xref: /openbmc/qemu/include/fpu/softfloat.h (revision b8bcf811)
1 /*
2  * QEMU float support
3  *
4  * Derived from SoftFloat.
5  */
6 
7 /*============================================================================
8 
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11 
12 Written by John R. Hauser.  This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704.  Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980.  The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21 
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30 
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35 
36 =============================================================================*/
37 
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40 
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44 
45 #include <inttypes.h>
46 #include "config-host.h"
47 #include "qemu/osdep.h"
48 
49 /*----------------------------------------------------------------------------
50 | Each of the following `typedef's defines the most convenient type that holds
51 | integers of at least as many bits as specified.  For example, `uint8' should
52 | be the most convenient type that can hold unsigned integers of as many as
53 | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
54 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55 | to the same as `int'.
56 *----------------------------------------------------------------------------*/
57 typedef uint8_t flag;
58 typedef uint8_t uint8;
59 typedef int8_t int8;
60 typedef unsigned int uint32;
61 typedef signed int int32;
62 typedef uint64_t uint64;
63 typedef int64_t int64;
64 
65 #define LIT64( a ) a##LL
66 #define INLINE static inline
67 
68 #define STATUS_PARAM , float_status *status
69 #define STATUS(field) status->field
70 #define STATUS_VAR , status
71 
72 /*----------------------------------------------------------------------------
73 | Software IEC/IEEE floating-point ordering relations
74 *----------------------------------------------------------------------------*/
75 enum {
76     float_relation_less      = -1,
77     float_relation_equal     =  0,
78     float_relation_greater   =  1,
79     float_relation_unordered =  2
80 };
81 
82 /*----------------------------------------------------------------------------
83 | Software IEC/IEEE floating-point types.
84 *----------------------------------------------------------------------------*/
85 /* Use structures for soft-float types.  This prevents accidentally mixing
86    them with native int/float types.  A sufficiently clever compiler and
87    sane ABI should be able to see though these structs.  However
88    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
89 //#define USE_SOFTFLOAT_STRUCT_TYPES
90 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
91 typedef struct {
92     uint16_t v;
93 } float16;
94 #define float16_val(x) (((float16)(x)).v)
95 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
96 #define const_float16(x) { x }
97 typedef struct {
98     uint32_t v;
99 } float32;
100 /* The cast ensures an error if the wrong type is passed.  */
101 #define float32_val(x) (((float32)(x)).v)
102 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
103 #define const_float32(x) { x }
104 typedef struct {
105     uint64_t v;
106 } float64;
107 #define float64_val(x) (((float64)(x)).v)
108 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
109 #define const_float64(x) { x }
110 #else
111 typedef uint16_t float16;
112 typedef uint32_t float32;
113 typedef uint64_t float64;
114 #define float16_val(x) (x)
115 #define float32_val(x) (x)
116 #define float64_val(x) (x)
117 #define make_float16(x) (x)
118 #define make_float32(x) (x)
119 #define make_float64(x) (x)
120 #define const_float16(x) (x)
121 #define const_float32(x) (x)
122 #define const_float64(x) (x)
123 #endif
124 typedef struct {
125     uint64_t low;
126     uint16_t high;
127 } floatx80;
128 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
129 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
130 typedef struct {
131 #ifdef HOST_WORDS_BIGENDIAN
132     uint64_t high, low;
133 #else
134     uint64_t low, high;
135 #endif
136 } float128;
137 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
138 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
139 
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE floating-point underflow tininess-detection mode.
142 *----------------------------------------------------------------------------*/
143 enum {
144     float_tininess_after_rounding  = 0,
145     float_tininess_before_rounding = 1
146 };
147 
148 /*----------------------------------------------------------------------------
149 | Software IEC/IEEE floating-point rounding mode.
150 *----------------------------------------------------------------------------*/
151 enum {
152     float_round_nearest_even = 0,
153     float_round_down         = 1,
154     float_round_up           = 2,
155     float_round_to_zero      = 3,
156     float_round_ties_away    = 4,
157 };
158 
159 /*----------------------------------------------------------------------------
160 | Software IEC/IEEE floating-point exception flags.
161 *----------------------------------------------------------------------------*/
162 enum {
163     float_flag_invalid   =  1,
164     float_flag_divbyzero =  4,
165     float_flag_overflow  =  8,
166     float_flag_underflow = 16,
167     float_flag_inexact   = 32,
168     float_flag_input_denormal = 64,
169     float_flag_output_denormal = 128
170 };
171 
172 typedef struct float_status {
173     signed char float_detect_tininess;
174     signed char float_rounding_mode;
175     signed char float_exception_flags;
176     signed char floatx80_rounding_precision;
177     /* should denormalised results go to zero and set the inexact flag? */
178     flag flush_to_zero;
179     /* should denormalised inputs go to zero and set the input_denormal flag? */
180     flag flush_inputs_to_zero;
181     flag default_nan_mode;
182 } float_status;
183 
184 INLINE void set_float_detect_tininess(int val STATUS_PARAM)
185 {
186     STATUS(float_detect_tininess) = val;
187 }
188 INLINE void set_float_rounding_mode(int val STATUS_PARAM)
189 {
190     STATUS(float_rounding_mode) = val;
191 }
192 INLINE void set_float_exception_flags(int val STATUS_PARAM)
193 {
194     STATUS(float_exception_flags) = val;
195 }
196 INLINE void set_floatx80_rounding_precision(int val STATUS_PARAM)
197 {
198     STATUS(floatx80_rounding_precision) = val;
199 }
200 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
201 {
202     STATUS(flush_to_zero) = val;
203 }
204 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
205 {
206     STATUS(flush_inputs_to_zero) = val;
207 }
208 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
209 {
210     STATUS(default_nan_mode) = val;
211 }
212 INLINE int get_float_detect_tininess(float_status *status)
213 {
214     return STATUS(float_detect_tininess);
215 }
216 INLINE int get_float_rounding_mode(float_status *status)
217 {
218     return STATUS(float_rounding_mode);
219 }
220 INLINE int get_float_exception_flags(float_status *status)
221 {
222     return STATUS(float_exception_flags);
223 }
224 INLINE int get_floatx80_rounding_precision(float_status *status)
225 {
226     return STATUS(floatx80_rounding_precision);
227 }
228 INLINE flag get_flush_to_zero(float_status *status)
229 {
230     return STATUS(flush_to_zero);
231 }
232 INLINE flag get_flush_inputs_to_zero(float_status *status)
233 {
234     return STATUS(flush_inputs_to_zero);
235 }
236 INLINE flag get_default_nan_mode(float_status *status)
237 {
238     return STATUS(default_nan_mode);
239 }
240 
241 /*----------------------------------------------------------------------------
242 | Routine to raise any or all of the software IEC/IEEE floating-point
243 | exception flags.
244 *----------------------------------------------------------------------------*/
245 void float_raise( int8 flags STATUS_PARAM);
246 
247 /*----------------------------------------------------------------------------
248 | Options to indicate which negations to perform in float*_muladd()
249 | Using these differs from negating an input or output before calling
250 | the muladd function in that this means that a NaN doesn't have its
251 | sign bit inverted before it is propagated.
252 *----------------------------------------------------------------------------*/
253 enum {
254     float_muladd_negate_c = 1,
255     float_muladd_negate_product = 2,
256     float_muladd_negate_result = 4,
257 };
258 
259 /*----------------------------------------------------------------------------
260 | Software IEC/IEEE integer-to-floating-point conversion routines.
261 *----------------------------------------------------------------------------*/
262 float32 int32_to_float32(int32_t STATUS_PARAM);
263 float64 int32_to_float64(int32_t STATUS_PARAM);
264 float32 uint32_to_float32(uint32_t STATUS_PARAM);
265 float64 uint32_to_float64(uint32_t STATUS_PARAM);
266 floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
267 float128 int32_to_float128(int32_t STATUS_PARAM);
268 float32 int64_to_float32(int64_t STATUS_PARAM);
269 float32 uint64_to_float32(uint64_t STATUS_PARAM);
270 float64 int64_to_float64(int64_t STATUS_PARAM);
271 float64 uint64_to_float64(uint64_t STATUS_PARAM);
272 floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
273 float128 int64_to_float128(int64_t STATUS_PARAM);
274 float128 uint64_to_float128(uint64_t STATUS_PARAM);
275 
276 /* We provide the int16 versions for symmetry of API with float-to-int */
277 INLINE float32 int16_to_float32(int16_t v STATUS_PARAM)
278 {
279     return int32_to_float32(v STATUS_VAR);
280 }
281 
282 INLINE float32 uint16_to_float32(uint16_t v STATUS_PARAM)
283 {
284     return uint32_to_float32(v STATUS_VAR);
285 }
286 
287 INLINE float64 int16_to_float64(int16_t v STATUS_PARAM)
288 {
289     return int32_to_float64(v STATUS_VAR);
290 }
291 
292 INLINE float64 uint16_to_float64(uint16_t v STATUS_PARAM)
293 {
294     return uint32_to_float64(v STATUS_VAR);
295 }
296 
297 /*----------------------------------------------------------------------------
298 | Software half-precision conversion routines.
299 *----------------------------------------------------------------------------*/
300 float16 float32_to_float16( float32, flag STATUS_PARAM );
301 float32 float16_to_float32( float16, flag STATUS_PARAM );
302 float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM);
303 float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM);
304 
305 /*----------------------------------------------------------------------------
306 | Software half-precision operations.
307 *----------------------------------------------------------------------------*/
308 int float16_is_quiet_nan( float16 );
309 int float16_is_signaling_nan( float16 );
310 float16 float16_maybe_silence_nan( float16 );
311 
312 INLINE int float16_is_any_nan(float16 a)
313 {
314     return ((float16_val(a) & ~0x8000) > 0x7c00);
315 }
316 
317 /*----------------------------------------------------------------------------
318 | The pattern for a default generated half-precision NaN.
319 *----------------------------------------------------------------------------*/
320 extern const float16 float16_default_nan;
321 
322 /*----------------------------------------------------------------------------
323 | Software IEC/IEEE single-precision conversion routines.
324 *----------------------------------------------------------------------------*/
325 int_fast16_t float32_to_int16(float32 STATUS_PARAM);
326 uint_fast16_t float32_to_uint16(float32 STATUS_PARAM);
327 int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
328 uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
329 int32 float32_to_int32( float32 STATUS_PARAM );
330 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
331 uint32 float32_to_uint32( float32 STATUS_PARAM );
332 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
333 int64 float32_to_int64( float32 STATUS_PARAM );
334 uint64 float32_to_uint64(float32 STATUS_PARAM);
335 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
336 float64 float32_to_float64( float32 STATUS_PARAM );
337 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
338 float128 float32_to_float128( float32 STATUS_PARAM );
339 
340 /*----------------------------------------------------------------------------
341 | Software IEC/IEEE single-precision operations.
342 *----------------------------------------------------------------------------*/
343 float32 float32_round_to_int( float32 STATUS_PARAM );
344 float32 float32_add( float32, float32 STATUS_PARAM );
345 float32 float32_sub( float32, float32 STATUS_PARAM );
346 float32 float32_mul( float32, float32 STATUS_PARAM );
347 float32 float32_div( float32, float32 STATUS_PARAM );
348 float32 float32_rem( float32, float32 STATUS_PARAM );
349 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
350 float32 float32_sqrt( float32 STATUS_PARAM );
351 float32 float32_exp2( float32 STATUS_PARAM );
352 float32 float32_log2( float32 STATUS_PARAM );
353 int float32_eq( float32, float32 STATUS_PARAM );
354 int float32_le( float32, float32 STATUS_PARAM );
355 int float32_lt( float32, float32 STATUS_PARAM );
356 int float32_unordered( float32, float32 STATUS_PARAM );
357 int float32_eq_quiet( float32, float32 STATUS_PARAM );
358 int float32_le_quiet( float32, float32 STATUS_PARAM );
359 int float32_lt_quiet( float32, float32 STATUS_PARAM );
360 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
361 int float32_compare( float32, float32 STATUS_PARAM );
362 int float32_compare_quiet( float32, float32 STATUS_PARAM );
363 float32 float32_min(float32, float32 STATUS_PARAM);
364 float32 float32_max(float32, float32 STATUS_PARAM);
365 float32 float32_minnum(float32, float32 STATUS_PARAM);
366 float32 float32_maxnum(float32, float32 STATUS_PARAM);
367 int float32_is_quiet_nan( float32 );
368 int float32_is_signaling_nan( float32 );
369 float32 float32_maybe_silence_nan( float32 );
370 float32 float32_scalbn( float32, int STATUS_PARAM );
371 
372 INLINE float32 float32_abs(float32 a)
373 {
374     /* Note that abs does *not* handle NaN specially, nor does
375      * it flush denormal inputs to zero.
376      */
377     return make_float32(float32_val(a) & 0x7fffffff);
378 }
379 
380 INLINE float32 float32_chs(float32 a)
381 {
382     /* Note that chs does *not* handle NaN specially, nor does
383      * it flush denormal inputs to zero.
384      */
385     return make_float32(float32_val(a) ^ 0x80000000);
386 }
387 
388 INLINE int float32_is_infinity(float32 a)
389 {
390     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
391 }
392 
393 INLINE int float32_is_neg(float32 a)
394 {
395     return float32_val(a) >> 31;
396 }
397 
398 INLINE int float32_is_zero(float32 a)
399 {
400     return (float32_val(a) & 0x7fffffff) == 0;
401 }
402 
403 INLINE int float32_is_any_nan(float32 a)
404 {
405     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
406 }
407 
408 INLINE int float32_is_zero_or_denormal(float32 a)
409 {
410     return (float32_val(a) & 0x7f800000) == 0;
411 }
412 
413 INLINE float32 float32_set_sign(float32 a, int sign)
414 {
415     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
416 }
417 
418 #define float32_zero make_float32(0)
419 #define float32_one make_float32(0x3f800000)
420 #define float32_ln2 make_float32(0x3f317218)
421 #define float32_pi make_float32(0x40490fdb)
422 #define float32_half make_float32(0x3f000000)
423 #define float32_infinity make_float32(0x7f800000)
424 
425 
426 /*----------------------------------------------------------------------------
427 | The pattern for a default generated single-precision NaN.
428 *----------------------------------------------------------------------------*/
429 extern const float32 float32_default_nan;
430 
431 /*----------------------------------------------------------------------------
432 | Software IEC/IEEE double-precision conversion routines.
433 *----------------------------------------------------------------------------*/
434 int_fast16_t float64_to_int16(float64 STATUS_PARAM);
435 uint_fast16_t float64_to_uint16(float64 STATUS_PARAM);
436 int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
437 uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
438 int32 float64_to_int32( float64 STATUS_PARAM );
439 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
440 uint32 float64_to_uint32( float64 STATUS_PARAM );
441 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
442 int64 float64_to_int64( float64 STATUS_PARAM );
443 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
444 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
445 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
446 float32 float64_to_float32( float64 STATUS_PARAM );
447 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
448 float128 float64_to_float128( float64 STATUS_PARAM );
449 
450 /*----------------------------------------------------------------------------
451 | Software IEC/IEEE double-precision operations.
452 *----------------------------------------------------------------------------*/
453 float64 float64_round_to_int( float64 STATUS_PARAM );
454 float64 float64_trunc_to_int( float64 STATUS_PARAM );
455 float64 float64_add( float64, float64 STATUS_PARAM );
456 float64 float64_sub( float64, float64 STATUS_PARAM );
457 float64 float64_mul( float64, float64 STATUS_PARAM );
458 float64 float64_div( float64, float64 STATUS_PARAM );
459 float64 float64_rem( float64, float64 STATUS_PARAM );
460 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
461 float64 float64_sqrt( float64 STATUS_PARAM );
462 float64 float64_log2( float64 STATUS_PARAM );
463 int float64_eq( float64, float64 STATUS_PARAM );
464 int float64_le( float64, float64 STATUS_PARAM );
465 int float64_lt( float64, float64 STATUS_PARAM );
466 int float64_unordered( float64, float64 STATUS_PARAM );
467 int float64_eq_quiet( float64, float64 STATUS_PARAM );
468 int float64_le_quiet( float64, float64 STATUS_PARAM );
469 int float64_lt_quiet( float64, float64 STATUS_PARAM );
470 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
471 int float64_compare( float64, float64 STATUS_PARAM );
472 int float64_compare_quiet( float64, float64 STATUS_PARAM );
473 float64 float64_min(float64, float64 STATUS_PARAM);
474 float64 float64_max(float64, float64 STATUS_PARAM);
475 float64 float64_minnum(float64, float64 STATUS_PARAM);
476 float64 float64_maxnum(float64, float64 STATUS_PARAM);
477 int float64_is_quiet_nan( float64 a );
478 int float64_is_signaling_nan( float64 );
479 float64 float64_maybe_silence_nan( float64 );
480 float64 float64_scalbn( float64, int STATUS_PARAM );
481 
482 INLINE float64 float64_abs(float64 a)
483 {
484     /* Note that abs does *not* handle NaN specially, nor does
485      * it flush denormal inputs to zero.
486      */
487     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
488 }
489 
490 INLINE float64 float64_chs(float64 a)
491 {
492     /* Note that chs does *not* handle NaN specially, nor does
493      * it flush denormal inputs to zero.
494      */
495     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
496 }
497 
498 INLINE int float64_is_infinity(float64 a)
499 {
500     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
501 }
502 
503 INLINE int float64_is_neg(float64 a)
504 {
505     return float64_val(a) >> 63;
506 }
507 
508 INLINE int float64_is_zero(float64 a)
509 {
510     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
511 }
512 
513 INLINE int float64_is_any_nan(float64 a)
514 {
515     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
516 }
517 
518 INLINE int float64_is_zero_or_denormal(float64 a)
519 {
520     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
521 }
522 
523 INLINE float64 float64_set_sign(float64 a, int sign)
524 {
525     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
526                         | ((int64_t)sign << 63));
527 }
528 
529 #define float64_zero make_float64(0)
530 #define float64_one make_float64(0x3ff0000000000000LL)
531 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
532 #define float64_pi make_float64(0x400921fb54442d18LL)
533 #define float64_half make_float64(0x3fe0000000000000LL)
534 #define float64_infinity make_float64(0x7ff0000000000000LL)
535 
536 /*----------------------------------------------------------------------------
537 | The pattern for a default generated double-precision NaN.
538 *----------------------------------------------------------------------------*/
539 extern const float64 float64_default_nan;
540 
541 /*----------------------------------------------------------------------------
542 | Software IEC/IEEE extended double-precision conversion routines.
543 *----------------------------------------------------------------------------*/
544 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
545 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
546 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
547 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
548 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
549 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
550 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
551 
552 /*----------------------------------------------------------------------------
553 | Software IEC/IEEE extended double-precision operations.
554 *----------------------------------------------------------------------------*/
555 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
556 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
557 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
558 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
559 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
560 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
561 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
562 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
563 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
564 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
565 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
566 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
567 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
568 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
569 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
570 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
571 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
572 int floatx80_is_quiet_nan( floatx80 );
573 int floatx80_is_signaling_nan( floatx80 );
574 floatx80 floatx80_maybe_silence_nan( floatx80 );
575 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
576 
577 INLINE floatx80 floatx80_abs(floatx80 a)
578 {
579     a.high &= 0x7fff;
580     return a;
581 }
582 
583 INLINE floatx80 floatx80_chs(floatx80 a)
584 {
585     a.high ^= 0x8000;
586     return a;
587 }
588 
589 INLINE int floatx80_is_infinity(floatx80 a)
590 {
591     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
592 }
593 
594 INLINE int floatx80_is_neg(floatx80 a)
595 {
596     return a.high >> 15;
597 }
598 
599 INLINE int floatx80_is_zero(floatx80 a)
600 {
601     return (a.high & 0x7fff) == 0 && a.low == 0;
602 }
603 
604 INLINE int floatx80_is_zero_or_denormal(floatx80 a)
605 {
606     return (a.high & 0x7fff) == 0;
607 }
608 
609 INLINE int floatx80_is_any_nan(floatx80 a)
610 {
611     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
612 }
613 
614 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
615 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
616 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
617 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
618 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
619 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
620 
621 /*----------------------------------------------------------------------------
622 | The pattern for a default generated extended double-precision NaN.
623 *----------------------------------------------------------------------------*/
624 extern const floatx80 floatx80_default_nan;
625 
626 /*----------------------------------------------------------------------------
627 | Software IEC/IEEE quadruple-precision conversion routines.
628 *----------------------------------------------------------------------------*/
629 int32 float128_to_int32( float128 STATUS_PARAM );
630 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
631 int64 float128_to_int64( float128 STATUS_PARAM );
632 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
633 float32 float128_to_float32( float128 STATUS_PARAM );
634 float64 float128_to_float64( float128 STATUS_PARAM );
635 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
636 
637 /*----------------------------------------------------------------------------
638 | Software IEC/IEEE quadruple-precision operations.
639 *----------------------------------------------------------------------------*/
640 float128 float128_round_to_int( float128 STATUS_PARAM );
641 float128 float128_add( float128, float128 STATUS_PARAM );
642 float128 float128_sub( float128, float128 STATUS_PARAM );
643 float128 float128_mul( float128, float128 STATUS_PARAM );
644 float128 float128_div( float128, float128 STATUS_PARAM );
645 float128 float128_rem( float128, float128 STATUS_PARAM );
646 float128 float128_sqrt( float128 STATUS_PARAM );
647 int float128_eq( float128, float128 STATUS_PARAM );
648 int float128_le( float128, float128 STATUS_PARAM );
649 int float128_lt( float128, float128 STATUS_PARAM );
650 int float128_unordered( float128, float128 STATUS_PARAM );
651 int float128_eq_quiet( float128, float128 STATUS_PARAM );
652 int float128_le_quiet( float128, float128 STATUS_PARAM );
653 int float128_lt_quiet( float128, float128 STATUS_PARAM );
654 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
655 int float128_compare( float128, float128 STATUS_PARAM );
656 int float128_compare_quiet( float128, float128 STATUS_PARAM );
657 int float128_is_quiet_nan( float128 );
658 int float128_is_signaling_nan( float128 );
659 float128 float128_maybe_silence_nan( float128 );
660 float128 float128_scalbn( float128, int STATUS_PARAM );
661 
662 INLINE float128 float128_abs(float128 a)
663 {
664     a.high &= 0x7fffffffffffffffLL;
665     return a;
666 }
667 
668 INLINE float128 float128_chs(float128 a)
669 {
670     a.high ^= 0x8000000000000000LL;
671     return a;
672 }
673 
674 INLINE int float128_is_infinity(float128 a)
675 {
676     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
677 }
678 
679 INLINE int float128_is_neg(float128 a)
680 {
681     return a.high >> 63;
682 }
683 
684 INLINE int float128_is_zero(float128 a)
685 {
686     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
687 }
688 
689 INLINE int float128_is_zero_or_denormal(float128 a)
690 {
691     return (a.high & 0x7fff000000000000LL) == 0;
692 }
693 
694 INLINE int float128_is_any_nan(float128 a)
695 {
696     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
697         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
698 }
699 
700 #define float128_zero make_float128(0, 0)
701 
702 /*----------------------------------------------------------------------------
703 | The pattern for a default generated quadruple-precision NaN.
704 *----------------------------------------------------------------------------*/
705 extern const float128 float128_default_nan;
706 
707 #endif /* !SOFTFLOAT_H */
708