xref: /openbmc/qemu/include/hw/arm/armsse.h (revision 8cf108c5)
1 /*
2  * ARM SSE (Subsystems for Embedded): IoTKit, SSE-200
3  *
4  * Copyright (c) 2018 Linaro Limited
5  * Written by Peter Maydell
6  *
7  * This program is free software; you can redistribute it and/or modify
8  * it under the terms of the GNU General Public License version 2 or
9  * (at your option) any later version.
10  */
11 
12 /*
13  * This is a model of the Arm "Subsystems for Embedded" family of
14  * hardware, which include the IoT Kit and the SSE-050, SSE-100 and
15  * SSE-200. Currently we model:
16  *  - the Arm IoT Kit which is documented in
17  * http://infocenter.arm.com/help/index.jsp?topic=/com.arm.doc.ecm0601256/index.html
18  *  - the SSE-200 which is documented in
19  * http://infocenter.arm.com/help/topic/com.arm.doc.101104_0100_00_en/corelink_sse200_subsystem_for_embedded_technical_reference_manual_101104_0100_00_en.pdf
20  *
21  * The IoTKit contains:
22  *  a Cortex-M33
23  *  the IDAU
24  *  some timers and watchdogs
25  *  two peripheral protection controllers
26  *  a memory protection controller
27  *  a security controller
28  *  a bus fabric which arranges that some parts of the address
29  *  space are secure and non-secure aliases of each other
30  * The SSE-200 additionally contains:
31  *  a second Cortex-M33
32  *  two Message Handling Units (MHUs)
33  *  an optional CryptoCell (which we do not model)
34  *  more SRAM banks with associated MPCs
35  *  multiple Power Policy Units (PPUs)
36  *  a control interface for an icache for each CPU
37  *  per-CPU identity and control register blocks
38  *
39  * QEMU interface:
40  *  + QOM property "memory" is a MemoryRegion containing the devices provided
41  *    by the board model.
42  *  + QOM property "MAINCLK" is the frequency of the main system clock
43  *  + QOM property "EXP_NUMIRQ" sets the number of expansion interrupts.
44  *    (In hardware, the SSE-200 permits the number of expansion interrupts
45  *    for the two CPUs to be configured separately, but we restrict it to
46  *    being the same for both, to avoid having to have separate Property
47  *    lists for different variants. This restriction can be relaxed later
48  *    if necessary.)
49  *  + QOM property "SRAM_ADDR_WIDTH" sets the number of bits used for the
50  *    address of each SRAM bank (and thus the total amount of internal SRAM)
51  *  + QOM property "init-svtor" sets the initial value of the CPU SVTOR register
52  *    (where it expects to load the PC and SP from the vector table on reset)
53  *  + Named GPIO inputs "EXP_IRQ" 0..n are the expansion interrupts for CPU 0,
54  *    which are wired to its NVIC lines 32 .. n+32
55  *  + Named GPIO inputs "EXP_CPU1_IRQ" 0..n are the expansion interrupts for
56  *    CPU 1, which are wired to its NVIC lines 32 .. n+32
57  *  + sysbus MMIO region 0 is the "AHB Slave Expansion" which allows
58  *    bus master devices in the board model to make transactions into
59  *    all the devices and memory areas in the IoTKit
60  * Controlling up to 4 AHB expansion PPBs which a system using the IoTKit
61  * might provide:
62  *  + named GPIO outputs apb_ppcexp{0,1,2,3}_nonsec[0..15]
63  *  + named GPIO outputs apb_ppcexp{0,1,2,3}_ap[0..15]
64  *  + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_enable
65  *  + named GPIO outputs apb_ppcexp{0,1,2,3}_irq_clear
66  *  + named GPIO inputs apb_ppcexp{0,1,2,3}_irq_status
67  * Controlling each of the 4 expansion AHB PPCs which a system using the IoTKit
68  * might provide:
69  *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_nonsec[0..15]
70  *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_ap[0..15]
71  *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_enable
72  *  + named GPIO outputs ahb_ppcexp{0,1,2,3}_irq_clear
73  *  + named GPIO inputs ahb_ppcexp{0,1,2,3}_irq_status
74  * Controlling each of the 16 expansion MPCs which a system using the IoTKit
75  * might provide:
76  *  + named GPIO inputs mpcexp_status[0..15]
77  * Controlling each of the 16 expansion MSCs which a system using the IoTKit
78  * might provide:
79  *  + named GPIO inputs mscexp_status[0..15]
80  *  + named GPIO outputs mscexp_clear[0..15]
81  *  + named GPIO outputs mscexp_ns[0..15]
82  */
83 
84 #ifndef ARMSSE_H
85 #define ARMSSE_H
86 
87 #include "hw/sysbus.h"
88 #include "hw/arm/armv7m.h"
89 #include "hw/misc/iotkit-secctl.h"
90 #include "hw/misc/tz-ppc.h"
91 #include "hw/misc/tz-mpc.h"
92 #include "hw/timer/cmsdk-apb-timer.h"
93 #include "hw/timer/cmsdk-apb-dualtimer.h"
94 #include "hw/watchdog/cmsdk-apb-watchdog.h"
95 #include "hw/misc/iotkit-sysctl.h"
96 #include "hw/misc/iotkit-sysinfo.h"
97 #include "hw/misc/armsse-cpuid.h"
98 #include "hw/misc/armsse-mhu.h"
99 #include "hw/misc/unimp.h"
100 #include "hw/or-irq.h"
101 #include "hw/core/split-irq.h"
102 #include "hw/cpu/cluster.h"
103 
104 #define TYPE_ARMSSE "arm-sse"
105 #define ARMSSE(obj) OBJECT_CHECK(ARMSSE, (obj), TYPE_ARMSSE)
106 
107 /*
108  * These type names are for specific IoTKit subsystems; other than
109  * instantiating them, code using these devices should always handle
110  * them via the ARMSSE base class, so they have no IOTKIT() etc macros.
111  */
112 #define TYPE_IOTKIT "iotkit"
113 #define TYPE_SSE200 "sse-200"
114 
115 /* We have an IRQ splitter and an OR gate input for each external PPC
116  * and the 2 internal PPCs
117  */
118 #define NUM_EXTERNAL_PPCS (IOTS_NUM_AHB_EXP_PPC + IOTS_NUM_APB_EXP_PPC)
119 #define NUM_PPCS (NUM_EXTERNAL_PPCS + 2)
120 
121 #define MAX_SRAM_BANKS 4
122 #if MAX_SRAM_BANKS > IOTS_NUM_MPC
123 #error Too many SRAM banks
124 #endif
125 
126 #define SSE_MAX_CPUS 2
127 
128 /* These define what each PPU in the ppu[] index is for */
129 #define CPU0CORE_PPU 0
130 #define CPU1CORE_PPU 1
131 #define DBG_PPU 2
132 #define RAM0_PPU 3
133 #define RAM1_PPU 4
134 #define RAM2_PPU 5
135 #define RAM3_PPU 6
136 #define NUM_PPUS 7
137 
138 typedef struct ARMSSE {
139     /*< private >*/
140     SysBusDevice parent_obj;
141 
142     /*< public >*/
143     ARMv7MState armv7m[SSE_MAX_CPUS];
144     CPUClusterState cluster[SSE_MAX_CPUS];
145     IoTKitSecCtl secctl;
146     TZPPC apb_ppc0;
147     TZPPC apb_ppc1;
148     TZMPC mpc[IOTS_NUM_MPC];
149     CMSDKAPBTIMER timer0;
150     CMSDKAPBTIMER timer1;
151     CMSDKAPBTIMER s32ktimer;
152     qemu_or_irq ppc_irq_orgate;
153     SplitIRQ sec_resp_splitter;
154     SplitIRQ ppc_irq_splitter[NUM_PPCS];
155     SplitIRQ mpc_irq_splitter[IOTS_NUM_EXP_MPC + IOTS_NUM_MPC];
156     qemu_or_irq mpc_irq_orgate;
157     qemu_or_irq nmi_orgate;
158 
159     SplitIRQ cpu_irq_splitter[32];
160 
161     CMSDKAPBDualTimer dualtimer;
162 
163     CMSDKAPBWatchdog s32kwatchdog;
164     CMSDKAPBWatchdog nswatchdog;
165     CMSDKAPBWatchdog swatchdog;
166 
167     IoTKitSysCtl sysctl;
168     IoTKitSysCtl sysinfo;
169 
170     ARMSSEMHU mhu[2];
171     UnimplementedDeviceState ppu[NUM_PPUS];
172     UnimplementedDeviceState cachectrl[SSE_MAX_CPUS];
173     UnimplementedDeviceState cpusecctrl[SSE_MAX_CPUS];
174 
175     ARMSSECPUID cpuid[SSE_MAX_CPUS];
176 
177     /*
178      * 'container' holds all devices seen by all CPUs.
179      * 'cpu_container[i]' is the view that CPU i has: this has the
180      * per-CPU devices of that CPU, plus as the background 'container'
181      * (or an alias of it, since we can only use it directly once).
182      * container_alias[i] is the alias of 'container' used by CPU i+1;
183      * CPU 0 can use 'container' directly.
184      */
185     MemoryRegion container;
186     MemoryRegion container_alias[SSE_MAX_CPUS - 1];
187     MemoryRegion cpu_container[SSE_MAX_CPUS];
188     MemoryRegion alias1;
189     MemoryRegion alias2;
190     MemoryRegion alias3[SSE_MAX_CPUS];
191     MemoryRegion sram[MAX_SRAM_BANKS];
192 
193     qemu_irq *exp_irqs[SSE_MAX_CPUS];
194     qemu_irq ppc0_irq;
195     qemu_irq ppc1_irq;
196     qemu_irq sec_resp_cfg;
197     qemu_irq sec_resp_cfg_in;
198     qemu_irq nsc_cfg_in;
199 
200     qemu_irq irq_status_in[NUM_EXTERNAL_PPCS];
201     qemu_irq mpcexp_status_in[IOTS_NUM_EXP_MPC];
202 
203     uint32_t nsccfg;
204 
205     /* Properties */
206     MemoryRegion *board_memory;
207     uint32_t exp_numirq;
208     uint32_t mainclk_frq;
209     uint32_t sram_addr_width;
210     uint32_t init_svtor;
211 } ARMSSE;
212 
213 typedef struct ARMSSEInfo ARMSSEInfo;
214 
215 typedef struct ARMSSEClass {
216     DeviceClass parent_class;
217     const ARMSSEInfo *info;
218 } ARMSSEClass;
219 
220 #define ARMSSE_CLASS(klass) \
221     OBJECT_CLASS_CHECK(ARMSSEClass, (klass), TYPE_ARMSSE)
222 #define ARMSSE_GET_CLASS(obj) \
223     OBJECT_GET_CLASS(ARMSSEClass, (obj), TYPE_ARMSSE)
224 
225 #endif
226