /** 1000 * cpu_get_address_space: 1001 * @cpu: CPU to get address space from 1002 * @asidx: index identifying which address space to get 1003 * 1004 * Return the requested address space of this CPU. @asidx 1005 * specifies which address space to read. 1006 */ 1007 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx); 1008 1009 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...) 1010 GCC_FMT_ATTR(2, 3); 1011 1012 /* $(top_srcdir)/cpu.c */ 1013 void cpu_exec_initfn(CPUState *cpu); 1014 void cpu_exec_realizefn(CPUState *cpu, Error **errp); 1015 void cpu_exec_unrealizefn(CPUState *cpu); 1016 1017 /** 1018 * target_words_bigendian: 1019 * Returns true if the (default) endianness of the target is big endian, 1020 * false otherwise. Note that in target-specific code, you can use 1021 * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common 1022 * code should normally never need to know about the endianness of the 1023 * target, so please do *not* use this function unless you know very well 1024 * what you are doing! 1025 */ 1026 bool target_words_bigendian(void); 1027 1028 #ifdef NEED_CPU_H 1029 1030 #ifdef CONFIG_SOFTMMU 1031 1032 extern const VMStateDescription vmstate_cpu_common; 1033 1034 #define VMSTATE_CPU() { \ 1035 .name = "parent_obj", \ 1036 .size = sizeof(CPUState), \ 1037 .vmsd = &vmstate_cpu_common, \ 1038 .flags = VMS_STRUCT, \ 1039 .offset = 0, \ 1040 } 1041 #endif /* CONFIG_SOFTMMU */ 1042 1043 #endif /* NEED_CPU_H */ 1044 1045 #define UNASSIGNED_CPU_INDEX -1 1046 #define UNASSIGNED_CLUSTER_INDEX -1 1047 1048 #endif 1049