xref: /openbmc/qemu/include/fpu/softfloat.h (revision 8f1e884b)
1 /*
2  * QEMU float support
3  *
4  * Derived from SoftFloat.
5  */
6 
7 /*============================================================================
8 
9 This C header file is part of the SoftFloat IEC/IEEE Floating-point Arithmetic
10 Package, Release 2b.
11 
12 Written by John R. Hauser.  This work was made possible in part by the
13 International Computer Science Institute, located at Suite 600, 1947 Center
14 Street, Berkeley, California 94704.  Funding was partially provided by the
15 National Science Foundation under grant MIP-9311980.  The original version
16 of this code was written as part of a project to build a fixed-point vector
17 processor in collaboration with the University of California at Berkeley,
18 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
19 is available through the Web page `http://www.cs.berkeley.edu/~jhauser/
20 arithmetic/SoftFloat.html'.
21 
22 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort has
23 been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT TIMES
24 RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO PERSONS
25 AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ALL LOSSES,
26 COSTS, OR OTHER PROBLEMS THEY INCUR DUE TO THE SOFTWARE, AND WHO FURTHERMORE
27 EFFECTIVELY INDEMNIFY JOHN HAUSER AND THE INTERNATIONAL COMPUTER SCIENCE
28 INSTITUTE (possibly via similar legal warning) AGAINST ALL LOSSES, COSTS, OR
29 OTHER PROBLEMS INCURRED BY THEIR CUSTOMERS AND CLIENTS DUE TO THE SOFTWARE.
30 
31 Derivative works are acceptable, even for commercial purposes, so long as
32 (1) the source code for the derivative work includes prominent notice that
33 the work is derivative, and (2) the source code includes prominent notice with
34 these four paragraphs for those parts of this code that are retained.
35 
36 =============================================================================*/
37 
38 #ifndef SOFTFLOAT_H
39 #define SOFTFLOAT_H
40 
41 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
42 #include <sunmath.h>
43 #endif
44 
45 #include <inttypes.h>
46 #include "config-host.h"
47 #include "qemu/osdep.h"
48 
49 /*----------------------------------------------------------------------------
50 | Each of the following `typedef's defines the most convenient type that holds
51 | integers of at least as many bits as specified.  For example, `uint8' should
52 | be the most convenient type that can hold unsigned integers of as many as
53 | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
54 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
55 | to the same as `int'.
56 *----------------------------------------------------------------------------*/
57 typedef uint8_t flag;
58 typedef uint8_t uint8;
59 typedef int8_t int8;
60 typedef unsigned int uint32;
61 typedef signed int int32;
62 typedef uint64_t uint64;
63 typedef int64_t int64;
64 
65 #define LIT64( a ) a##LL
66 #define INLINE static inline
67 
68 #define STATUS_PARAM , float_status *status
69 #define STATUS(field) status->field
70 #define STATUS_VAR , status
71 
72 /*----------------------------------------------------------------------------
73 | Software IEC/IEEE floating-point ordering relations
74 *----------------------------------------------------------------------------*/
75 enum {
76     float_relation_less      = -1,
77     float_relation_equal     =  0,
78     float_relation_greater   =  1,
79     float_relation_unordered =  2
80 };
81 
82 /*----------------------------------------------------------------------------
83 | Software IEC/IEEE floating-point types.
84 *----------------------------------------------------------------------------*/
85 /* Use structures for soft-float types.  This prevents accidentally mixing
86    them with native int/float types.  A sufficiently clever compiler and
87    sane ABI should be able to see though these structs.  However
88    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
89 //#define USE_SOFTFLOAT_STRUCT_TYPES
90 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
91 typedef struct {
92     uint16_t v;
93 } float16;
94 #define float16_val(x) (((float16)(x)).v)
95 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
96 #define const_float16(x) { x }
97 typedef struct {
98     uint32_t v;
99 } float32;
100 /* The cast ensures an error if the wrong type is passed.  */
101 #define float32_val(x) (((float32)(x)).v)
102 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
103 #define const_float32(x) { x }
104 typedef struct {
105     uint64_t v;
106 } float64;
107 #define float64_val(x) (((float64)(x)).v)
108 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
109 #define const_float64(x) { x }
110 #else
111 typedef uint16_t float16;
112 typedef uint32_t float32;
113 typedef uint64_t float64;
114 #define float16_val(x) (x)
115 #define float32_val(x) (x)
116 #define float64_val(x) (x)
117 #define make_float16(x) (x)
118 #define make_float32(x) (x)
119 #define make_float64(x) (x)
120 #define const_float16(x) (x)
121 #define const_float32(x) (x)
122 #define const_float64(x) (x)
123 #endif
124 typedef struct {
125     uint64_t low;
126     uint16_t high;
127 } floatx80;
128 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
129 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
130 typedef struct {
131 #ifdef HOST_WORDS_BIGENDIAN
132     uint64_t high, low;
133 #else
134     uint64_t low, high;
135 #endif
136 } float128;
137 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
138 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
139 
140 /*----------------------------------------------------------------------------
141 | Software IEC/IEEE floating-point underflow tininess-detection mode.
142 *----------------------------------------------------------------------------*/
143 enum {
144     float_tininess_after_rounding  = 0,
145     float_tininess_before_rounding = 1
146 };
147 
148 /*----------------------------------------------------------------------------
149 | Software IEC/IEEE floating-point rounding mode.
150 *----------------------------------------------------------------------------*/
151 enum {
152     float_round_nearest_even = 0,
153     float_round_down         = 1,
154     float_round_up           = 2,
155     float_round_to_zero      = 3,
156     float_round_ties_away    = 4,
157 };
158 
159 /*----------------------------------------------------------------------------
160 | Software IEC/IEEE floating-point exception flags.
161 *----------------------------------------------------------------------------*/
162 enum {
163     float_flag_invalid   =  1,
164     float_flag_divbyzero =  4,
165     float_flag_overflow  =  8,
166     float_flag_underflow = 16,
167     float_flag_inexact   = 32,
168     float_flag_input_denormal = 64,
169     float_flag_output_denormal = 128
170 };
171 
172 typedef struct float_status {
173     signed char float_detect_tininess;
174     signed char float_rounding_mode;
175     signed char float_exception_flags;
176     signed char floatx80_rounding_precision;
177     /* should denormalised results go to zero and set the inexact flag? */
178     flag flush_to_zero;
179     /* should denormalised inputs go to zero and set the input_denormal flag? */
180     flag flush_inputs_to_zero;
181     flag default_nan_mode;
182 } float_status;
183 
184 INLINE void set_float_detect_tininess(int val STATUS_PARAM)
185 {
186     STATUS(float_detect_tininess) = val;
187 }
188 INLINE void set_float_rounding_mode(int val STATUS_PARAM)
189 {
190     STATUS(float_rounding_mode) = val;
191 }
192 INLINE void set_float_exception_flags(int val STATUS_PARAM)
193 {
194     STATUS(float_exception_flags) = val;
195 }
196 INLINE void set_floatx80_rounding_precision(int val STATUS_PARAM)
197 {
198     STATUS(floatx80_rounding_precision) = val;
199 }
200 INLINE void set_flush_to_zero(flag val STATUS_PARAM)
201 {
202     STATUS(flush_to_zero) = val;
203 }
204 INLINE void set_flush_inputs_to_zero(flag val STATUS_PARAM)
205 {
206     STATUS(flush_inputs_to_zero) = val;
207 }
208 INLINE void set_default_nan_mode(flag val STATUS_PARAM)
209 {
210     STATUS(default_nan_mode) = val;
211 }
212 INLINE int get_float_detect_tininess(float_status *status)
213 {
214     return STATUS(float_detect_tininess);
215 }
216 INLINE int get_float_rounding_mode(float_status *status)
217 {
218     return STATUS(float_rounding_mode);
219 }
220 INLINE int get_float_exception_flags(float_status *status)
221 {
222     return STATUS(float_exception_flags);
223 }
224 INLINE int get_floatx80_rounding_precision(float_status *status)
225 {
226     return STATUS(floatx80_rounding_precision);
227 }
228 INLINE flag get_flush_to_zero(float_status *status)
229 {
230     return STATUS(flush_to_zero);
231 }
232 INLINE flag get_flush_inputs_to_zero(float_status *status)
233 {
234     return STATUS(flush_inputs_to_zero);
235 }
236 INLINE flag get_default_nan_mode(float_status *status)
237 {
238     return STATUS(default_nan_mode);
239 }
240 
241 /*----------------------------------------------------------------------------
242 | Routine to raise any or all of the software IEC/IEEE floating-point
243 | exception flags.
244 *----------------------------------------------------------------------------*/
245 void float_raise( int8 flags STATUS_PARAM);
246 
247 /*----------------------------------------------------------------------------
248 | If `a' is denormal and we are in flush-to-zero mode then set the
249 | input-denormal exception and return zero. Otherwise just return the value.
250 *----------------------------------------------------------------------------*/
251 float32 float32_squash_input_denormal(float32 a STATUS_PARAM);
252 float64 float64_squash_input_denormal(float64 a STATUS_PARAM);
253 
254 /*----------------------------------------------------------------------------
255 | Options to indicate which negations to perform in float*_muladd()
256 | Using these differs from negating an input or output before calling
257 | the muladd function in that this means that a NaN doesn't have its
258 | sign bit inverted before it is propagated.
259 | We also support halving the result before rounding, as a special
260 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
261 *----------------------------------------------------------------------------*/
262 enum {
263     float_muladd_negate_c = 1,
264     float_muladd_negate_product = 2,
265     float_muladd_negate_result = 4,
266     float_muladd_halve_result = 8,
267 };
268 
269 /*----------------------------------------------------------------------------
270 | Software IEC/IEEE integer-to-floating-point conversion routines.
271 *----------------------------------------------------------------------------*/
272 float32 int32_to_float32(int32_t STATUS_PARAM);
273 float64 int32_to_float64(int32_t STATUS_PARAM);
274 float32 uint32_to_float32(uint32_t STATUS_PARAM);
275 float64 uint32_to_float64(uint32_t STATUS_PARAM);
276 floatx80 int32_to_floatx80(int32_t STATUS_PARAM);
277 float128 int32_to_float128(int32_t STATUS_PARAM);
278 float32 int64_to_float32(int64_t STATUS_PARAM);
279 float32 uint64_to_float32(uint64_t STATUS_PARAM);
280 float64 int64_to_float64(int64_t STATUS_PARAM);
281 float64 uint64_to_float64(uint64_t STATUS_PARAM);
282 floatx80 int64_to_floatx80(int64_t STATUS_PARAM);
283 float128 int64_to_float128(int64_t STATUS_PARAM);
284 float128 uint64_to_float128(uint64_t STATUS_PARAM);
285 
286 /* We provide the int16 versions for symmetry of API with float-to-int */
287 INLINE float32 int16_to_float32(int16_t v STATUS_PARAM)
288 {
289     return int32_to_float32(v STATUS_VAR);
290 }
291 
292 INLINE float32 uint16_to_float32(uint16_t v STATUS_PARAM)
293 {
294     return uint32_to_float32(v STATUS_VAR);
295 }
296 
297 INLINE float64 int16_to_float64(int16_t v STATUS_PARAM)
298 {
299     return int32_to_float64(v STATUS_VAR);
300 }
301 
302 INLINE float64 uint16_to_float64(uint16_t v STATUS_PARAM)
303 {
304     return uint32_to_float64(v STATUS_VAR);
305 }
306 
307 /*----------------------------------------------------------------------------
308 | Software half-precision conversion routines.
309 *----------------------------------------------------------------------------*/
310 float16 float32_to_float16( float32, flag STATUS_PARAM );
311 float32 float16_to_float32( float16, flag STATUS_PARAM );
312 float16 float64_to_float16(float64 a, flag ieee STATUS_PARAM);
313 float64 float16_to_float64(float16 a, flag ieee STATUS_PARAM);
314 
315 /*----------------------------------------------------------------------------
316 | Software half-precision operations.
317 *----------------------------------------------------------------------------*/
318 int float16_is_quiet_nan( float16 );
319 int float16_is_signaling_nan( float16 );
320 float16 float16_maybe_silence_nan( float16 );
321 
322 INLINE int float16_is_any_nan(float16 a)
323 {
324     return ((float16_val(a) & ~0x8000) > 0x7c00);
325 }
326 
327 /*----------------------------------------------------------------------------
328 | The pattern for a default generated half-precision NaN.
329 *----------------------------------------------------------------------------*/
330 extern const float16 float16_default_nan;
331 
332 /*----------------------------------------------------------------------------
333 | Software IEC/IEEE single-precision conversion routines.
334 *----------------------------------------------------------------------------*/
335 int_fast16_t float32_to_int16(float32 STATUS_PARAM);
336 uint_fast16_t float32_to_uint16(float32 STATUS_PARAM);
337 int_fast16_t float32_to_int16_round_to_zero(float32 STATUS_PARAM);
338 uint_fast16_t float32_to_uint16_round_to_zero(float32 STATUS_PARAM);
339 int32 float32_to_int32( float32 STATUS_PARAM );
340 int32 float32_to_int32_round_to_zero( float32 STATUS_PARAM );
341 uint32 float32_to_uint32( float32 STATUS_PARAM );
342 uint32 float32_to_uint32_round_to_zero( float32 STATUS_PARAM );
343 int64 float32_to_int64( float32 STATUS_PARAM );
344 uint64 float32_to_uint64(float32 STATUS_PARAM);
345 uint64 float32_to_uint64_round_to_zero(float32 STATUS_PARAM);
346 int64 float32_to_int64_round_to_zero( float32 STATUS_PARAM );
347 float64 float32_to_float64( float32 STATUS_PARAM );
348 floatx80 float32_to_floatx80( float32 STATUS_PARAM );
349 float128 float32_to_float128( float32 STATUS_PARAM );
350 
351 /*----------------------------------------------------------------------------
352 | Software IEC/IEEE single-precision operations.
353 *----------------------------------------------------------------------------*/
354 float32 float32_round_to_int( float32 STATUS_PARAM );
355 float32 float32_add( float32, float32 STATUS_PARAM );
356 float32 float32_sub( float32, float32 STATUS_PARAM );
357 float32 float32_mul( float32, float32 STATUS_PARAM );
358 float32 float32_div( float32, float32 STATUS_PARAM );
359 float32 float32_rem( float32, float32 STATUS_PARAM );
360 float32 float32_muladd(float32, float32, float32, int STATUS_PARAM);
361 float32 float32_sqrt( float32 STATUS_PARAM );
362 float32 float32_exp2( float32 STATUS_PARAM );
363 float32 float32_log2( float32 STATUS_PARAM );
364 int float32_eq( float32, float32 STATUS_PARAM );
365 int float32_le( float32, float32 STATUS_PARAM );
366 int float32_lt( float32, float32 STATUS_PARAM );
367 int float32_unordered( float32, float32 STATUS_PARAM );
368 int float32_eq_quiet( float32, float32 STATUS_PARAM );
369 int float32_le_quiet( float32, float32 STATUS_PARAM );
370 int float32_lt_quiet( float32, float32 STATUS_PARAM );
371 int float32_unordered_quiet( float32, float32 STATUS_PARAM );
372 int float32_compare( float32, float32 STATUS_PARAM );
373 int float32_compare_quiet( float32, float32 STATUS_PARAM );
374 float32 float32_min(float32, float32 STATUS_PARAM);
375 float32 float32_max(float32, float32 STATUS_PARAM);
376 float32 float32_minnum(float32, float32 STATUS_PARAM);
377 float32 float32_maxnum(float32, float32 STATUS_PARAM);
378 int float32_is_quiet_nan( float32 );
379 int float32_is_signaling_nan( float32 );
380 float32 float32_maybe_silence_nan( float32 );
381 float32 float32_scalbn( float32, int STATUS_PARAM );
382 
383 INLINE float32 float32_abs(float32 a)
384 {
385     /* Note that abs does *not* handle NaN specially, nor does
386      * it flush denormal inputs to zero.
387      */
388     return make_float32(float32_val(a) & 0x7fffffff);
389 }
390 
391 INLINE float32 float32_chs(float32 a)
392 {
393     /* Note that chs does *not* handle NaN specially, nor does
394      * it flush denormal inputs to zero.
395      */
396     return make_float32(float32_val(a) ^ 0x80000000);
397 }
398 
399 INLINE int float32_is_infinity(float32 a)
400 {
401     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
402 }
403 
404 INLINE int float32_is_neg(float32 a)
405 {
406     return float32_val(a) >> 31;
407 }
408 
409 INLINE int float32_is_zero(float32 a)
410 {
411     return (float32_val(a) & 0x7fffffff) == 0;
412 }
413 
414 INLINE int float32_is_any_nan(float32 a)
415 {
416     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
417 }
418 
419 INLINE int float32_is_zero_or_denormal(float32 a)
420 {
421     return (float32_val(a) & 0x7f800000) == 0;
422 }
423 
424 INLINE float32 float32_set_sign(float32 a, int sign)
425 {
426     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
427 }
428 
429 #define float32_zero make_float32(0)
430 #define float32_one make_float32(0x3f800000)
431 #define float32_ln2 make_float32(0x3f317218)
432 #define float32_pi make_float32(0x40490fdb)
433 #define float32_half make_float32(0x3f000000)
434 #define float32_infinity make_float32(0x7f800000)
435 
436 
437 /*----------------------------------------------------------------------------
438 | The pattern for a default generated single-precision NaN.
439 *----------------------------------------------------------------------------*/
440 extern const float32 float32_default_nan;
441 
442 /*----------------------------------------------------------------------------
443 | Software IEC/IEEE double-precision conversion routines.
444 *----------------------------------------------------------------------------*/
445 int_fast16_t float64_to_int16(float64 STATUS_PARAM);
446 uint_fast16_t float64_to_uint16(float64 STATUS_PARAM);
447 int_fast16_t float64_to_int16_round_to_zero(float64 STATUS_PARAM);
448 uint_fast16_t float64_to_uint16_round_to_zero(float64 STATUS_PARAM);
449 int32 float64_to_int32( float64 STATUS_PARAM );
450 int32 float64_to_int32_round_to_zero( float64 STATUS_PARAM );
451 uint32 float64_to_uint32( float64 STATUS_PARAM );
452 uint32 float64_to_uint32_round_to_zero( float64 STATUS_PARAM );
453 int64 float64_to_int64( float64 STATUS_PARAM );
454 int64 float64_to_int64_round_to_zero( float64 STATUS_PARAM );
455 uint64 float64_to_uint64 (float64 a STATUS_PARAM);
456 uint64 float64_to_uint64_round_to_zero (float64 a STATUS_PARAM);
457 float32 float64_to_float32( float64 STATUS_PARAM );
458 floatx80 float64_to_floatx80( float64 STATUS_PARAM );
459 float128 float64_to_float128( float64 STATUS_PARAM );
460 
461 /*----------------------------------------------------------------------------
462 | Software IEC/IEEE double-precision operations.
463 *----------------------------------------------------------------------------*/
464 float64 float64_round_to_int( float64 STATUS_PARAM );
465 float64 float64_trunc_to_int( float64 STATUS_PARAM );
466 float64 float64_add( float64, float64 STATUS_PARAM );
467 float64 float64_sub( float64, float64 STATUS_PARAM );
468 float64 float64_mul( float64, float64 STATUS_PARAM );
469 float64 float64_div( float64, float64 STATUS_PARAM );
470 float64 float64_rem( float64, float64 STATUS_PARAM );
471 float64 float64_muladd(float64, float64, float64, int STATUS_PARAM);
472 float64 float64_sqrt( float64 STATUS_PARAM );
473 float64 float64_log2( float64 STATUS_PARAM );
474 int float64_eq( float64, float64 STATUS_PARAM );
475 int float64_le( float64, float64 STATUS_PARAM );
476 int float64_lt( float64, float64 STATUS_PARAM );
477 int float64_unordered( float64, float64 STATUS_PARAM );
478 int float64_eq_quiet( float64, float64 STATUS_PARAM );
479 int float64_le_quiet( float64, float64 STATUS_PARAM );
480 int float64_lt_quiet( float64, float64 STATUS_PARAM );
481 int float64_unordered_quiet( float64, float64 STATUS_PARAM );
482 int float64_compare( float64, float64 STATUS_PARAM );
483 int float64_compare_quiet( float64, float64 STATUS_PARAM );
484 float64 float64_min(float64, float64 STATUS_PARAM);
485 float64 float64_max(float64, float64 STATUS_PARAM);
486 float64 float64_minnum(float64, float64 STATUS_PARAM);
487 float64 float64_maxnum(float64, float64 STATUS_PARAM);
488 int float64_is_quiet_nan( float64 a );
489 int float64_is_signaling_nan( float64 );
490 float64 float64_maybe_silence_nan( float64 );
491 float64 float64_scalbn( float64, int STATUS_PARAM );
492 
493 INLINE float64 float64_abs(float64 a)
494 {
495     /* Note that abs does *not* handle NaN specially, nor does
496      * it flush denormal inputs to zero.
497      */
498     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
499 }
500 
501 INLINE float64 float64_chs(float64 a)
502 {
503     /* Note that chs does *not* handle NaN specially, nor does
504      * it flush denormal inputs to zero.
505      */
506     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
507 }
508 
509 INLINE int float64_is_infinity(float64 a)
510 {
511     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
512 }
513 
514 INLINE int float64_is_neg(float64 a)
515 {
516     return float64_val(a) >> 63;
517 }
518 
519 INLINE int float64_is_zero(float64 a)
520 {
521     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
522 }
523 
524 INLINE int float64_is_any_nan(float64 a)
525 {
526     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
527 }
528 
529 INLINE int float64_is_zero_or_denormal(float64 a)
530 {
531     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
532 }
533 
534 INLINE float64 float64_set_sign(float64 a, int sign)
535 {
536     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
537                         | ((int64_t)sign << 63));
538 }
539 
540 #define float64_zero make_float64(0)
541 #define float64_one make_float64(0x3ff0000000000000LL)
542 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
543 #define float64_pi make_float64(0x400921fb54442d18LL)
544 #define float64_half make_float64(0x3fe0000000000000LL)
545 #define float64_infinity make_float64(0x7ff0000000000000LL)
546 
547 /*----------------------------------------------------------------------------
548 | The pattern for a default generated double-precision NaN.
549 *----------------------------------------------------------------------------*/
550 extern const float64 float64_default_nan;
551 
552 /*----------------------------------------------------------------------------
553 | Software IEC/IEEE extended double-precision conversion routines.
554 *----------------------------------------------------------------------------*/
555 int32 floatx80_to_int32( floatx80 STATUS_PARAM );
556 int32 floatx80_to_int32_round_to_zero( floatx80 STATUS_PARAM );
557 int64 floatx80_to_int64( floatx80 STATUS_PARAM );
558 int64 floatx80_to_int64_round_to_zero( floatx80 STATUS_PARAM );
559 float32 floatx80_to_float32( floatx80 STATUS_PARAM );
560 float64 floatx80_to_float64( floatx80 STATUS_PARAM );
561 float128 floatx80_to_float128( floatx80 STATUS_PARAM );
562 
563 /*----------------------------------------------------------------------------
564 | Software IEC/IEEE extended double-precision operations.
565 *----------------------------------------------------------------------------*/
566 floatx80 floatx80_round_to_int( floatx80 STATUS_PARAM );
567 floatx80 floatx80_add( floatx80, floatx80 STATUS_PARAM );
568 floatx80 floatx80_sub( floatx80, floatx80 STATUS_PARAM );
569 floatx80 floatx80_mul( floatx80, floatx80 STATUS_PARAM );
570 floatx80 floatx80_div( floatx80, floatx80 STATUS_PARAM );
571 floatx80 floatx80_rem( floatx80, floatx80 STATUS_PARAM );
572 floatx80 floatx80_sqrt( floatx80 STATUS_PARAM );
573 int floatx80_eq( floatx80, floatx80 STATUS_PARAM );
574 int floatx80_le( floatx80, floatx80 STATUS_PARAM );
575 int floatx80_lt( floatx80, floatx80 STATUS_PARAM );
576 int floatx80_unordered( floatx80, floatx80 STATUS_PARAM );
577 int floatx80_eq_quiet( floatx80, floatx80 STATUS_PARAM );
578 int floatx80_le_quiet( floatx80, floatx80 STATUS_PARAM );
579 int floatx80_lt_quiet( floatx80, floatx80 STATUS_PARAM );
580 int floatx80_unordered_quiet( floatx80, floatx80 STATUS_PARAM );
581 int floatx80_compare( floatx80, floatx80 STATUS_PARAM );
582 int floatx80_compare_quiet( floatx80, floatx80 STATUS_PARAM );
583 int floatx80_is_quiet_nan( floatx80 );
584 int floatx80_is_signaling_nan( floatx80 );
585 floatx80 floatx80_maybe_silence_nan( floatx80 );
586 floatx80 floatx80_scalbn( floatx80, int STATUS_PARAM );
587 
588 INLINE floatx80 floatx80_abs(floatx80 a)
589 {
590     a.high &= 0x7fff;
591     return a;
592 }
593 
594 INLINE floatx80 floatx80_chs(floatx80 a)
595 {
596     a.high ^= 0x8000;
597     return a;
598 }
599 
600 INLINE int floatx80_is_infinity(floatx80 a)
601 {
602     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
603 }
604 
605 INLINE int floatx80_is_neg(floatx80 a)
606 {
607     return a.high >> 15;
608 }
609 
610 INLINE int floatx80_is_zero(floatx80 a)
611 {
612     return (a.high & 0x7fff) == 0 && a.low == 0;
613 }
614 
615 INLINE int floatx80_is_zero_or_denormal(floatx80 a)
616 {
617     return (a.high & 0x7fff) == 0;
618 }
619 
620 INLINE int floatx80_is_any_nan(floatx80 a)
621 {
622     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
623 }
624 
625 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
626 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
627 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
628 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
629 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
630 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
631 
632 /*----------------------------------------------------------------------------
633 | The pattern for a default generated extended double-precision NaN.
634 *----------------------------------------------------------------------------*/
635 extern const floatx80 floatx80_default_nan;
636 
637 /*----------------------------------------------------------------------------
638 | Software IEC/IEEE quadruple-precision conversion routines.
639 *----------------------------------------------------------------------------*/
640 int32 float128_to_int32( float128 STATUS_PARAM );
641 int32 float128_to_int32_round_to_zero( float128 STATUS_PARAM );
642 int64 float128_to_int64( float128 STATUS_PARAM );
643 int64 float128_to_int64_round_to_zero( float128 STATUS_PARAM );
644 float32 float128_to_float32( float128 STATUS_PARAM );
645 float64 float128_to_float64( float128 STATUS_PARAM );
646 floatx80 float128_to_floatx80( float128 STATUS_PARAM );
647 
648 /*----------------------------------------------------------------------------
649 | Software IEC/IEEE quadruple-precision operations.
650 *----------------------------------------------------------------------------*/
651 float128 float128_round_to_int( float128 STATUS_PARAM );
652 float128 float128_add( float128, float128 STATUS_PARAM );
653 float128 float128_sub( float128, float128 STATUS_PARAM );
654 float128 float128_mul( float128, float128 STATUS_PARAM );
655 float128 float128_div( float128, float128 STATUS_PARAM );
656 float128 float128_rem( float128, float128 STATUS_PARAM );
657 float128 float128_sqrt( float128 STATUS_PARAM );
658 int float128_eq( float128, float128 STATUS_PARAM );
659 int float128_le( float128, float128 STATUS_PARAM );
660 int float128_lt( float128, float128 STATUS_PARAM );
661 int float128_unordered( float128, float128 STATUS_PARAM );
662 int float128_eq_quiet( float128, float128 STATUS_PARAM );
663 int float128_le_quiet( float128, float128 STATUS_PARAM );
664 int float128_lt_quiet( float128, float128 STATUS_PARAM );
665 int float128_unordered_quiet( float128, float128 STATUS_PARAM );
666 int float128_compare( float128, float128 STATUS_PARAM );
667 int float128_compare_quiet( float128, float128 STATUS_PARAM );
668 int float128_is_quiet_nan( float128 );
669 int float128_is_signaling_nan( float128 );
670 float128 float128_maybe_silence_nan( float128 );
671 float128 float128_scalbn( float128, int STATUS_PARAM );
672 
673 INLINE float128 float128_abs(float128 a)
674 {
675     a.high &= 0x7fffffffffffffffLL;
676     return a;
677 }
678 
679 INLINE float128 float128_chs(float128 a)
680 {
681     a.high ^= 0x8000000000000000LL;
682     return a;
683 }
684 
685 INLINE int float128_is_infinity(float128 a)
686 {
687     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
688 }
689 
690 INLINE int float128_is_neg(float128 a)
691 {
692     return a.high >> 63;
693 }
694 
695 INLINE int float128_is_zero(float128 a)
696 {
697     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
698 }
699 
700 INLINE int float128_is_zero_or_denormal(float128 a)
701 {
702     return (a.high & 0x7fff000000000000LL) == 0;
703 }
704 
705 INLINE int float128_is_any_nan(float128 a)
706 {
707     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
708         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
709 }
710 
711 #define float128_zero make_float128(0, 0)
712 
713 /*----------------------------------------------------------------------------
714 | The pattern for a default generated quadruple-precision NaN.
715 *----------------------------------------------------------------------------*/
716 extern const float128 float128_default_nan;
717 
718 #endif /* !SOFTFLOAT_H */
719