xref: /openbmc/qemu/include/fpu/softfloat.h (revision bfb27e60)
1 /*
2  * QEMU float support
3  *
4  * Derived from SoftFloat.
5  */
6 
7 /*============================================================================
8 
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11 
12 Written by John R. Hauser.  This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704.  Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980.  The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21 
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30 
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35 
36 =============================================================================*/
37 
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40 
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44 
45 #include <inttypes.h>
46 #include "config-host.h"
47 #include "qemu/osdep.h"
48 
49 /*----------------------------------------------------------------------------
50 | Each of the following `typedef's defines the most convenient type that holds
51 | integers of at least as many bits as specified.  For example, `uint8' should
52 | be the most convenient type that can hold unsigned integers of as many as
53 | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
54 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55 | to the same as `int'.
56 *----------------------------------------------------------------------------*/
57 typedef uint8_t flag;
58 typedef uint8_t uint8;
59 typedef int8_t int8;
60 typedef unsigned int uint32;
61 typedef signed int int32;
62 typedef uint64_t uint64;
63 typedef int64_t int64;
64 
65 #define LIT64( a ) a##LL
66 
67 #define STATUS_PARAM , float_status *status
68 #define STATUS(field) status->field
69 #define STATUS_VAR , status
70 
71 /*----------------------------------------------------------------------------
72 | Software IEC/IEEE floating-point ordering relations
73 *----------------------------------------------------------------------------*/
74 enum {
75     float_relation_less      = -1,
76     float_relation_equal     =  0,
77     float_relation_greater   =  1,
78     float_relation_unordered =  2
79 };
80 
81 /*----------------------------------------------------------------------------
82 | Software IEC/IEEE floating-point types.
83 *----------------------------------------------------------------------------*/
84 /* Use structures for soft-float types.  This prevents accidentally mixing
85    them with native int/float types.  A sufficiently clever compiler and
86    sane ABI should be able to see though these structs.  However
87    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
88 //#define USE_SOFTFLOAT_STRUCT_TYPES
89 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
90 typedef struct {
91     uint16_t v;
92 } float16;
93 #define float16_val(x) (((float16)(x)).v)
94 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
95 #define const_float16(x) { x }
96 typedef struct {
97     uint32_t v;
98 } float32;
99 /* The cast ensures an error if the wrong type is passed.  */
100 #define float32_val(x) (((float32)(x)).v)
101 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
102 #define const_float32(x) { x }
103 typedef struct {
104     uint64_t v;
105 } float64;
106 #define float64_val(x) (((float64)(x)).v)
107 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
108 #define const_float64(x) { x }
109 #else
110 typedef uint16_t float16;
111 typedef uint32_t float32;
112 typedef uint64_t float64;
113 #define float16_val(x) (x)
114 #define float32_val(x) (x)
115 #define float64_val(x) (x)
116 #define make_float16(x) (x)
117 #define make_float32(x) (x)
118 #define make_float64(x) (x)
119 #define const_float16(x) (x)
120 #define const_float32(x) (x)
121 #define const_float64(x) (x)
122 #endif
123 typedef struct {
124     uint64_t low;
125     uint16_t high;
126 } floatx80;
127 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
128 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
129 typedef struct {
130 #ifdef HOST_WORDS_BIGENDIAN
131     uint64_t high, low;
132 #else
133     uint64_t low, high;
134 #endif
135 } float128;
136 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
137 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
138 
139 /*----------------------------------------------------------------------------
140 | Software IEC/IEEE floating-point underflow tininess-detection mode.
141 *----------------------------------------------------------------------------*/
142 enum {
143     float_tininess_after_rounding  = 0,
144     float_tininess_before_rounding = 1
145 };
146 
147 /*----------------------------------------------------------------------------
148 | Software IEC/IEEE floating-point rounding mode.
149 *----------------------------------------------------------------------------*/
150 enum {
151     float_round_nearest_even = 0,
152     float_round_down         = 1,
153     float_round_up           = 2,
154     float_round_to_zero      = 3,
155     float_round_ties_away    = 4,
156 };
157 
158 /*----------------------------------------------------------------------------
159 | Software IEC/IEEE floating-point exception flags.
160 *----------------------------------------------------------------------------*/
161 enum {
162     float_flag_invalid   =  1,
163     float_flag_divbyzero =  4,
164     float_flag_overflow  =  8,
165     float_flag_underflow = 16,
166     float_flag_inexact   = 32,
167     float_flag_input_denormal = 64,
168     float_flag_output_denormal = 128
169 };
170 
171 typedef struct float_status {
172     signed char float_detect_tininess;
173     signed char float_rounding_mode;
174     signed char float_exception_flags;
175     signed char floatx80_rounding_precision;
176     /* should denormalised results go to zero and set the inexact flag? */
177     flag flush_to_zero;
178     /* should denormalised inputs go to zero and set the input_denormal flag? */
179     flag flush_inputs_to_zero;
180     flag default_nan_mode;
181 } float_status;
182 
183 static inline void set_float_detect_tininess(int val STATUS_PARAM)
184 {
185     STATUS(float_detect_tininess) = val;
186 }
187 static inline void set_float_rounding_mode(int val STATUS_PARAM)
188 {
189     STATUS(float_rounding_mode) = val;
190 }
191 static inline void set_float_exception_flags(int val STATUS_PARAM)
192 {
193     STATUS(float_exception_flags) = val;
194 }
195 static inline void set_floatx80_rounding_precision(int val STATUS_PARAM)
196 {
197     STATUS(floatx80_rounding_precision) = val;
198 }
199 static inline void set_flush_to_zero(flag val STATUS_PARAM)
200 {
201     STATUS(flush_to_zero) = val;
202 }
203 static inline void set_flush_inputs_to_zero(flag val STATUS_PARAM)
204 {
205     STATUS(flush_inputs_to_zero) = val;
206 }
207 static inline void set_default_nan_mode(flag val STATUS_PARAM)
208 {
209     STATUS(default_nan_mode) = val;
210 }
211 static inline int get_float_detect_tininess(float_status *status)
212 {
213     return STATUS(float_detect_tininess);
214 }
215 static inline int get_float_rounding_mode(float_status *status)
216 {
217     return STATUS(float_rounding_mode);
218 }
219 static inline int get_float_exception_flags(float_status *status)
220 {
221     return STATUS(float_exception_flags);
222 }
223 static inline int get_floatx80_rounding_precision(float_status *status)
224 {
225     return STATUS(floatx80_rounding_precision);
226 }
227 static inline flag get_flush_to_zero(float_status *status)
228 {
229     return STATUS(flush_to_zero);
230 }
231 static inline flag get_flush_inputs_to_zero(float_status *status)
232 {
233     return STATUS(flush_inputs_to_zero);
234 }
235 static inline flag get_default_nan_mode(float_status *status)
236 {
237     return STATUS(default_nan_mode);
238 }
239 
240 /*----------------------------------------------------------------------------
241 | Routine to raise any or all of the software IEC/IEEE floating-point
242 | exception flags.
243 *----------------------------------------------------------------------------*/
244 void float_raise( int8 flags STATUS_PARAM);
245 
246 /*----------------------------------------------------------------------------
247 | If `a' is denormal and we are in flush-to-zero mode then set the
248 | input-denormal exception and return zero. Otherwise just return the value.
249 *----------------------------------------------------------------------------*/
250 float32 float32_squash_input_denormal(float32 a STATUS_PARAM);
251 float64 float64_squash_input_denormal(float64 a STATUS_PARAM);
252 
253 /*----------------------------------------------------------------------------
254 | Options to indicate which negations to perform in float*_muladd()
255 | Using these differs from negating an input or output before calling
256 | the muladd function in that this means that a NaN doesn't have its
257 | sign bit inverted before it is propagated.
258 | We also support halving the result before rounding, as a special
259 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
260 *----------------------------------------------------------------------------*/
261 enum {
262     float_muladd_negate_c = 1,
263     float_muladd_negate_product = 2,
264     float_muladd_negate_result = 4,
265     float_muladd_halve_result = 8,
266 };
267 
268 /*----------------------------------------------------------------------------
269 | Software IEC/IEEE integer-to-floating-point conversion routines.
270 *----------------------------------------------------------------------------*/
271 float32 int32_to_float32(int32_t STATUS_PARAM);
272 float64 int32_to_float64(int32_t STATUS_PARAM);
273 float32 uint32_to_float32(uint32_t STATUS_PARAM);
274 float64 uint32_to_float64(uint32_t STATUS_PARAM);
275 floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
276 float128 int32_to_float128(int32_t STATUS_PARAM);
277 float32 int64_to_float32(int64_t STATUS_PARAM);
278 float32 uint64_to_float32(uint64_t STATUS_PARAM);
279 float64 int64_to_float64(int64_t STATUS_PARAM);
280 float64 uint64_to_float64(uint64_t STATUS_PARAM);
281 floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
282 float128 int64_to_float128(int64_t STATUS_PARAM);
283 float128 uint64_to_float128(uint64_t STATUS_PARAM);
284 
285 /* We provide the int16 versions for symmetry of API with float-to-int */
286 static inline float32 int16_to_float32(int16_t v STATUS_PARAM)
287 {
288     return int32_to_float32(v STATUS_VAR);
289 }
290 
291 static inline float32 uint16_to_float32(uint16_t v STATUS_PARAM)
292 {
293     return uint32_to_float32(v STATUS_VAR);
294 }
295 
296 static inline float64 int16_to_float64(int16_t v STATUS_PARAM)
297 {
298     return int32_to_float64(v STATUS_VAR);
299 }
300 
301 static inline float64 uint16_to_float64(uint16_t v STATUS_PARAM)
302 {
303     return uint32_to_float64(v STATUS_VAR);
304 }
305 
306 /*----------------------------------------------------------------------------
307 | Software half-precision conversion routines.
308 *----------------------------------------------------------------------------*/
309 float16 float32_to_float16( float32, flag STATUS_PARAM );
310 float32 float16_to_float32( float16, flag STATUS_PARAM );
311 float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM);
312 float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM);
313 
314 /*----------------------------------------------------------------------------
315 | Software half-precision operations.
316 *----------------------------------------------------------------------------*/
317 int float16_is_quiet_nan( float16 );
318 int float16_is_signaling_nan( float16 );
319 float16 float16_maybe_silence_nan( float16 );
320 
321 static inline int float16_is_any_nan(float16 a)
322 {
323     return ((float16_val(a) & ~0x8000) > 0x7c00);
324 }
325 
326 /*----------------------------------------------------------------------------
327 | The pattern for a default generated half-precision NaN.
328 *----------------------------------------------------------------------------*/
329 extern const float16 float16_default_nan;
330 
331 /*----------------------------------------------------------------------------
332 | Software IEC/IEEE single-precision conversion routines.
333 *----------------------------------------------------------------------------*/
334 int_fast16_t float32_to_int16(float32 STATUS_PARAM);
335 uint_fast16_t float32_to_uint16(float32 STATUS_PARAM);
336 int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
337 uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
338 int32 float32_to_int32( float32 STATUS_PARAM );
339 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
340 uint32 float32_to_uint32( float32 STATUS_PARAM );
341 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
342 int64 float32_to_int64( float32 STATUS_PARAM );
343 uint64 float32_to_uint64(float32 STATUS_PARAM);
344 uint64 float32_to_uint64_round_to_zero(float32 STATUS_PARAM);
345 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
346 float64 float32_to_float64( float32 STATUS_PARAM );
347 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
348 float128 float32_to_float128( float32 STATUS_PARAM );
349 
350 /*----------------------------------------------------------------------------
351 | Software IEC/IEEE single-precision operations.
352 *----------------------------------------------------------------------------*/
353 float32 float32_round_to_int( float32 STATUS_PARAM );
354 float32 float32_add( float32, float32 STATUS_PARAM );
355 float32 float32_sub( float32, float32 STATUS_PARAM );
356 float32 float32_mul( float32, float32 STATUS_PARAM );
357 float32 float32_div( float32, float32 STATUS_PARAM );
358 float32 float32_rem( float32, float32 STATUS_PARAM );
359 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
360 float32 float32_sqrt( float32 STATUS_PARAM );
361 float32 float32_exp2( float32 STATUS_PARAM );
362 float32 float32_log2( float32 STATUS_PARAM );
363 int float32_eq( float32, float32 STATUS_PARAM );
364 int float32_le( float32, float32 STATUS_PARAM );
365 int float32_lt( float32, float32 STATUS_PARAM );
366 int float32_unordered( float32, float32 STATUS_PARAM );
367 int float32_eq_quiet( float32, float32 STATUS_PARAM );
368 int float32_le_quiet( float32, float32 STATUS_PARAM );
369 int float32_lt_quiet( float32, float32 STATUS_PARAM );
370 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
371 int float32_compare( float32, float32 STATUS_PARAM );
372 int float32_compare_quiet( float32, float32 STATUS_PARAM );
373 float32 float32_min(float32, float32 STATUS_PARAM);
374 float32 float32_max(float32, float32 STATUS_PARAM);
375 float32 float32_minnum(float32, float32 STATUS_PARAM);
376 float32 float32_maxnum(float32, float32 STATUS_PARAM);
377 int float32_is_quiet_nan( float32 );
378 int float32_is_signaling_nan( float32 );
379 float32 float32_maybe_silence_nan( float32 );
380 float32 float32_scalbn( float32, int STATUS_PARAM );
381 
382 static inline float32 float32_abs(float32 a)
383 {
384     /* Note that abs does *not* handle NaN specially, nor does
385      * it flush denormal inputs to zero.
386      */
387     return make_float32(float32_val(a) & 0x7fffffff);
388 }
389 
390 static inline float32 float32_chs(float32 a)
391 {
392     /* Note that chs does *not* handle NaN specially, nor does
393      * it flush denormal inputs to zero.
394      */
395     return make_float32(float32_val(a) ^ 0x80000000);
396 }
397 
398 static inline int float32_is_infinity(float32 a)
399 {
400     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
401 }
402 
403 static inline int float32_is_neg(float32 a)
404 {
405     return float32_val(a) >> 31;
406 }
407 
408 static inline int float32_is_zero(float32 a)
409 {
410     return (float32_val(a) & 0x7fffffff) == 0;
411 }
412 
413 static inline int float32_is_any_nan(float32 a)
414 {
415     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
416 }
417 
418 static inline int float32_is_zero_or_denormal(float32 a)
419 {
420     return (float32_val(a) & 0x7f800000) == 0;
421 }
422 
423 static inline float32 float32_set_sign(float32 a, int sign)
424 {
425     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
426 }
427 
428 #define float32_zero make_float32(0)
429 #define float32_one make_float32(0x3f800000)
430 #define float32_ln2 make_float32(0x3f317218)
431 #define float32_pi make_float32(0x40490fdb)
432 #define float32_half make_float32(0x3f000000)
433 #define float32_infinity make_float32(0x7f800000)
434 
435 
436 /*----------------------------------------------------------------------------
437 | The pattern for a default generated single-precision NaN.
438 *----------------------------------------------------------------------------*/
439 extern const float32 float32_default_nan;
440 
441 /*----------------------------------------------------------------------------
442 | Software IEC/IEEE double-precision conversion routines.
443 *----------------------------------------------------------------------------*/
444 int_fast16_t float64_to_int16(float64 STATUS_PARAM);
445 uint_fast16_t float64_to_uint16(float64 STATUS_PARAM);
446 int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
447 uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
448 int32 float64_to_int32( float64 STATUS_PARAM );
449 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
450 uint32 float64_to_uint32( float64 STATUS_PARAM );
451 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
452 int64 float64_to_int64( float64 STATUS_PARAM );
453 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
454 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
455 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
456 float32 float64_to_float32( float64 STATUS_PARAM );
457 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
458 float128 float64_to_float128( float64 STATUS_PARAM );
459 
460 /*----------------------------------------------------------------------------
461 | Software IEC/IEEE double-precision operations.
462 *----------------------------------------------------------------------------*/
463 float64 float64_round_to_int( float64 STATUS_PARAM );
464 float64 float64_trunc_to_int( float64 STATUS_PARAM );
465 float64 float64_add( float64, float64 STATUS_PARAM );
466 float64 float64_sub( float64, float64 STATUS_PARAM );
467 float64 float64_mul( float64, float64 STATUS_PARAM );
468 float64 float64_div( float64, float64 STATUS_PARAM );
469 float64 float64_rem( float64, float64 STATUS_PARAM );
470 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
471 float64 float64_sqrt( float64 STATUS_PARAM );
472 float64 float64_log2( float64 STATUS_PARAM );
473 int float64_eq( float64, float64 STATUS_PARAM );
474 int float64_le( float64, float64 STATUS_PARAM );
475 int float64_lt( float64, float64 STATUS_PARAM );
476 int float64_unordered( float64, float64 STATUS_PARAM );
477 int float64_eq_quiet( float64, float64 STATUS_PARAM );
478 int float64_le_quiet( float64, float64 STATUS_PARAM );
479 int float64_lt_quiet( float64, float64 STATUS_PARAM );
480 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
481 int float64_compare( float64, float64 STATUS_PARAM );
482 int float64_compare_quiet( float64, float64 STATUS_PARAM );
483 float64 float64_min(float64, float64 STATUS_PARAM);
484 float64 float64_max(float64, float64 STATUS_PARAM);
485 float64 float64_minnum(float64, float64 STATUS_PARAM);
486 float64 float64_maxnum(float64, float64 STATUS_PARAM);
487 int float64_is_quiet_nan( float64 a );
488 int float64_is_signaling_nan( float64 );
489 float64 float64_maybe_silence_nan( float64 );
490 float64 float64_scalbn( float64, int STATUS_PARAM );
491 
492 static inline float64 float64_abs(float64 a)
493 {
494     /* Note that abs does *not* handle NaN specially, nor does
495      * it flush denormal inputs to zero.
496      */
497     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
498 }
499 
500 static inline float64 float64_chs(float64 a)
501 {
502     /* Note that chs does *not* handle NaN specially, nor does
503      * it flush denormal inputs to zero.
504      */
505     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
506 }
507 
508 static inline int float64_is_infinity(float64 a)
509 {
510     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
511 }
512 
513 static inline int float64_is_neg(float64 a)
514 {
515     return float64_val(a) >> 63;
516 }
517 
518 static inline int float64_is_zero(float64 a)
519 {
520     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
521 }
522 
523 static inline int float64_is_any_nan(float64 a)
524 {
525     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
526 }
527 
528 static inline int float64_is_zero_or_denormal(float64 a)
529 {
530     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
531 }
532 
533 static inline float64 float64_set_sign(float64 a, int sign)
534 {
535     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
536                         | ((int64_t)sign << 63));
537 }
538 
539 #define float64_zero make_float64(0)
540 #define float64_one make_float64(0x3ff0000000000000LL)
541 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
542 #define float64_pi make_float64(0x400921fb54442d18LL)
543 #define float64_half make_float64(0x3fe0000000000000LL)
544 #define float64_infinity make_float64(0x7ff0000000000000LL)
545 
546 /*----------------------------------------------------------------------------
547 | The pattern for a default generated double-precision NaN.
548 *----------------------------------------------------------------------------*/
549 extern const float64 float64_default_nan;
550 
551 /*----------------------------------------------------------------------------
552 | Software IEC/IEEE extended double-precision conversion routines.
553 *----------------------------------------------------------------------------*/
554 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
555 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
556 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
557 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
558 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
559 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
560 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
561 
562 /*----------------------------------------------------------------------------
563 | Software IEC/IEEE extended double-precision operations.
564 *----------------------------------------------------------------------------*/
565 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
566 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
567 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
568 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
569 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
570 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
571 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
572 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
573 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
574 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
575 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
576 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
577 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
578 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
579 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
580 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
581 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
582 int floatx80_is_quiet_nan( floatx80 );
583 int floatx80_is_signaling_nan( floatx80 );
584 floatx80 floatx80_maybe_silence_nan( floatx80 );
585 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
586 
587 static inline floatx80 floatx80_abs(floatx80 a)
588 {
589     a.high &= 0x7fff;
590     return a;
591 }
592 
593 static inline floatx80 floatx80_chs(floatx80 a)
594 {
595     a.high ^= 0x8000;
596     return a;
597 }
598 
599 static inline int floatx80_is_infinity(floatx80 a)
600 {
601     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
602 }
603 
604 static inline int floatx80_is_neg(floatx80 a)
605 {
606     return a.high >> 15;
607 }
608 
609 static inline int floatx80_is_zero(floatx80 a)
610 {
611     return (a.high & 0x7fff) == 0 && a.low == 0;
612 }
613 
614 static inline int floatx80_is_zero_or_denormal(floatx80 a)
615 {
616     return (a.high & 0x7fff) == 0;
617 }
618 
619 static inline int floatx80_is_any_nan(floatx80 a)
620 {
621     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
622 }
623 
624 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
625 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
626 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
627 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
628 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
629 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
630 
631 /*----------------------------------------------------------------------------
632 | The pattern for a default generated extended double-precision NaN.
633 *----------------------------------------------------------------------------*/
634 extern const floatx80 floatx80_default_nan;
635 
636 /*----------------------------------------------------------------------------
637 | Software IEC/IEEE quadruple-precision conversion routines.
638 *----------------------------------------------------------------------------*/
639 int32 float128_to_int32( float128 STATUS_PARAM );
640 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
641 int64 float128_to_int64( float128 STATUS_PARAM );
642 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
643 float32 float128_to_float32( float128 STATUS_PARAM );
644 float64 float128_to_float64( float128 STATUS_PARAM );
645 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
646 
647 /*----------------------------------------------------------------------------
648 | Software IEC/IEEE quadruple-precision operations.
649 *----------------------------------------------------------------------------*/
650 float128 float128_round_to_int( float128 STATUS_PARAM );
651 float128 float128_add( float128, float128 STATUS_PARAM );
652 float128 float128_sub( float128, float128 STATUS_PARAM );
653 float128 float128_mul( float128, float128 STATUS_PARAM );
654 float128 float128_div( float128, float128 STATUS_PARAM );
655 float128 float128_rem( float128, float128 STATUS_PARAM );
656 float128 float128_sqrt( float128 STATUS_PARAM );
657 int float128_eq( float128, float128 STATUS_PARAM );
658 int float128_le( float128, float128 STATUS_PARAM );
659 int float128_lt( float128, float128 STATUS_PARAM );
660 int float128_unordered( float128, float128 STATUS_PARAM );
661 int float128_eq_quiet( float128, float128 STATUS_PARAM );
662 int float128_le_quiet( float128, float128 STATUS_PARAM );
663 int float128_lt_quiet( float128, float128 STATUS_PARAM );
664 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
665 int float128_compare( float128, float128 STATUS_PARAM );
666 int float128_compare_quiet( float128, float128 STATUS_PARAM );
667 int float128_is_quiet_nan( float128 );
668 int float128_is_signaling_nan( float128 );
669 float128 float128_maybe_silence_nan( float128 );
670 float128 float128_scalbn( float128, int STATUS_PARAM );
671 
672 static inline float128 float128_abs(float128 a)
673 {
674     a.high &= 0x7fffffffffffffffLL;
675     return a;
676 }
677 
678 static inline float128 float128_chs(float128 a)
679 {
680     a.high ^= 0x8000000000000000LL;
681     return a;
682 }
683 
684 static inline int float128_is_infinity(float128 a)
685 {
686     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
687 }
688 
689 static inline int float128_is_neg(float128 a)
690 {
691     return a.high >> 63;
692 }
693 
694 static inline int float128_is_zero(float128 a)
695 {
696     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
697 }
698 
699 static inline int float128_is_zero_or_denormal(float128 a)
700 {
701     return (a.high & 0x7fff000000000000LL) == 0;
702 }
703 
704 static inline int float128_is_any_nan(float128 a)
705 {
706     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
707         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
708 }
709 
710 #define float128_zero make_float128(0, 0)
711 
712 /*----------------------------------------------------------------------------
713 | The pattern for a default generated quadruple-precision NaN.
714 *----------------------------------------------------------------------------*/
715 extern const float128 float128_default_nan;
716 
717 #endif /* !SOFTFLOAT_H */
718