1 /* 2 * QEMU float support 3 * 4 * The code in this source file is derived from release 2a of the SoftFloat 5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and 6 * some later contributions) are provided under that license, as detailed below. 7 * It has subsequently been modified by contributors to the QEMU Project, 8 * so some portions are provided under: 9 * the SoftFloat-2a license 10 * the BSD license 11 * GPL-v2-or-later 12 * 13 * Any future contributions to this file after December 1st 2014 will be 14 * taken to be licensed under the Softfloat-2a license unless specifically 15 * indicated otherwise. 16 */ 17 18 /* 19 =============================================================================== 20 This C header file is part of the SoftFloat IEC/IEEE Floating-point 21 Arithmetic Package, Release 2a. 22 23 Written by John R. Hauser. This work was made possible in part by the 24 International Computer Science Institute, located at Suite 600, 1947 Center 25 Street, Berkeley, California 94704. Funding was partially provided by the 26 National Science Foundation under grant MIP-9311980. The original version 27 of this code was written as part of a project to build a fixed-point vector 28 processor in collaboration with the University of California at Berkeley, 29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 31 arithmetic/SoftFloat.html'. 32 33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 38 39 Derivative works are acceptable, even for commercial purposes, so long as 40 (1) they include prominent notice that the work is derivative, and (2) they 41 include prominent notice akin to these four paragraphs for those parts of 42 this code that are retained. 43 44 =============================================================================== 45 */ 46 47 /* BSD licensing: 48 * Copyright (c) 2006, Fabrice Bellard 49 * All rights reserved. 50 * 51 * Redistribution and use in source and binary forms, with or without 52 * modification, are permitted provided that the following conditions are met: 53 * 54 * 1. Redistributions of source code must retain the above copyright notice, 55 * this list of conditions and the following disclaimer. 56 * 57 * 2. Redistributions in binary form must reproduce the above copyright notice, 58 * this list of conditions and the following disclaimer in the documentation 59 * and/or other materials provided with the distribution. 60 * 61 * 3. Neither the name of the copyright holder nor the names of its contributors 62 * may be used to endorse or promote products derived from this software without 63 * specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 75 * THE POSSIBILITY OF SUCH DAMAGE. 76 */ 77 78 /* Portions of this work are licensed under the terms of the GNU GPL, 79 * version 2 or later. See the COPYING file in the top-level directory. 80 */ 81 82 #ifndef SOFTFLOAT_H 83 #define SOFTFLOAT_H 84 85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) 86 #include <sunmath.h> 87 #endif 88 89 90 /* This 'flag' type must be able to hold at least 0 and 1. It should 91 * probably be replaced with 'bool' but the uses would need to be audited 92 * to check that they weren't accidentally relying on it being a larger type. 93 */ 94 typedef uint8_t flag; 95 96 #define LIT64( a ) a##LL 97 98 /*---------------------------------------------------------------------------- 99 | Software IEC/IEEE floating-point ordering relations 100 *----------------------------------------------------------------------------*/ 101 enum { 102 float_relation_less = -1, 103 float_relation_equal = 0, 104 float_relation_greater = 1, 105 float_relation_unordered = 2 106 }; 107 108 /*---------------------------------------------------------------------------- 109 | Software IEC/IEEE floating-point types. 110 *----------------------------------------------------------------------------*/ 111 /* Use structures for soft-float types. This prevents accidentally mixing 112 them with native int/float types. A sufficiently clever compiler and 113 sane ABI should be able to see though these structs. However 114 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ 115 //#define USE_SOFTFLOAT_STRUCT_TYPES 116 #ifdef USE_SOFTFLOAT_STRUCT_TYPES 117 typedef struct { 118 uint16_t v; 119 } float16; 120 #define float16_val(x) (((float16)(x)).v) 121 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) 122 #define const_float16(x) { x } 123 typedef struct { 124 uint32_t v; 125 } float32; 126 /* The cast ensures an error if the wrong type is passed. */ 127 #define float32_val(x) (((float32)(x)).v) 128 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) 129 #define const_float32(x) { x } 130 typedef struct { 131 uint64_t v; 132 } float64; 133 #define float64_val(x) (((float64)(x)).v) 134 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) 135 #define const_float64(x) { x } 136 #else 137 typedef uint16_t float16; 138 typedef uint32_t float32; 139 typedef uint64_t float64; 140 #define float16_val(x) (x) 141 #define float32_val(x) (x) 142 #define float64_val(x) (x) 143 #define make_float16(x) (x) 144 #define make_float32(x) (x) 145 #define make_float64(x) (x) 146 #define const_float16(x) (x) 147 #define const_float32(x) (x) 148 #define const_float64(x) (x) 149 #endif 150 typedef struct { 151 uint64_t low; 152 uint16_t high; 153 } floatx80; 154 #define make_floatx80(exp, mant) ((floatx80) { mant, exp }) 155 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp } 156 typedef struct { 157 #ifdef HOST_WORDS_BIGENDIAN 158 uint64_t high, low; 159 #else 160 uint64_t low, high; 161 #endif 162 } float128; 163 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ }) 164 #define make_float128_init(high_, low_) { .high = high_, .low = low_ } 165 166 /*---------------------------------------------------------------------------- 167 | Software IEC/IEEE floating-point underflow tininess-detection mode. 168 *----------------------------------------------------------------------------*/ 169 enum { 170 float_tininess_after_rounding = 0, 171 float_tininess_before_rounding = 1 172 }; 173 174 /*---------------------------------------------------------------------------- 175 | Software IEC/IEEE floating-point rounding mode. 176 *----------------------------------------------------------------------------*/ 177 enum { 178 float_round_nearest_even = 0, 179 float_round_down = 1, 180 float_round_up = 2, 181 float_round_to_zero = 3, 182 float_round_ties_away = 4, 183 }; 184 185 /*---------------------------------------------------------------------------- 186 | Software IEC/IEEE floating-point exception flags. 187 *----------------------------------------------------------------------------*/ 188 enum { 189 float_flag_invalid = 1, 190 float_flag_divbyzero = 4, 191 float_flag_overflow = 8, 192 float_flag_underflow = 16, 193 float_flag_inexact = 32, 194 float_flag_input_denormal = 64, 195 float_flag_output_denormal = 128 196 }; 197 198 typedef struct float_status { 199 signed char float_detect_tininess; 200 signed char float_rounding_mode; 201 uint8_t float_exception_flags; 202 signed char floatx80_rounding_precision; 203 /* should denormalised results go to zero and set the inexact flag? */ 204 flag flush_to_zero; 205 /* should denormalised inputs go to zero and set the input_denormal flag? */ 206 flag flush_inputs_to_zero; 207 flag default_nan_mode; 208 flag snan_bit_is_one; 209 } float_status; 210 211 static inline void set_float_detect_tininess(int val, float_status *status) 212 { 213 status->float_detect_tininess = val; 214 } 215 static inline void set_float_rounding_mode(int val, float_status *status) 216 { 217 status->float_rounding_mode = val; 218 } 219 static inline void set_float_exception_flags(int val, float_status *status) 220 { 221 status->float_exception_flags = val; 222 } 223 static inline void set_floatx80_rounding_precision(int val, 224 float_status *status) 225 { 226 status->floatx80_rounding_precision = val; 227 } 228 static inline void set_flush_to_zero(flag val, float_status *status) 229 { 230 status->flush_to_zero = val; 231 } 232 static inline void set_flush_inputs_to_zero(flag val, float_status *status) 233 { 234 status->flush_inputs_to_zero = val; 235 } 236 static inline void set_default_nan_mode(flag val, float_status *status) 237 { 238 status->default_nan_mode = val; 239 } 240 static inline void set_snan_bit_is_one(flag val, float_status *status) 241 { 242 status->snan_bit_is_one = val; 243 } 244 static inline int get_float_detect_tininess(float_status *status) 245 { 246 return status->float_detect_tininess; 247 } 248 static inline int get_float_rounding_mode(float_status *status) 249 { 250 return status->float_rounding_mode; 251 } 252 static inline int get_float_exception_flags(float_status *status) 253 { 254 return status->float_exception_flags; 255 } 256 static inline int get_floatx80_rounding_precision(float_status *status) 257 { 258 return status->floatx80_rounding_precision; 259 } 260 static inline flag get_flush_to_zero(float_status *status) 261 { 262 return status->flush_to_zero; 263 } 264 static inline flag get_flush_inputs_to_zero(float_status *status) 265 { 266 return status->flush_inputs_to_zero; 267 } 268 static inline flag get_default_nan_mode(float_status *status) 269 { 270 return status->default_nan_mode; 271 } 272 273 /*---------------------------------------------------------------------------- 274 | Routine to raise any or all of the software IEC/IEEE floating-point 275 | exception flags. 276 *----------------------------------------------------------------------------*/ 277 void float_raise(uint8_t flags, float_status *status); 278 279 /*---------------------------------------------------------------------------- 280 | If `a' is denormal and we are in flush-to-zero mode then set the 281 | input-denormal exception and return zero. Otherwise just return the value. 282 *----------------------------------------------------------------------------*/ 283 float32 float32_squash_input_denormal(float32 a, float_status *status); 284 float64 float64_squash_input_denormal(float64 a, float_status *status); 285 286 /*---------------------------------------------------------------------------- 287 | Options to indicate which negations to perform in float*_muladd() 288 | Using these differs from negating an input or output before calling 289 | the muladd function in that this means that a NaN doesn't have its 290 | sign bit inverted before it is propagated. 291 | We also support halving the result before rounding, as a special 292 | case to support the ARM fused-sqrt-step instruction FRSQRTS. 293 *----------------------------------------------------------------------------*/ 294 enum { 295 float_muladd_negate_c = 1, 296 float_muladd_negate_product = 2, 297 float_muladd_negate_result = 4, 298 float_muladd_halve_result = 8, 299 }; 300 301 /*---------------------------------------------------------------------------- 302 | Software IEC/IEEE integer-to-floating-point conversion routines. 303 *----------------------------------------------------------------------------*/ 304 float32 int32_to_float32(int32_t, float_status *status); 305 float64 int32_to_float64(int32_t, float_status *status); 306 float32 uint32_to_float32(uint32_t, float_status *status); 307 float64 uint32_to_float64(uint32_t, float_status *status); 308 floatx80 int32_to_floatx80(int32_t, float_status *status); 309 float128 int32_to_float128(int32_t, float_status *status); 310 float32 int64_to_float32(int64_t, float_status *status); 311 float64 int64_to_float64(int64_t, float_status *status); 312 floatx80 int64_to_floatx80(int64_t, float_status *status); 313 float128 int64_to_float128(int64_t, float_status *status); 314 float32 uint64_to_float32(uint64_t, float_status *status); 315 float64 uint64_to_float64(uint64_t, float_status *status); 316 float128 uint64_to_float128(uint64_t, float_status *status); 317 318 /* We provide the int16 versions for symmetry of API with float-to-int */ 319 static inline float32 int16_to_float32(int16_t v, float_status *status) 320 { 321 return int32_to_float32(v, status); 322 } 323 324 static inline float32 uint16_to_float32(uint16_t v, float_status *status) 325 { 326 return uint32_to_float32(v, status); 327 } 328 329 static inline float64 int16_to_float64(int16_t v, float_status *status) 330 { 331 return int32_to_float64(v, status); 332 } 333 334 static inline float64 uint16_to_float64(uint16_t v, float_status *status) 335 { 336 return uint32_to_float64(v, status); 337 } 338 339 /*---------------------------------------------------------------------------- 340 | Software half-precision conversion routines. 341 *----------------------------------------------------------------------------*/ 342 float16 float32_to_float16(float32, flag, float_status *status); 343 float32 float16_to_float32(float16, flag, float_status *status); 344 float16 float64_to_float16(float64 a, flag ieee, float_status *status); 345 float64 float16_to_float64(float16 a, flag ieee, float_status *status); 346 347 /*---------------------------------------------------------------------------- 348 | Software half-precision operations. 349 *----------------------------------------------------------------------------*/ 350 int float16_is_quiet_nan(float16, float_status *status); 351 int float16_is_signaling_nan(float16, float_status *status); 352 float16 float16_maybe_silence_nan(float16, float_status *status); 353 354 static inline int float16_is_any_nan(float16 a) 355 { 356 return ((float16_val(a) & ~0x8000) > 0x7c00); 357 } 358 359 /*---------------------------------------------------------------------------- 360 | The pattern for a default generated half-precision NaN. 361 *----------------------------------------------------------------------------*/ 362 float16 float16_default_nan(float_status *status); 363 364 /*---------------------------------------------------------------------------- 365 | Software IEC/IEEE single-precision conversion routines. 366 *----------------------------------------------------------------------------*/ 367 int16_t float32_to_int16(float32, float_status *status); 368 uint16_t float32_to_uint16(float32, float_status *status); 369 int16_t float32_to_int16_round_to_zero(float32, float_status *status); 370 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status); 371 int32_t float32_to_int32(float32, float_status *status); 372 int32_t float32_to_int32_round_to_zero(float32, float_status *status); 373 uint32_t float32_to_uint32(float32, float_status *status); 374 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status); 375 int64_t float32_to_int64(float32, float_status *status); 376 uint64_t float32_to_uint64(float32, float_status *status); 377 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status); 378 int64_t float32_to_int64_round_to_zero(float32, float_status *status); 379 float64 float32_to_float64(float32, float_status *status); 380 floatx80 float32_to_floatx80(float32, float_status *status); 381 float128 float32_to_float128(float32, float_status *status); 382 383 /*---------------------------------------------------------------------------- 384 | Software IEC/IEEE single-precision operations. 385 *----------------------------------------------------------------------------*/ 386 float32 float32_round_to_int(float32, float_status *status); 387 float32 float32_add(float32, float32, float_status *status); 388 float32 float32_sub(float32, float32, float_status *status); 389 float32 float32_mul(float32, float32, float_status *status); 390 float32 float32_div(float32, float32, float_status *status); 391 float32 float32_rem(float32, float32, float_status *status); 392 float32 float32_muladd(float32, float32, float32, int, float_status *status); 393 float32 float32_sqrt(float32, float_status *status); 394 float32 float32_exp2(float32, float_status *status); 395 float32 float32_log2(float32, float_status *status); 396 int float32_eq(float32, float32, float_status *status); 397 int float32_le(float32, float32, float_status *status); 398 int float32_lt(float32, float32, float_status *status); 399 int float32_unordered(float32, float32, float_status *status); 400 int float32_eq_quiet(float32, float32, float_status *status); 401 int float32_le_quiet(float32, float32, float_status *status); 402 int float32_lt_quiet(float32, float32, float_status *status); 403 int float32_unordered_quiet(float32, float32, float_status *status); 404 int float32_compare(float32, float32, float_status *status); 405 int float32_compare_quiet(float32, float32, float_status *status); 406 float32 float32_min(float32, float32, float_status *status); 407 float32 float32_max(float32, float32, float_status *status); 408 float32 float32_minnum(float32, float32, float_status *status); 409 float32 float32_maxnum(float32, float32, float_status *status); 410 float32 float32_minnummag(float32, float32, float_status *status); 411 float32 float32_maxnummag(float32, float32, float_status *status); 412 int float32_is_quiet_nan(float32, float_status *status); 413 int float32_is_signaling_nan(float32, float_status *status); 414 float32 float32_maybe_silence_nan(float32, float_status *status); 415 float32 float32_scalbn(float32, int, float_status *status); 416 417 static inline float32 float32_abs(float32 a) 418 { 419 /* Note that abs does *not* handle NaN specially, nor does 420 * it flush denormal inputs to zero. 421 */ 422 return make_float32(float32_val(a) & 0x7fffffff); 423 } 424 425 static inline float32 float32_chs(float32 a) 426 { 427 /* Note that chs does *not* handle NaN specially, nor does 428 * it flush denormal inputs to zero. 429 */ 430 return make_float32(float32_val(a) ^ 0x80000000); 431 } 432 433 static inline int float32_is_infinity(float32 a) 434 { 435 return (float32_val(a) & 0x7fffffff) == 0x7f800000; 436 } 437 438 static inline int float32_is_neg(float32 a) 439 { 440 return float32_val(a) >> 31; 441 } 442 443 static inline int float32_is_zero(float32 a) 444 { 445 return (float32_val(a) & 0x7fffffff) == 0; 446 } 447 448 static inline int float32_is_any_nan(float32 a) 449 { 450 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); 451 } 452 453 static inline int float32_is_zero_or_denormal(float32 a) 454 { 455 return (float32_val(a) & 0x7f800000) == 0; 456 } 457 458 static inline float32 float32_set_sign(float32 a, int sign) 459 { 460 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); 461 } 462 463 #define float32_zero make_float32(0) 464 #define float32_one make_float32(0x3f800000) 465 #define float32_ln2 make_float32(0x3f317218) 466 #define float32_pi make_float32(0x40490fdb) 467 #define float32_half make_float32(0x3f000000) 468 #define float32_infinity make_float32(0x7f800000) 469 470 471 /*---------------------------------------------------------------------------- 472 | The pattern for a default generated single-precision NaN. 473 *----------------------------------------------------------------------------*/ 474 float32 float32_default_nan(float_status *status); 475 476 /*---------------------------------------------------------------------------- 477 | Software IEC/IEEE double-precision conversion routines. 478 *----------------------------------------------------------------------------*/ 479 int16_t float64_to_int16(float64, float_status *status); 480 uint16_t float64_to_uint16(float64, float_status *status); 481 int16_t float64_to_int16_round_to_zero(float64, float_status *status); 482 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status); 483 int32_t float64_to_int32(float64, float_status *status); 484 int32_t float64_to_int32_round_to_zero(float64, float_status *status); 485 uint32_t float64_to_uint32(float64, float_status *status); 486 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status); 487 int64_t float64_to_int64(float64, float_status *status); 488 int64_t float64_to_int64_round_to_zero(float64, float_status *status); 489 uint64_t float64_to_uint64(float64 a, float_status *status); 490 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status); 491 float32 float64_to_float32(float64, float_status *status); 492 floatx80 float64_to_floatx80(float64, float_status *status); 493 float128 float64_to_float128(float64, float_status *status); 494 495 /*---------------------------------------------------------------------------- 496 | Software IEC/IEEE double-precision operations. 497 *----------------------------------------------------------------------------*/ 498 float64 float64_round_to_int(float64, float_status *status); 499 float64 float64_trunc_to_int(float64, float_status *status); 500 float64 float64_add(float64, float64, float_status *status); 501 float64 float64_sub(float64, float64, float_status *status); 502 float64 float64_mul(float64, float64, float_status *status); 503 float64 float64_div(float64, float64, float_status *status); 504 float64 float64_rem(float64, float64, float_status *status); 505 float64 float64_muladd(float64, float64, float64, int, float_status *status); 506 float64 float64_sqrt(float64, float_status *status); 507 float64 float64_log2(float64, float_status *status); 508 int float64_eq(float64, float64, float_status *status); 509 int float64_le(float64, float64, float_status *status); 510 int float64_lt(float64, float64, float_status *status); 511 int float64_unordered(float64, float64, float_status *status); 512 int float64_eq_quiet(float64, float64, float_status *status); 513 int float64_le_quiet(float64, float64, float_status *status); 514 int float64_lt_quiet(float64, float64, float_status *status); 515 int float64_unordered_quiet(float64, float64, float_status *status); 516 int float64_compare(float64, float64, float_status *status); 517 int float64_compare_quiet(float64, float64, float_status *status); 518 float64 float64_min(float64, float64, float_status *status); 519 float64 float64_max(float64, float64, float_status *status); 520 float64 float64_minnum(float64, float64, float_status *status); 521 float64 float64_maxnum(float64, float64, float_status *status); 522 float64 float64_minnummag(float64, float64, float_status *status); 523 float64 float64_maxnummag(float64, float64, float_status *status); 524 int float64_is_quiet_nan(float64 a, float_status *status); 525 int float64_is_signaling_nan(float64, float_status *status); 526 float64 float64_maybe_silence_nan(float64, float_status *status); 527 float64 float64_scalbn(float64, int, float_status *status); 528 529 static inline float64 float64_abs(float64 a) 530 { 531 /* Note that abs does *not* handle NaN specially, nor does 532 * it flush denormal inputs to zero. 533 */ 534 return make_float64(float64_val(a) & 0x7fffffffffffffffLL); 535 } 536 537 static inline float64 float64_chs(float64 a) 538 { 539 /* Note that chs does *not* handle NaN specially, nor does 540 * it flush denormal inputs to zero. 541 */ 542 return make_float64(float64_val(a) ^ 0x8000000000000000LL); 543 } 544 545 static inline int float64_is_infinity(float64 a) 546 { 547 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; 548 } 549 550 static inline int float64_is_neg(float64 a) 551 { 552 return float64_val(a) >> 63; 553 } 554 555 static inline int float64_is_zero(float64 a) 556 { 557 return (float64_val(a) & 0x7fffffffffffffffLL) == 0; 558 } 559 560 static inline int float64_is_any_nan(float64 a) 561 { 562 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); 563 } 564 565 static inline int float64_is_zero_or_denormal(float64 a) 566 { 567 return (float64_val(a) & 0x7ff0000000000000LL) == 0; 568 } 569 570 static inline float64 float64_set_sign(float64 a, int sign) 571 { 572 return make_float64((float64_val(a) & 0x7fffffffffffffffULL) 573 | ((int64_t)sign << 63)); 574 } 575 576 #define float64_zero make_float64(0) 577 #define float64_one make_float64(0x3ff0000000000000LL) 578 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) 579 #define float64_pi make_float64(0x400921fb54442d18LL) 580 #define float64_half make_float64(0x3fe0000000000000LL) 581 #define float64_infinity make_float64(0x7ff0000000000000LL) 582 583 /*---------------------------------------------------------------------------- 584 | The pattern for a default generated double-precision NaN. 585 *----------------------------------------------------------------------------*/ 586 float64 float64_default_nan(float_status *status); 587 588 /*---------------------------------------------------------------------------- 589 | Software IEC/IEEE extended double-precision conversion routines. 590 *----------------------------------------------------------------------------*/ 591 int32_t floatx80_to_int32(floatx80, float_status *status); 592 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status); 593 int64_t floatx80_to_int64(floatx80, float_status *status); 594 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status); 595 float32 floatx80_to_float32(floatx80, float_status *status); 596 float64 floatx80_to_float64(floatx80, float_status *status); 597 float128 floatx80_to_float128(floatx80, float_status *status); 598 599 /*---------------------------------------------------------------------------- 600 | Software IEC/IEEE extended double-precision operations. 601 *----------------------------------------------------------------------------*/ 602 floatx80 floatx80_round_to_int(floatx80, float_status *status); 603 floatx80 floatx80_add(floatx80, floatx80, float_status *status); 604 floatx80 floatx80_sub(floatx80, floatx80, float_status *status); 605 floatx80 floatx80_mul(floatx80, floatx80, float_status *status); 606 floatx80 floatx80_div(floatx80, floatx80, float_status *status); 607 floatx80 floatx80_rem(floatx80, floatx80, float_status *status); 608 floatx80 floatx80_sqrt(floatx80, float_status *status); 609 int floatx80_eq(floatx80, floatx80, float_status *status); 610 int floatx80_le(floatx80, floatx80, float_status *status); 611 int floatx80_lt(floatx80, floatx80, float_status *status); 612 int floatx80_unordered(floatx80, floatx80, float_status *status); 613 int floatx80_eq_quiet(floatx80, floatx80, float_status *status); 614 int floatx80_le_quiet(floatx80, floatx80, float_status *status); 615 int floatx80_lt_quiet(floatx80, floatx80, float_status *status); 616 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status); 617 int floatx80_compare(floatx80, floatx80, float_status *status); 618 int floatx80_compare_quiet(floatx80, floatx80, float_status *status); 619 int floatx80_is_quiet_nan(floatx80, float_status *status); 620 int floatx80_is_signaling_nan(floatx80, float_status *status); 621 floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status); 622 floatx80 floatx80_scalbn(floatx80, int, float_status *status); 623 624 static inline floatx80 floatx80_abs(floatx80 a) 625 { 626 a.high &= 0x7fff; 627 return a; 628 } 629 630 static inline floatx80 floatx80_chs(floatx80 a) 631 { 632 a.high ^= 0x8000; 633 return a; 634 } 635 636 static inline int floatx80_is_infinity(floatx80 a) 637 { 638 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; 639 } 640 641 static inline int floatx80_is_neg(floatx80 a) 642 { 643 return a.high >> 15; 644 } 645 646 static inline int floatx80_is_zero(floatx80 a) 647 { 648 return (a.high & 0x7fff) == 0 && a.low == 0; 649 } 650 651 static inline int floatx80_is_zero_or_denormal(floatx80 a) 652 { 653 return (a.high & 0x7fff) == 0; 654 } 655 656 static inline int floatx80_is_any_nan(floatx80 a) 657 { 658 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); 659 } 660 661 /*---------------------------------------------------------------------------- 662 | Return whether the given value is an invalid floatx80 encoding. 663 | Invalid floatx80 encodings arise when the integer bit is not set, but 664 | the exponent is not zero. The only times the integer bit is permitted to 665 | be zero is in subnormal numbers and the value zero. 666 | This includes what the Intel software developer's manual calls pseudo-NaNs, 667 | pseudo-infinities and un-normal numbers. It does not include 668 | pseudo-denormals, which must still be correctly handled as inputs even 669 | if they are never generated as outputs. 670 *----------------------------------------------------------------------------*/ 671 static inline bool floatx80_invalid_encoding(floatx80 a) 672 { 673 return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0; 674 } 675 676 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) 677 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) 678 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) 679 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) 680 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) 681 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) 682 683 /*---------------------------------------------------------------------------- 684 | The pattern for a default generated extended double-precision NaN. 685 *----------------------------------------------------------------------------*/ 686 floatx80 floatx80_default_nan(float_status *status); 687 688 /*---------------------------------------------------------------------------- 689 | Software IEC/IEEE quadruple-precision conversion routines. 690 *----------------------------------------------------------------------------*/ 691 int32_t float128_to_int32(float128, float_status *status); 692 int32_t float128_to_int32_round_to_zero(float128, float_status *status); 693 int64_t float128_to_int64(float128, float_status *status); 694 int64_t float128_to_int64_round_to_zero(float128, float_status *status); 695 float32 float128_to_float32(float128, float_status *status); 696 float64 float128_to_float64(float128, float_status *status); 697 floatx80 float128_to_floatx80(float128, float_status *status); 698 699 /*---------------------------------------------------------------------------- 700 | Software IEC/IEEE quadruple-precision operations. 701 *----------------------------------------------------------------------------*/ 702 float128 float128_round_to_int(float128, float_status *status); 703 float128 float128_add(float128, float128, float_status *status); 704 float128 float128_sub(float128, float128, float_status *status); 705 float128 float128_mul(float128, float128, float_status *status); 706 float128 float128_div(float128, float128, float_status *status); 707 float128 float128_rem(float128, float128, float_status *status); 708 float128 float128_sqrt(float128, float_status *status); 709 int float128_eq(float128, float128, float_status *status); 710 int float128_le(float128, float128, float_status *status); 711 int float128_lt(float128, float128, float_status *status); 712 int float128_unordered(float128, float128, float_status *status); 713 int float128_eq_quiet(float128, float128, float_status *status); 714 int float128_le_quiet(float128, float128, float_status *status); 715 int float128_lt_quiet(float128, float128, float_status *status); 716 int float128_unordered_quiet(float128, float128, float_status *status); 717 int float128_compare(float128, float128, float_status *status); 718 int float128_compare_quiet(float128, float128, float_status *status); 719 int float128_is_quiet_nan(float128, float_status *status); 720 int float128_is_signaling_nan(float128, float_status *status); 721 float128 float128_maybe_silence_nan(float128, float_status *status); 722 float128 float128_scalbn(float128, int, float_status *status); 723 724 static inline float128 float128_abs(float128 a) 725 { 726 a.high &= 0x7fffffffffffffffLL; 727 return a; 728 } 729 730 static inline float128 float128_chs(float128 a) 731 { 732 a.high ^= 0x8000000000000000LL; 733 return a; 734 } 735 736 static inline int float128_is_infinity(float128 a) 737 { 738 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; 739 } 740 741 static inline int float128_is_neg(float128 a) 742 { 743 return a.high >> 63; 744 } 745 746 static inline int float128_is_zero(float128 a) 747 { 748 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; 749 } 750 751 static inline int float128_is_zero_or_denormal(float128 a) 752 { 753 return (a.high & 0x7fff000000000000LL) == 0; 754 } 755 756 static inline int float128_is_any_nan(float128 a) 757 { 758 return ((a.high >> 48) & 0x7fff) == 0x7fff && 759 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); 760 } 761 762 #define float128_zero make_float128(0, 0) 763 764 /*---------------------------------------------------------------------------- 765 | The pattern for a default generated quadruple-precision NaN. 766 *----------------------------------------------------------------------------*/ 767 float128 float128_default_nan(float_status *status); 768 769 #endif /* SOFTFLOAT_H */ 770