1 /* 2 * QEMU float support 3 * 4 * The code in this source file is derived from release 2a of the SoftFloat 5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and 6 * some later contributions) are provided under that license, as detailed below. 7 * It has subsequently been modified by contributors to the QEMU Project, 8 * so some portions are provided under: 9 * the SoftFloat-2a license 10 * the BSD license 11 * GPL-v2-or-later 12 * 13 * Any future contributions to this file after December 1st 2014 will be 14 * taken to be licensed under the Softfloat-2a license unless specifically 15 * indicated otherwise. 16 */ 17 18 /* 19 =============================================================================== 20 This C header file is part of the SoftFloat IEC/IEEE Floating-point 21 Arithmetic Package, Release 2a. 22 23 Written by John R. Hauser. This work was made possible in part by the 24 International Computer Science Institute, located at Suite 600, 1947 Center 25 Street, Berkeley, California 94704. Funding was partially provided by the 26 National Science Foundation under grant MIP-9311980. The original version 27 of this code was written as part of a project to build a fixed-point vector 28 processor in collaboration with the University of California at Berkeley, 29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 31 arithmetic/SoftFloat.html'. 32 33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 38 39 Derivative works are acceptable, even for commercial purposes, so long as 40 (1) they include prominent notice that the work is derivative, and (2) they 41 include prominent notice akin to these four paragraphs for those parts of 42 this code that are retained. 43 44 =============================================================================== 45 */ 46 47 /* BSD licensing: 48 * Copyright (c) 2006, Fabrice Bellard 49 * All rights reserved. 50 * 51 * Redistribution and use in source and binary forms, with or without 52 * modification, are permitted provided that the following conditions are met: 53 * 54 * 1. Redistributions of source code must retain the above copyright notice, 55 * this list of conditions and the following disclaimer. 56 * 57 * 2. Redistributions in binary form must reproduce the above copyright notice, 58 * this list of conditions and the following disclaimer in the documentation 59 * and/or other materials provided with the distribution. 60 * 61 * 3. Neither the name of the copyright holder nor the names of its contributors 62 * may be used to endorse or promote products derived from this software without 63 * specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 75 * THE POSSIBILITY OF SUCH DAMAGE. 76 */ 77 78 /* Portions of this work are licensed under the terms of the GNU GPL, 79 * version 2 or later. See the COPYING file in the top-level directory. 80 */ 81 82 #ifndef SOFTFLOAT_H 83 #define SOFTFLOAT_H 84 85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) 86 #include <sunmath.h> 87 #endif 88 89 #include <inttypes.h> 90 #include "config-host.h" 91 #include "qemu/osdep.h" 92 93 /*---------------------------------------------------------------------------- 94 | Each of the following `typedef's defines the most convenient type that holds 95 | integers of at least as many bits as specified. For example, `uint8' should 96 | be the most convenient type that can hold unsigned integers of as many as 97 | 8 bits. The `flag' type must be able to hold either a 0 or 1. For most 98 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed 99 | to the same as `int'. 100 *----------------------------------------------------------------------------*/ 101 typedef uint8_t flag; 102 typedef uint8_t uint8; 103 typedef int8_t int8; 104 typedef unsigned int uint32; 105 typedef signed int int32; 106 typedef uint64_t uint64; 107 typedef int64_t int64; 108 109 #define LIT64( a ) a##LL 110 111 #define STATUS_PARAM , float_status *status 112 #define STATUS(field) status->field 113 #define STATUS_VAR , status 114 115 /*---------------------------------------------------------------------------- 116 | Software IEC/IEEE floating-point ordering relations 117 *----------------------------------------------------------------------------*/ 118 enum { 119 float_relation_less = -1, 120 float_relation_equal = 0, 121 float_relation_greater = 1, 122 float_relation_unordered = 2 123 }; 124 125 /*---------------------------------------------------------------------------- 126 | Software IEC/IEEE floating-point types. 127 *----------------------------------------------------------------------------*/ 128 /* Use structures for soft-float types. This prevents accidentally mixing 129 them with native int/float types. A sufficiently clever compiler and 130 sane ABI should be able to see though these structs. However 131 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ 132 //#define USE_SOFTFLOAT_STRUCT_TYPES 133 #ifdef USE_SOFTFLOAT_STRUCT_TYPES 134 typedef struct { 135 uint16_t v; 136 } float16; 137 #define float16_val(x) (((float16)(x)).v) 138 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) 139 #define const_float16(x) { x } 140 typedef struct { 141 uint32_t v; 142 } float32; 143 /* The cast ensures an error if the wrong type is passed. */ 144 #define float32_val(x) (((float32)(x)).v) 145 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) 146 #define const_float32(x) { x } 147 typedef struct { 148 uint64_t v; 149 } float64; 150 #define float64_val(x) (((float64)(x)).v) 151 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) 152 #define const_float64(x) { x } 153 #else 154 typedef uint16_t float16; 155 typedef uint32_t float32; 156 typedef uint64_t float64; 157 #define float16_val(x) (x) 158 #define float32_val(x) (x) 159 #define float64_val(x) (x) 160 #define make_float16(x) (x) 161 #define make_float32(x) (x) 162 #define make_float64(x) (x) 163 #define const_float16(x) (x) 164 #define const_float32(x) (x) 165 #define const_float64(x) (x) 166 #endif 167 typedef struct { 168 uint64_t low; 169 uint16_t high; 170 } floatx80; 171 #define make_floatx80(exp, mant) ((floatx80) { mant, exp }) 172 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp } 173 typedef struct { 174 #ifdef HOST_WORDS_BIGENDIAN 175 uint64_t high, low; 176 #else 177 uint64_t low, high; 178 #endif 179 } float128; 180 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ }) 181 #define make_float128_init(high_, low_) { .high = high_, .low = low_ } 182 183 /*---------------------------------------------------------------------------- 184 | Software IEC/IEEE floating-point underflow tininess-detection mode. 185 *----------------------------------------------------------------------------*/ 186 enum { 187 float_tininess_after_rounding = 0, 188 float_tininess_before_rounding = 1 189 }; 190 191 /*---------------------------------------------------------------------------- 192 | Software IEC/IEEE floating-point rounding mode. 193 *----------------------------------------------------------------------------*/ 194 enum { 195 float_round_nearest_even = 0, 196 float_round_down = 1, 197 float_round_up = 2, 198 float_round_to_zero = 3, 199 float_round_ties_away = 4, 200 }; 201 202 /*---------------------------------------------------------------------------- 203 | Software IEC/IEEE floating-point exception flags. 204 *----------------------------------------------------------------------------*/ 205 enum { 206 float_flag_invalid = 1, 207 float_flag_divbyzero = 4, 208 float_flag_overflow = 8, 209 float_flag_underflow = 16, 210 float_flag_inexact = 32, 211 float_flag_input_denormal = 64, 212 float_flag_output_denormal = 128 213 }; 214 215 typedef struct float_status { 216 signed char float_detect_tininess; 217 signed char float_rounding_mode; 218 signed char float_exception_flags; 219 signed char floatx80_rounding_precision; 220 /* should denormalised results go to zero and set the inexact flag? */ 221 flag flush_to_zero; 222 /* should denormalised inputs go to zero and set the input_denormal flag? */ 223 flag flush_inputs_to_zero; 224 flag default_nan_mode; 225 } float_status; 226 227 static inline void set_float_detect_tininess(int val STATUS_PARAM) 228 { 229 STATUS(float_detect_tininess) = val; 230 } 231 static inline void set_float_rounding_mode(int val STATUS_PARAM) 232 { 233 STATUS(float_rounding_mode) = val; 234 } 235 static inline void set_float_exception_flags(int val STATUS_PARAM) 236 { 237 STATUS(float_exception_flags) = val; 238 } 239 static inline void set_floatx80_rounding_precision(int val STATUS_PARAM) 240 { 241 STATUS(floatx80_rounding_precision) = val; 242 } 243 static inline void set_flush_to_zero(flag val STATUS_PARAM) 244 { 245 STATUS(flush_to_zero) = val; 246 } 247 static inline void set_flush_inputs_to_zero(flag val STATUS_PARAM) 248 { 249 STATUS(flush_inputs_to_zero) = val; 250 } 251 static inline void set_default_nan_mode(flag val STATUS_PARAM) 252 { 253 STATUS(default_nan_mode) = val; 254 } 255 static inline int get_float_detect_tininess(float_status *status) 256 { 257 return STATUS(float_detect_tininess); 258 } 259 static inline int get_float_rounding_mode(float_status *status) 260 { 261 return STATUS(float_rounding_mode); 262 } 263 static inline int get_float_exception_flags(float_status *status) 264 { 265 return STATUS(float_exception_flags); 266 } 267 static inline int get_floatx80_rounding_precision(float_status *status) 268 { 269 return STATUS(floatx80_rounding_precision); 270 } 271 static inline flag get_flush_to_zero(float_status *status) 272 { 273 return STATUS(flush_to_zero); 274 } 275 static inline flag get_flush_inputs_to_zero(float_status *status) 276 { 277 return STATUS(flush_inputs_to_zero); 278 } 279 static inline flag get_default_nan_mode(float_status *status) 280 { 281 return STATUS(default_nan_mode); 282 } 283 284 /*---------------------------------------------------------------------------- 285 | Routine to raise any or all of the software IEC/IEEE floating-point 286 | exception flags. 287 *----------------------------------------------------------------------------*/ 288 void float_raise( int8 flags STATUS_PARAM); 289 290 /*---------------------------------------------------------------------------- 291 | If `a' is denormal and we are in flush-to-zero mode then set the 292 | input-denormal exception and return zero. Otherwise just return the value. 293 *----------------------------------------------------------------------------*/ 294 float32 float32_squash_input_denormal(float32 a STATUS_PARAM); 295 float64 float64_squash_input_denormal(float64 a STATUS_PARAM); 296 297 /*---------------------------------------------------------------------------- 298 | Options to indicate which negations to perform in float*_muladd() 299 | Using these differs from negating an input or output before calling 300 | the muladd function in that this means that a NaN doesn't have its 301 | sign bit inverted before it is propagated. 302 | We also support halving the result before rounding, as a special 303 | case to support the ARM fused-sqrt-step instruction FRSQRTS. 304 *----------------------------------------------------------------------------*/ 305 enum { 306 float_muladd_negate_c = 1, 307 float_muladd_negate_product = 2, 308 float_muladd_negate_result = 4, 309 float_muladd_halve_result = 8, 310 }; 311 312 /*---------------------------------------------------------------------------- 313 | Software IEC/IEEE integer-to-floating-point conversion routines. 314 *----------------------------------------------------------------------------*/ 315 float32 int32_to_float32(int32_t STATUS_PARAM); 316 float64 int32_to_float64(int32_t STATUS_PARAM); 317 float32 uint32_to_float32(uint32_t STATUS_PARAM); 318 float64 uint32_to_float64(uint32_t STATUS_PARAM); 319 floatx80 int32_to_floatx80(int32_t STATUS_PARAM); 320 float128 int32_to_float128(int32_t STATUS_PARAM); 321 float32 int64_to_float32(int64_t STATUS_PARAM); 322 float64 int64_to_float64(int64_t STATUS_PARAM); 323 floatx80 int64_to_floatx80(int64_t STATUS_PARAM); 324 float128 int64_to_float128(int64_t STATUS_PARAM); 325 float32 uint64_to_float32(uint64_t STATUS_PARAM); 326 float64 uint64_to_float64(uint64_t STATUS_PARAM); 327 float128 uint64_to_float128(uint64_t STATUS_PARAM); 328 329 /* We provide the int16 versions for symmetry of API with float-to-int */ 330 static inline float32 int16_to_float32(int16_t v STATUS_PARAM) 331 { 332 return int32_to_float32(v STATUS_VAR); 333 } 334 335 static inline float32 uint16_to_float32(uint16_t v STATUS_PARAM) 336 { 337 return uint32_to_float32(v STATUS_VAR); 338 } 339 340 static inline float64 int16_to_float64(int16_t v STATUS_PARAM) 341 { 342 return int32_to_float64(v STATUS_VAR); 343 } 344 345 static inline float64 uint16_to_float64(uint16_t v STATUS_PARAM) 346 { 347 return uint32_to_float64(v STATUS_VAR); 348 } 349 350 /*---------------------------------------------------------------------------- 351 | Software half-precision conversion routines. 352 *----------------------------------------------------------------------------*/ 353 float16 float32_to_float16( float32, flag STATUS_PARAM ); 354 float32 float16_to_float32( float16, flag STATUS_PARAM ); 355 float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM); 356 float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM); 357 358 /*---------------------------------------------------------------------------- 359 | Software half-precision operations. 360 *----------------------------------------------------------------------------*/ 361 int float16_is_quiet_nan( float16 ); 362 int float16_is_signaling_nan( float16 ); 363 float16 float16_maybe_silence_nan( float16 ); 364 365 static inline int float16_is_any_nan(float16 a) 366 { 367 return ((float16_val(a) & ~0x8000) > 0x7c00); 368 } 369 370 /*---------------------------------------------------------------------------- 371 | The pattern for a default generated half-precision NaN. 372 *----------------------------------------------------------------------------*/ 373 extern const float16 float16_default_nan; 374 375 /*---------------------------------------------------------------------------- 376 | Software IEC/IEEE single-precision conversion routines. 377 *----------------------------------------------------------------------------*/ 378 int_fast16_t float32_to_int16(float32 STATUS_PARAM); 379 uint_fast16_t float32_to_uint16(float32 STATUS_PARAM); 380 int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM); 381 uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM); 382 int32 float32_to_int32( float32 STATUS_PARAM ); 383 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM ); 384 uint32 float32_to_uint32( float32 STATUS_PARAM ); 385 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM ); 386 int64 float32_to_int64( float32 STATUS_PARAM ); 387 uint64 float32_to_uint64(float32 STATUS_PARAM); 388 uint64 float32_to_uint64_round_to_zero(float32 STATUS_PARAM); 389 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM ); 390 float64 float32_to_float64( float32 STATUS_PARAM ); 391 floatx80 float32_to_floatx80( float32 STATUS_PARAM ); 392 float128 float32_to_float128( float32 STATUS_PARAM ); 393 394 /*---------------------------------------------------------------------------- 395 | Software IEC/IEEE single-precision operations. 396 *----------------------------------------------------------------------------*/ 397 float32 float32_round_to_int( float32 STATUS_PARAM ); 398 float32 float32_add( float32, float32 STATUS_PARAM ); 399 float32 float32_sub( float32, float32 STATUS_PARAM ); 400 float32 float32_mul( float32, float32 STATUS_PARAM ); 401 float32 float32_div( float32, float32 STATUS_PARAM ); 402 float32 float32_rem( float32, float32 STATUS_PARAM ); 403 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM); 404 float32 float32_sqrt( float32 STATUS_PARAM ); 405 float32 float32_exp2( float32 STATUS_PARAM ); 406 float32 float32_log2( float32 STATUS_PARAM ); 407 int float32_eq( float32, float32 STATUS_PARAM ); 408 int float32_le( float32, float32 STATUS_PARAM ); 409 int float32_lt( float32, float32 STATUS_PARAM ); 410 int float32_unordered( float32, float32 STATUS_PARAM ); 411 int float32_eq_quiet( float32, float32 STATUS_PARAM ); 412 int float32_le_quiet( float32, float32 STATUS_PARAM ); 413 int float32_lt_quiet( float32, float32 STATUS_PARAM ); 414 int float32_unordered_quiet( float32, float32 STATUS_PARAM ); 415 int float32_compare( float32, float32 STATUS_PARAM ); 416 int float32_compare_quiet( float32, float32 STATUS_PARAM ); 417 float32 float32_min(float32, float32 STATUS_PARAM); 418 float32 float32_max(float32, float32 STATUS_PARAM); 419 float32 float32_minnum(float32, float32 STATUS_PARAM); 420 float32 float32_maxnum(float32, float32 STATUS_PARAM); 421 float32 float32_minnummag(float32, float32 STATUS_PARAM); 422 float32 float32_maxnummag(float32, float32 STATUS_PARAM); 423 int float32_is_quiet_nan( float32 ); 424 int float32_is_signaling_nan( float32 ); 425 float32 float32_maybe_silence_nan( float32 ); 426 float32 float32_scalbn( float32, int STATUS_PARAM ); 427 428 static inline float32 float32_abs(float32 a) 429 { 430 /* Note that abs does *not* handle NaN specially, nor does 431 * it flush denormal inputs to zero. 432 */ 433 return make_float32(float32_val(a) & 0x7fffffff); 434 } 435 436 static inline float32 float32_chs(float32 a) 437 { 438 /* Note that chs does *not* handle NaN specially, nor does 439 * it flush denormal inputs to zero. 440 */ 441 return make_float32(float32_val(a) ^ 0x80000000); 442 } 443 444 static inline int float32_is_infinity(float32 a) 445 { 446 return (float32_val(a) & 0x7fffffff) == 0x7f800000; 447 } 448 449 static inline int float32_is_neg(float32 a) 450 { 451 return float32_val(a) >> 31; 452 } 453 454 static inline int float32_is_zero(float32 a) 455 { 456 return (float32_val(a) & 0x7fffffff) == 0; 457 } 458 459 static inline int float32_is_any_nan(float32 a) 460 { 461 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); 462 } 463 464 static inline int float32_is_zero_or_denormal(float32 a) 465 { 466 return (float32_val(a) & 0x7f800000) == 0; 467 } 468 469 static inline float32 float32_set_sign(float32 a, int sign) 470 { 471 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); 472 } 473 474 #define float32_zero make_float32(0) 475 #define float32_one make_float32(0x3f800000) 476 #define float32_ln2 make_float32(0x3f317218) 477 #define float32_pi make_float32(0x40490fdb) 478 #define float32_half make_float32(0x3f000000) 479 #define float32_infinity make_float32(0x7f800000) 480 481 482 /*---------------------------------------------------------------------------- 483 | The pattern for a default generated single-precision NaN. 484 *----------------------------------------------------------------------------*/ 485 extern const float32 float32_default_nan; 486 487 /*---------------------------------------------------------------------------- 488 | Software IEC/IEEE double-precision conversion routines. 489 *----------------------------------------------------------------------------*/ 490 int_fast16_t float64_to_int16(float64 STATUS_PARAM); 491 uint_fast16_t float64_to_uint16(float64 STATUS_PARAM); 492 int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM); 493 uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM); 494 int32 float64_to_int32( float64 STATUS_PARAM ); 495 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM ); 496 uint32 float64_to_uint32( float64 STATUS_PARAM ); 497 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM ); 498 int64 float64_to_int64( float64 STATUS_PARAM ); 499 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM ); 500 uint64 float64_to_uint64 (float64 a STATUS_PARAM); 501 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM); 502 float32 float64_to_float32( float64 STATUS_PARAM ); 503 floatx80 float64_to_floatx80( float64 STATUS_PARAM ); 504 float128 float64_to_float128( float64 STATUS_PARAM ); 505 506 /*---------------------------------------------------------------------------- 507 | Software IEC/IEEE double-precision operations. 508 *----------------------------------------------------------------------------*/ 509 float64 float64_round_to_int( float64 STATUS_PARAM ); 510 float64 float64_trunc_to_int( float64 STATUS_PARAM ); 511 float64 float64_add( float64, float64 STATUS_PARAM ); 512 float64 float64_sub( float64, float64 STATUS_PARAM ); 513 float64 float64_mul( float64, float64 STATUS_PARAM ); 514 float64 float64_div( float64, float64 STATUS_PARAM ); 515 float64 float64_rem( float64, float64 STATUS_PARAM ); 516 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM); 517 float64 float64_sqrt( float64 STATUS_PARAM ); 518 float64 float64_log2( float64 STATUS_PARAM ); 519 int float64_eq( float64, float64 STATUS_PARAM ); 520 int float64_le( float64, float64 STATUS_PARAM ); 521 int float64_lt( float64, float64 STATUS_PARAM ); 522 int float64_unordered( float64, float64 STATUS_PARAM ); 523 int float64_eq_quiet( float64, float64 STATUS_PARAM ); 524 int float64_le_quiet( float64, float64 STATUS_PARAM ); 525 int float64_lt_quiet( float64, float64 STATUS_PARAM ); 526 int float64_unordered_quiet( float64, float64 STATUS_PARAM ); 527 int float64_compare( float64, float64 STATUS_PARAM ); 528 int float64_compare_quiet( float64, float64 STATUS_PARAM ); 529 float64 float64_min(float64, float64 STATUS_PARAM); 530 float64 float64_max(float64, float64 STATUS_PARAM); 531 float64 float64_minnum(float64, float64 STATUS_PARAM); 532 float64 float64_maxnum(float64, float64 STATUS_PARAM); 533 float64 float64_minnummag(float64, float64 STATUS_PARAM); 534 float64 float64_maxnummag(float64, float64 STATUS_PARAM); 535 int float64_is_quiet_nan( float64 a ); 536 int float64_is_signaling_nan( float64 ); 537 float64 float64_maybe_silence_nan( float64 ); 538 float64 float64_scalbn( float64, int STATUS_PARAM ); 539 540 static inline float64 float64_abs(float64 a) 541 { 542 /* Note that abs does *not* handle NaN specially, nor does 543 * it flush denormal inputs to zero. 544 */ 545 return make_float64(float64_val(a) & 0x7fffffffffffffffLL); 546 } 547 548 static inline float64 float64_chs(float64 a) 549 { 550 /* Note that chs does *not* handle NaN specially, nor does 551 * it flush denormal inputs to zero. 552 */ 553 return make_float64(float64_val(a) ^ 0x8000000000000000LL); 554 } 555 556 static inline int float64_is_infinity(float64 a) 557 { 558 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; 559 } 560 561 static inline int float64_is_neg(float64 a) 562 { 563 return float64_val(a) >> 63; 564 } 565 566 static inline int float64_is_zero(float64 a) 567 { 568 return (float64_val(a) & 0x7fffffffffffffffLL) == 0; 569 } 570 571 static inline int float64_is_any_nan(float64 a) 572 { 573 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); 574 } 575 576 static inline int float64_is_zero_or_denormal(float64 a) 577 { 578 return (float64_val(a) & 0x7ff0000000000000LL) == 0; 579 } 580 581 static inline float64 float64_set_sign(float64 a, int sign) 582 { 583 return make_float64((float64_val(a) & 0x7fffffffffffffffULL) 584 | ((int64_t)sign << 63)); 585 } 586 587 #define float64_zero make_float64(0) 588 #define float64_one make_float64(0x3ff0000000000000LL) 589 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) 590 #define float64_pi make_float64(0x400921fb54442d18LL) 591 #define float64_half make_float64(0x3fe0000000000000LL) 592 #define float64_infinity make_float64(0x7ff0000000000000LL) 593 594 /*---------------------------------------------------------------------------- 595 | The pattern for a default generated double-precision NaN. 596 *----------------------------------------------------------------------------*/ 597 extern const float64 float64_default_nan; 598 599 /*---------------------------------------------------------------------------- 600 | Software IEC/IEEE extended double-precision conversion routines. 601 *----------------------------------------------------------------------------*/ 602 int32 floatx80_to_int32( floatx80 STATUS_PARAM ); 603 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM ); 604 int64 floatx80_to_int64( floatx80 STATUS_PARAM ); 605 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM ); 606 float32 floatx80_to_float32( floatx80 STATUS_PARAM ); 607 float64 floatx80_to_float64( floatx80 STATUS_PARAM ); 608 float128 floatx80_to_float128( floatx80 STATUS_PARAM ); 609 610 /*---------------------------------------------------------------------------- 611 | Software IEC/IEEE extended double-precision operations. 612 *----------------------------------------------------------------------------*/ 613 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM ); 614 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM ); 615 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM ); 616 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM ); 617 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM ); 618 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM ); 619 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM ); 620 int floatx80_eq( floatx80, floatx80 STATUS_PARAM ); 621 int floatx80_le( floatx80, floatx80 STATUS_PARAM ); 622 int floatx80_lt( floatx80, floatx80 STATUS_PARAM ); 623 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM ); 624 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM ); 625 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM ); 626 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM ); 627 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM ); 628 int floatx80_compare( floatx80, floatx80 STATUS_PARAM ); 629 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM ); 630 int floatx80_is_quiet_nan( floatx80 ); 631 int floatx80_is_signaling_nan( floatx80 ); 632 floatx80 floatx80_maybe_silence_nan( floatx80 ); 633 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM ); 634 635 static inline floatx80 floatx80_abs(floatx80 a) 636 { 637 a.high &= 0x7fff; 638 return a; 639 } 640 641 static inline floatx80 floatx80_chs(floatx80 a) 642 { 643 a.high ^= 0x8000; 644 return a; 645 } 646 647 static inline int floatx80_is_infinity(floatx80 a) 648 { 649 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; 650 } 651 652 static inline int floatx80_is_neg(floatx80 a) 653 { 654 return a.high >> 15; 655 } 656 657 static inline int floatx80_is_zero(floatx80 a) 658 { 659 return (a.high & 0x7fff) == 0 && a.low == 0; 660 } 661 662 static inline int floatx80_is_zero_or_denormal(floatx80 a) 663 { 664 return (a.high & 0x7fff) == 0; 665 } 666 667 static inline int floatx80_is_any_nan(floatx80 a) 668 { 669 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); 670 } 671 672 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) 673 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) 674 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) 675 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) 676 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) 677 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) 678 679 /*---------------------------------------------------------------------------- 680 | The pattern for a default generated extended double-precision NaN. 681 *----------------------------------------------------------------------------*/ 682 extern const floatx80 floatx80_default_nan; 683 684 /*---------------------------------------------------------------------------- 685 | Software IEC/IEEE quadruple-precision conversion routines. 686 *----------------------------------------------------------------------------*/ 687 int32 float128_to_int32( float128 STATUS_PARAM ); 688 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM ); 689 int64 float128_to_int64( float128 STATUS_PARAM ); 690 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM ); 691 float32 float128_to_float32( float128 STATUS_PARAM ); 692 float64 float128_to_float64( float128 STATUS_PARAM ); 693 floatx80 float128_to_floatx80( float128 STATUS_PARAM ); 694 695 /*---------------------------------------------------------------------------- 696 | Software IEC/IEEE quadruple-precision operations. 697 *----------------------------------------------------------------------------*/ 698 float128 float128_round_to_int( float128 STATUS_PARAM ); 699 float128 float128_add( float128, float128 STATUS_PARAM ); 700 float128 float128_sub( float128, float128 STATUS_PARAM ); 701 float128 float128_mul( float128, float128 STATUS_PARAM ); 702 float128 float128_div( float128, float128 STATUS_PARAM ); 703 float128 float128_rem( float128, float128 STATUS_PARAM ); 704 float128 float128_sqrt( float128 STATUS_PARAM ); 705 int float128_eq( float128, float128 STATUS_PARAM ); 706 int float128_le( float128, float128 STATUS_PARAM ); 707 int float128_lt( float128, float128 STATUS_PARAM ); 708 int float128_unordered( float128, float128 STATUS_PARAM ); 709 int float128_eq_quiet( float128, float128 STATUS_PARAM ); 710 int float128_le_quiet( float128, float128 STATUS_PARAM ); 711 int float128_lt_quiet( float128, float128 STATUS_PARAM ); 712 int float128_unordered_quiet( float128, float128 STATUS_PARAM ); 713 int float128_compare( float128, float128 STATUS_PARAM ); 714 int float128_compare_quiet( float128, float128 STATUS_PARAM ); 715 int float128_is_quiet_nan( float128 ); 716 int float128_is_signaling_nan( float128 ); 717 float128 float128_maybe_silence_nan( float128 ); 718 float128 float128_scalbn( float128, int STATUS_PARAM ); 719 720 static inline float128 float128_abs(float128 a) 721 { 722 a.high &= 0x7fffffffffffffffLL; 723 return a; 724 } 725 726 static inline float128 float128_chs(float128 a) 727 { 728 a.high ^= 0x8000000000000000LL; 729 return a; 730 } 731 732 static inline int float128_is_infinity(float128 a) 733 { 734 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; 735 } 736 737 static inline int float128_is_neg(float128 a) 738 { 739 return a.high >> 63; 740 } 741 742 static inline int float128_is_zero(float128 a) 743 { 744 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; 745 } 746 747 static inline int float128_is_zero_or_denormal(float128 a) 748 { 749 return (a.high & 0x7fff000000000000LL) == 0; 750 } 751 752 static inline int float128_is_any_nan(float128 a) 753 { 754 return ((a.high >> 48) & 0x7fff) == 0x7fff && 755 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); 756 } 757 758 #define float128_zero make_float128(0, 0) 759 760 /*---------------------------------------------------------------------------- 761 | The pattern for a default generated quadruple-precision NaN. 762 *----------------------------------------------------------------------------*/ 763 extern const float128 float128_default_nan; 764 765 #endif /* !SOFTFLOAT_H */ 766