1 /* 2 * Hardware Clocks 3 * 4 * Copyright GreenSocs 2016-2020 5 * 6 * Authors: 7 * Frederic Konrad 8 * Damien Hedde 9 * 10 * This work is licensed under the terms of the GNU GPL, version 2 or later. 11 * See the COPYING file in the top-level directory. 12 */ 13 14 #ifndef QEMU_HW_CLOCK_H 15 #define QEMU_HW_CLOCK_H 16 17 #include "qom/object.h" 18 #include "qemu/queue.h" 19 #include "qemu/host-utils.h" 20 #include "qemu/bitops.h" 21 22 #define TYPE_CLOCK "clock" 23 OBJECT_DECLARE_SIMPLE_TYPE(Clock, CLOCK) 24 25 /* 26 * Argument to ClockCallback functions indicating why the callback 27 * has been called. A mask of these values logically ORed together 28 * is used to specify which events are interesting when the callback 29 * is registered, so these values must all be different bit values. 30 */ 31 typedef enum ClockEvent { 32 ClockUpdate = 1, /* Clock period has just updated */ 33 ClockPreUpdate = 2, /* Clock period is about to update */ 34 } ClockEvent; 35 36 typedef void ClockCallback(void *opaque, ClockEvent event); 37 38 /* 39 * clock store a value representing the clock's period in 2^-32ns unit. 40 * It can represent: 41 * + periods from 2^-32ns up to 4seconds 42 * + frequency from ~0.25Hz 2e10Ghz 43 * Resolution of frequency representation decreases with frequency: 44 * + at 100MHz, resolution is ~2mHz 45 * + at 1Ghz, resolution is ~0.2Hz 46 * + at 10Ghz, resolution is ~20Hz 47 */ 48 #define CLOCK_PERIOD_1SEC (1000000000llu << 32) 49 50 /* 51 * macro helpers to convert to hertz / nanosecond 52 */ 53 #define CLOCK_PERIOD_FROM_NS(ns) ((ns) * (CLOCK_PERIOD_1SEC / 1000000000llu)) 54 #define CLOCK_PERIOD_FROM_HZ(hz) (((hz) != 0) ? CLOCK_PERIOD_1SEC / (hz) : 0u) 55 #define CLOCK_PERIOD_TO_HZ(per) (((per) != 0) ? CLOCK_PERIOD_1SEC / (per) : 0u) 56 57 /** 58 * Clock: 59 * @parent_obj: parent class 60 * @period: unsigned integer representing the period of the clock 61 * @canonical_path: clock path string cache (used for trace purpose) 62 * @callback: called when clock changes 63 * @callback_opaque: argument for @callback 64 * @callback_events: mask of events when callback should be called 65 * @source: source (or parent in clock tree) of the clock 66 * @children: list of clocks connected to this one (it is their source) 67 * @sibling: structure used to form a clock list 68 */ 69 70 71 struct Clock { 72 /*< private >*/ 73 Object parent_obj; 74 75 /* all fields are private and should not be modified directly */ 76 77 /* fields */ 78 uint64_t period; 79 char *canonical_path; 80 ClockCallback *callback; 81 void *callback_opaque; 82 unsigned int callback_events; 83 84 /* Clocks are organized in a clock tree */ 85 Clock *source; 86 QLIST_HEAD(, Clock) children; 87 QLIST_ENTRY(Clock) sibling; 88 }; 89 90 /* 91 * vmstate description entry to be added in device vmsd. 92 */ 93 extern const VMStateDescription vmstate_clock; 94 #define VMSTATE_CLOCK(field, state) \ 95 VMSTATE_CLOCK_V(field, state, 0) 96 #define VMSTATE_CLOCK_V(field, state, version) \ 97 VMSTATE_STRUCT_POINTER_V(field, state, version, vmstate_clock, Clock) 98 #define VMSTATE_ARRAY_CLOCK(field, state, num) \ 99 VMSTATE_ARRAY_CLOCK_V(field, state, num, 0) 100 #define VMSTATE_ARRAY_CLOCK_V(field, state, num, version) \ 101 VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(field, state, num, version, \ 102 vmstate_clock, Clock) 103 104 /** 105 * clock_setup_canonical_path: 106 * @clk: clock 107 * 108 * compute the canonical path of the clock (used by log messages) 109 */ 110 void clock_setup_canonical_path(Clock *clk); 111 112 /** 113 * clock_new: 114 * @parent: the clock parent 115 * @name: the clock object name 116 * 117 * Helper function to create a new clock and parent it to @parent. There is no 118 * need to call clock_setup_canonical_path on the returned clock as it is done 119 * by this function. 120 * 121 * @return the newly created clock 122 */ 123 Clock *clock_new(Object *parent, const char *name); 124 125 /** 126 * clock_set_callback: 127 * @clk: the clock to register the callback into 128 * @cb: the callback function 129 * @opaque: the argument to the callback 130 * @events: the events the callback should be called for 131 * (logical OR of ClockEvent enum values) 132 * 133 * Register a callback called on every clock update. 134 * Note that a clock has only one callback: you cannot register 135 * different callback functions for different events. 136 */ 137 void clock_set_callback(Clock *clk, ClockCallback *cb, 138 void *opaque, unsigned int events); 139 140 /** 141 * clock_clear_callback: 142 * @clk: the clock to delete the callback from 143 * 144 * Unregister the callback registered with clock_set_callback. 145 */ 146 void clock_clear_callback(Clock *clk); 147 148 /** 149 * clock_set_source: 150 * @clk: the clock. 151 * @src: the source clock 152 * 153 * Setup @src as the clock source of @clk. The current @src period 154 * value is also copied to @clk and its subtree but no callback is 155 * called. 156 * Further @src update will be propagated to @clk and its subtree. 157 */ 158 void clock_set_source(Clock *clk, Clock *src); 159 160 /** 161 * clock_has_source: 162 * @clk: the clock 163 * 164 * Returns true if the clock has a source clock connected to it. 165 * This is useful for devices which have input clocks which must 166 * be connected by the board/SoC code which creates them. The 167 * device code can use this to check in its realize method that 168 * the clock has been connected. 169 */ 170 static inline bool clock_has_source(const Clock *clk) 171 { 172 return clk->source != NULL; 173 } 174 175 /** 176 * clock_set: 177 * @clk: the clock to initialize. 178 * @value: the clock's value, 0 means unclocked 179 * 180 * Set the local cached period value of @clk to @value. 181 * 182 * @return: true if the clock is changed. 183 */ 184 bool clock_set(Clock *clk, uint64_t value); 185 186 static inline bool clock_set_hz(Clock *clk, unsigned hz) 187 { 188 return clock_set(clk, CLOCK_PERIOD_FROM_HZ(hz)); 189 } 190 191 static inline bool clock_set_ns(Clock *clk, unsigned ns) 192 { 193 return clock_set(clk, CLOCK_PERIOD_FROM_NS(ns)); 194 } 195 196 /** 197 * clock_propagate: 198 * @clk: the clock 199 * 200 * Propagate the clock period that has been previously configured using 201 * @clock_set(). This will update recursively all connected clocks. 202 * It is an error to call this function on a clock which has a source. 203 * Note: this function must not be called during device inititialization 204 * or migration. 205 */ 206 void clock_propagate(Clock *clk); 207 208 /** 209 * clock_update: 210 * @clk: the clock to update. 211 * @value: the new clock's value, 0 means unclocked 212 * 213 * Update the @clk to the new @value. All connected clocks will be informed 214 * of this update. This is equivalent to call @clock_set() then 215 * @clock_propagate(). 216 */ 217 static inline void clock_update(Clock *clk, uint64_t value) 218 { 219 if (clock_set(clk, value)) { 220 clock_propagate(clk); 221 } 222 } 223 224 static inline void clock_update_hz(Clock *clk, unsigned hz) 225 { 226 clock_update(clk, CLOCK_PERIOD_FROM_HZ(hz)); 227 } 228 229 static inline void clock_update_ns(Clock *clk, unsigned ns) 230 { 231 clock_update(clk, CLOCK_PERIOD_FROM_NS(ns)); 232 } 233 234 /** 235 * clock_get: 236 * @clk: the clk to fetch the clock 237 * 238 * @return: the current period. 239 */ 240 static inline uint64_t clock_get(const Clock *clk) 241 { 242 return clk->period; 243 } 244 245 static inline unsigned clock_get_hz(Clock *clk) 246 { 247 return CLOCK_PERIOD_TO_HZ(clock_get(clk)); 248 } 249 250 /** 251 * clock_ticks_to_ns: 252 * @clk: the clock to query 253 * @ticks: number of ticks 254 * 255 * Returns the length of time in nanoseconds for this clock 256 * to tick @ticks times. Because a clock can have a period 257 * which is not a whole number of nanoseconds, it is important 258 * to use this function when calculating things like timer 259 * expiry deadlines, rather than attempting to obtain a "period 260 * in nanoseconds" value and then multiplying that by a number 261 * of ticks. 262 * 263 * The result could in theory be too large to fit in a 64-bit 264 * value if the number of ticks and the clock period are both 265 * large; to avoid overflow the result will be saturated to INT64_MAX 266 * (because this is the largest valid input to the QEMUTimer APIs). 267 * Since INT64_MAX nanoseconds is almost 300 years, anything with 268 * an expiry later than that is in the "will never happen" category 269 * and callers can reasonably not special-case the saturated result. 270 */ 271 static inline uint64_t clock_ticks_to_ns(const Clock *clk, uint64_t ticks) 272 { 273 uint64_t ns_low, ns_high; 274 275 /* 276 * clk->period is the period in units of 2^-32 ns, so 277 * (clk->period * ticks) is the required length of time in those 278 * units, and we can convert to nanoseconds by multiplying by 279 * 2^32, which is the same as shifting the 128-bit multiplication 280 * result right by 32. 281 */ 282 mulu64(&ns_low, &ns_high, clk->period, ticks); 283 if (ns_high & MAKE_64BIT_MASK(31, 33)) { 284 return INT64_MAX; 285 } 286 return ns_low >> 32 | ns_high << 32; 287 } 288 289 /** 290 * clock_ns_to_ticks: 291 * @clk: the clock to query 292 * @ns: duration in nanoseconds 293 * 294 * Returns the number of ticks this clock would make in the given 295 * number of nanoseconds. Because a clock can have a period which 296 * is not a whole number of nanoseconds, it is important to use this 297 * function rather than attempting to obtain a "period in nanoseconds" 298 * value and then dividing the duration by that value. 299 * 300 * If the clock is stopped (ie it has period zero), returns 0. 301 * 302 * For some inputs the result could overflow a 64-bit value (because 303 * the clock's period is short and the duration is long). In these 304 * cases we truncate the result to a 64-bit value. This is on the 305 * assumption that generally the result is going to be used to report 306 * a 32-bit or 64-bit guest register value, so wrapping either cannot 307 * happen or is the desired behaviour. 308 */ 309 static inline uint64_t clock_ns_to_ticks(const Clock *clk, uint64_t ns) 310 { 311 /* 312 * ticks = duration_in_ns / period_in_ns 313 * = ns / (period / 2^32) 314 * = (ns * 2^32) / period 315 * The hi, lo inputs to divu128() are (ns << 32) as a 128 bit value. 316 */ 317 uint64_t lo = ns << 32; 318 uint64_t hi = ns >> 32; 319 if (clk->period == 0) { 320 return 0; 321 } 322 /* 323 * Ignore divu128() return value as we've caught div-by-zero and don't 324 * need different behaviour for overflow. 325 */ 326 divu128(&lo, &hi, clk->period); 327 return lo; 328 } 329 330 /** 331 * clock_is_enabled: 332 * @clk: a clock 333 * 334 * @return: true if the clock is running. 335 */ 336 static inline bool clock_is_enabled(const Clock *clk) 337 { 338 return clock_get(clk) != 0; 339 } 340 341 /** 342 * clock_display_freq: return human-readable representation of clock frequency 343 * @clk: clock 344 * 345 * Return a string which has a human-readable representation of the 346 * clock's frequency, e.g. "33.3 MHz". This is intended for debug 347 * and display purposes. 348 * 349 * The caller is responsible for freeing the string with g_free(). 350 */ 351 char *clock_display_freq(Clock *clk); 352 353 #endif /* QEMU_HW_CLOCK_H */ 354