xref: /openbmc/qemu/include/hw/clock.h (revision 782ee711)
1 /*
2  * Hardware Clocks
3  *
4  * Copyright GreenSocs 2016-2020
5  *
6  * Authors:
7  *  Frederic Konrad
8  *  Damien Hedde
9  *
10  * This work is licensed under the terms of the GNU GPL, version 2 or later.
11  * See the COPYING file in the top-level directory.
12  */
13 
14 #ifndef QEMU_HW_CLOCK_H
15 #define QEMU_HW_CLOCK_H
16 
17 #include "qom/object.h"
18 #include "qemu/queue.h"
19 #include "qemu/host-utils.h"
20 #include "qemu/bitops.h"
21 
22 #define TYPE_CLOCK "clock"
23 OBJECT_DECLARE_SIMPLE_TYPE(Clock, CLOCK)
24 
25 /*
26  * Argument to ClockCallback functions indicating why the callback
27  * has been called. A mask of these values logically ORed together
28  * is used to specify which events are interesting when the callback
29  * is registered, so these values must all be different bit values.
30  */
31 typedef enum ClockEvent {
32     ClockUpdate = 1, /* Clock period has just updated */
33     ClockPreUpdate = 2, /* Clock period is about to update */
34 } ClockEvent;
35 
36 typedef void ClockCallback(void *opaque, ClockEvent event);
37 
38 /*
39  * clock store a value representing the clock's period in 2^-32ns unit.
40  * It can represent:
41  *  + periods from 2^-32ns up to 4seconds
42  *  + frequency from ~0.25Hz 2e10Ghz
43  * Resolution of frequency representation decreases with frequency:
44  * + at 100MHz, resolution is ~2mHz
45  * + at 1Ghz,   resolution is ~0.2Hz
46  * + at 10Ghz,  resolution is ~20Hz
47  */
48 #define CLOCK_PERIOD_1SEC (1000000000llu << 32)
49 
50 /*
51  * macro helpers to convert to hertz / nanosecond
52  */
53 #define CLOCK_PERIOD_FROM_NS(ns) ((ns) * (CLOCK_PERIOD_1SEC / 1000000000llu))
54 #define CLOCK_PERIOD_FROM_HZ(hz) (((hz) != 0) ? CLOCK_PERIOD_1SEC / (hz) : 0u)
55 #define CLOCK_PERIOD_TO_HZ(per) (((per) != 0) ? CLOCK_PERIOD_1SEC / (per) : 0u)
56 
57 /**
58  * Clock:
59  * @parent_obj: parent class
60  * @period: unsigned integer representing the period of the clock
61  * @canonical_path: clock path string cache (used for trace purpose)
62  * @callback: called when clock changes
63  * @callback_opaque: argument for @callback
64  * @callback_events: mask of events when callback should be called
65  * @source: source (or parent in clock tree) of the clock
66  * @children: list of clocks connected to this one (it is their source)
67  * @sibling: structure used to form a clock list
68  */
69 
70 
71 struct Clock {
72     /*< private >*/
73     Object parent_obj;
74 
75     /* all fields are private and should not be modified directly */
76 
77     /* fields */
78     uint64_t period;
79     char *canonical_path;
80     ClockCallback *callback;
81     void *callback_opaque;
82     unsigned int callback_events;
83 
84     /* Ratio of the parent clock to run the child clocks at */
85     uint32_t multiplier;
86     uint32_t divider;
87 
88     /* Clocks are organized in a clock tree */
89     Clock *source;
90     QLIST_HEAD(, Clock) children;
91     QLIST_ENTRY(Clock) sibling;
92 };
93 
94 /*
95  * vmstate description entry to be added in device vmsd.
96  */
97 extern const VMStateDescription vmstate_clock;
98 #define VMSTATE_CLOCK(field, state) \
99     VMSTATE_CLOCK_V(field, state, 0)
100 #define VMSTATE_CLOCK_V(field, state, version) \
101     VMSTATE_STRUCT_POINTER_V(field, state, version, vmstate_clock, Clock)
102 #define VMSTATE_ARRAY_CLOCK(field, state, num) \
103     VMSTATE_ARRAY_CLOCK_V(field, state, num, 0)
104 #define VMSTATE_ARRAY_CLOCK_V(field, state, num, version)          \
105     VMSTATE_ARRAY_OF_POINTER_TO_STRUCT(field, state, num, version, \
106                                        vmstate_clock, Clock)
107 
108 /**
109  * clock_setup_canonical_path:
110  * @clk: clock
111  *
112  * compute the canonical path of the clock (used by log messages)
113  */
114 void clock_setup_canonical_path(Clock *clk);
115 
116 /**
117  * clock_new:
118  * @parent: the clock parent
119  * @name: the clock object name
120  *
121  * Helper function to create a new clock and parent it to @parent. There is no
122  * need to call clock_setup_canonical_path on the returned clock as it is done
123  * by this function.
124  *
125  * @return the newly created clock
126  */
127 Clock *clock_new(Object *parent, const char *name);
128 
129 /**
130  * clock_set_callback:
131  * @clk: the clock to register the callback into
132  * @cb: the callback function
133  * @opaque: the argument to the callback
134  * @events: the events the callback should be called for
135  *          (logical OR of ClockEvent enum values)
136  *
137  * Register a callback called on every clock update.
138  * Note that a clock has only one callback: you cannot register
139  * different callback functions for different events.
140  */
141 void clock_set_callback(Clock *clk, ClockCallback *cb,
142                         void *opaque, unsigned int events);
143 
144 /**
145  * clock_clear_callback:
146  * @clk: the clock to delete the callback from
147  *
148  * Unregister the callback registered with clock_set_callback.
149  */
150 void clock_clear_callback(Clock *clk);
151 
152 /**
153  * clock_set_source:
154  * @clk: the clock.
155  * @src: the source clock
156  *
157  * Setup @src as the clock source of @clk. The current @src period
158  * value is also copied to @clk and its subtree but no callback is
159  * called.
160  * Further @src update will be propagated to @clk and its subtree.
161  */
162 void clock_set_source(Clock *clk, Clock *src);
163 
164 /**
165  * clock_has_source:
166  * @clk: the clock
167  *
168  * Returns true if the clock has a source clock connected to it.
169  * This is useful for devices which have input clocks which must
170  * be connected by the board/SoC code which creates them. The
171  * device code can use this to check in its realize method that
172  * the clock has been connected.
173  */
174 static inline bool clock_has_source(const Clock *clk)
175 {
176     return clk->source != NULL;
177 }
178 
179 /**
180  * clock_set:
181  * @clk: the clock to initialize.
182  * @value: the clock's value, 0 means unclocked
183  *
184  * Set the local cached period value of @clk to @value.
185  *
186  * @return: true if the clock is changed.
187  */
188 bool clock_set(Clock *clk, uint64_t value);
189 
190 static inline bool clock_set_hz(Clock *clk, unsigned hz)
191 {
192     return clock_set(clk, CLOCK_PERIOD_FROM_HZ(hz));
193 }
194 
195 static inline bool clock_set_ns(Clock *clk, unsigned ns)
196 {
197     return clock_set(clk, CLOCK_PERIOD_FROM_NS(ns));
198 }
199 
200 /**
201  * clock_propagate:
202  * @clk: the clock
203  *
204  * Propagate the clock period that has been previously configured using
205  * @clock_set(). This will update recursively all connected clocks.
206  * It is an error to call this function on a clock which has a source.
207  * Note: this function must not be called during device initialization
208  * or migration.
209  */
210 void clock_propagate(Clock *clk);
211 
212 /**
213  * clock_update:
214  * @clk: the clock to update.
215  * @value: the new clock's value, 0 means unclocked
216  *
217  * Update the @clk to the new @value. All connected clocks will be informed
218  * of this update. This is equivalent to call @clock_set() then
219  * @clock_propagate().
220  */
221 static inline void clock_update(Clock *clk, uint64_t value)
222 {
223     if (clock_set(clk, value)) {
224         clock_propagate(clk);
225     }
226 }
227 
228 static inline void clock_update_hz(Clock *clk, unsigned hz)
229 {
230     clock_update(clk, CLOCK_PERIOD_FROM_HZ(hz));
231 }
232 
233 static inline void clock_update_ns(Clock *clk, unsigned ns)
234 {
235     clock_update(clk, CLOCK_PERIOD_FROM_NS(ns));
236 }
237 
238 /**
239  * clock_get:
240  * @clk: the clk to fetch the clock
241  *
242  * @return: the current period.
243  */
244 static inline uint64_t clock_get(const Clock *clk)
245 {
246     return clk->period;
247 }
248 
249 static inline unsigned clock_get_hz(Clock *clk)
250 {
251     return CLOCK_PERIOD_TO_HZ(clock_get(clk));
252 }
253 
254 /**
255  * clock_ticks_to_ns:
256  * @clk: the clock to query
257  * @ticks: number of ticks
258  *
259  * Returns the length of time in nanoseconds for this clock
260  * to tick @ticks times. Because a clock can have a period
261  * which is not a whole number of nanoseconds, it is important
262  * to use this function when calculating things like timer
263  * expiry deadlines, rather than attempting to obtain a "period
264  * in nanoseconds" value and then multiplying that by a number
265  * of ticks.
266  *
267  * The result could in theory be too large to fit in a 64-bit
268  * value if the number of ticks and the clock period are both
269  * large; to avoid overflow the result will be saturated to INT64_MAX
270  * (because this is the largest valid input to the QEMUTimer APIs).
271  * Since INT64_MAX nanoseconds is almost 300 years, anything with
272  * an expiry later than that is in the "will never happen" category
273  * and callers can reasonably not special-case the saturated result.
274  */
275 static inline uint64_t clock_ticks_to_ns(const Clock *clk, uint64_t ticks)
276 {
277     uint64_t ns_low, ns_high;
278 
279     /*
280      * clk->period is the period in units of 2^-32 ns, so
281      * (clk->period * ticks) is the required length of time in those
282      * units, and we can convert to nanoseconds by multiplying by
283      * 2^32, which is the same as shifting the 128-bit multiplication
284      * result right by 32.
285      */
286     mulu64(&ns_low, &ns_high, clk->period, ticks);
287     if (ns_high & MAKE_64BIT_MASK(31, 33)) {
288         return INT64_MAX;
289     }
290     return ns_low >> 32 | ns_high << 32;
291 }
292 
293 /**
294  * clock_ns_to_ticks:
295  * @clk: the clock to query
296  * @ns: duration in nanoseconds
297  *
298  * Returns the number of ticks this clock would make in the given
299  * number of nanoseconds. Because a clock can have a period which
300  * is not a whole number of nanoseconds, it is important to use this
301  * function rather than attempting to obtain a "period in nanoseconds"
302  * value and then dividing the duration by that value.
303  *
304  * If the clock is stopped (ie it has period zero), returns 0.
305  *
306  * For some inputs the result could overflow a 64-bit value (because
307  * the clock's period is short and the duration is long). In these
308  * cases we truncate the result to a 64-bit value. This is on the
309  * assumption that generally the result is going to be used to report
310  * a 32-bit or 64-bit guest register value, so wrapping either cannot
311  * happen or is the desired behaviour.
312  */
313 static inline uint64_t clock_ns_to_ticks(const Clock *clk, uint64_t ns)
314 {
315     /*
316      * ticks = duration_in_ns / period_in_ns
317      *       = ns / (period / 2^32)
318      *       = (ns * 2^32) / period
319      * The hi, lo inputs to divu128() are (ns << 32) as a 128 bit value.
320      */
321     uint64_t lo = ns << 32;
322     uint64_t hi = ns >> 32;
323     if (clk->period == 0) {
324         return 0;
325     }
326 
327     divu128(&lo, &hi, clk->period);
328     return lo;
329 }
330 
331 /**
332  * clock_is_enabled:
333  * @clk: a clock
334  *
335  * @return: true if the clock is running.
336  */
337 static inline bool clock_is_enabled(const Clock *clk)
338 {
339     return clock_get(clk) != 0;
340 }
341 
342 /**
343  * clock_display_freq: return human-readable representation of clock frequency
344  * @clk: clock
345  *
346  * Return a string which has a human-readable representation of the
347  * clock's frequency, e.g. "33.3 MHz". This is intended for debug
348  * and display purposes.
349  *
350  * The caller is responsible for freeing the string with g_free().
351  */
352 char *clock_display_freq(Clock *clk);
353 
354 /**
355  * clock_set_mul_div: set multiplier/divider for child clocks
356  * @clk: clock
357  * @multiplier: multiplier value
358  * @divider: divider value
359  *
360  * By default, a Clock's children will all run with the same period
361  * as their parent. This function allows you to adjust the multiplier
362  * and divider used to derive the child clock frequency.
363  * For example, setting a multiplier of 2 and a divider of 3
364  * will run child clocks with a period 2/3 of the parent clock,
365  * so if the parent clock is an 8MHz clock the children will
366  * be 12MHz.
367  *
368  * Setting the multiplier to 0 will stop the child clocks.
369  * Setting the divider to 0 is a programming error (diagnosed with
370  * an assertion failure).
371  * Setting a multiplier value that results in the child period
372  * overflowing is not diagnosed.
373  *
374  * Note that this function does not call clock_propagate(); the
375  * caller should do that if necessary.
376  */
377 void clock_set_mul_div(Clock *clk, uint32_t multiplier, uint32_t divider);
378 
379 #endif /* QEMU_HW_CLOCK_H */
380