1 /* 2 * QEMU float support 3 * 4 * The code in this source file is derived from release 2a of the SoftFloat 5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and 6 * some later contributions) are provided under that license, as detailed below. 7 * It has subsequently been modified by contributors to the QEMU Project, 8 * so some portions are provided under: 9 * the SoftFloat-2a license 10 * the BSD license 11 * GPL-v2-or-later 12 * 13 * Any future contributions to this file after December 1st 2014 will be 14 * taken to be licensed under the Softfloat-2a license unless specifically 15 * indicated otherwise. 16 */ 17 18 /* 19 =============================================================================== 20 This C header file is part of the SoftFloat IEC/IEEE Floating-point 21 Arithmetic Package, Release 2a. 22 23 Written by John R. Hauser. This work was made possible in part by the 24 International Computer Science Institute, located at Suite 600, 1947 Center 25 Street, Berkeley, California 94704. Funding was partially provided by the 26 National Science Foundation under grant MIP-9311980. The original version 27 of this code was written as part of a project to build a fixed-point vector 28 processor in collaboration with the University of California at Berkeley, 29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 31 arithmetic/SoftFloat.html'. 32 33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 38 39 Derivative works are acceptable, even for commercial purposes, so long as 40 (1) they include prominent notice that the work is derivative, and (2) they 41 include prominent notice akin to these four paragraphs for those parts of 42 this code that are retained. 43 44 =============================================================================== 45 */ 46 47 /* BSD licensing: 48 * Copyright (c) 2006, Fabrice Bellard 49 * All rights reserved. 50 * 51 * Redistribution and use in source and binary forms, with or without 52 * modification, are permitted provided that the following conditions are met: 53 * 54 * 1. Redistributions of source code must retain the above copyright notice, 55 * this list of conditions and the following disclaimer. 56 * 57 * 2. Redistributions in binary form must reproduce the above copyright notice, 58 * this list of conditions and the following disclaimer in the documentation 59 * and/or other materials provided with the distribution. 60 * 61 * 3. Neither the name of the copyright holder nor the names of its contributors 62 * may be used to endorse or promote products derived from this software without 63 * specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 75 * THE POSSIBILITY OF SUCH DAMAGE. 76 */ 77 78 /* Portions of this work are licensed under the terms of the GNU GPL, 79 * version 2 or later. See the COPYING file in the top-level directory. 80 */ 81 82 #ifndef SOFTFLOAT_H 83 #define SOFTFLOAT_H 84 85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) 86 #include <sunmath.h> 87 #endif 88 89 90 /* This 'flag' type must be able to hold at least 0 and 1. It should 91 * probably be replaced with 'bool' but the uses would need to be audited 92 * to check that they weren't accidentally relying on it being a larger type. 93 */ 94 typedef uint8_t flag; 95 96 #define LIT64( a ) a##LL 97 98 /*---------------------------------------------------------------------------- 99 | Software IEC/IEEE floating-point ordering relations 100 *----------------------------------------------------------------------------*/ 101 enum { 102 float_relation_less = -1, 103 float_relation_equal = 0, 104 float_relation_greater = 1, 105 float_relation_unordered = 2 106 }; 107 108 /*---------------------------------------------------------------------------- 109 | Software IEC/IEEE floating-point types. 110 *----------------------------------------------------------------------------*/ 111 /* Use structures for soft-float types. This prevents accidentally mixing 112 them with native int/float types. A sufficiently clever compiler and 113 sane ABI should be able to see though these structs. However 114 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ 115 //#define USE_SOFTFLOAT_STRUCT_TYPES 116 #ifdef USE_SOFTFLOAT_STRUCT_TYPES 117 typedef struct { 118 uint16_t v; 119 } float16; 120 #define float16_val(x) (((float16)(x)).v) 121 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) 122 #define const_float16(x) { x } 123 typedef struct { 124 uint32_t v; 125 } float32; 126 /* The cast ensures an error if the wrong type is passed. */ 127 #define float32_val(x) (((float32)(x)).v) 128 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) 129 #define const_float32(x) { x } 130 typedef struct { 131 uint64_t v; 132 } float64; 133 #define float64_val(x) (((float64)(x)).v) 134 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) 135 #define const_float64(x) { x } 136 #else 137 typedef uint16_t float16; 138 typedef uint32_t float32; 139 typedef uint64_t float64; 140 #define float16_val(x) (x) 141 #define float32_val(x) (x) 142 #define float64_val(x) (x) 143 #define make_float16(x) (x) 144 #define make_float32(x) (x) 145 #define make_float64(x) (x) 146 #define const_float16(x) (x) 147 #define const_float32(x) (x) 148 #define const_float64(x) (x) 149 #endif 150 typedef struct { 151 uint64_t low; 152 uint16_t high; 153 } floatx80; 154 #define make_floatx80(exp, mant) ((floatx80) { mant, exp }) 155 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp } 156 typedef struct { 157 #ifdef HOST_WORDS_BIGENDIAN 158 uint64_t high, low; 159 #else 160 uint64_t low, high; 161 #endif 162 } float128; 163 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ }) 164 #define make_float128_init(high_, low_) { .high = high_, .low = low_ } 165 166 /*---------------------------------------------------------------------------- 167 | Software IEC/IEEE floating-point underflow tininess-detection mode. 168 *----------------------------------------------------------------------------*/ 169 enum { 170 float_tininess_after_rounding = 0, 171 float_tininess_before_rounding = 1 172 }; 173 174 /*---------------------------------------------------------------------------- 175 | Software IEC/IEEE floating-point rounding mode. 176 *----------------------------------------------------------------------------*/ 177 enum { 178 float_round_nearest_even = 0, 179 float_round_down = 1, 180 float_round_up = 2, 181 float_round_to_zero = 3, 182 float_round_ties_away = 4, 183 }; 184 185 /*---------------------------------------------------------------------------- 186 | Software IEC/IEEE floating-point exception flags. 187 *----------------------------------------------------------------------------*/ 188 enum { 189 float_flag_invalid = 1, 190 float_flag_divbyzero = 4, 191 float_flag_overflow = 8, 192 float_flag_underflow = 16, 193 float_flag_inexact = 32, 194 float_flag_input_denormal = 64, 195 float_flag_output_denormal = 128 196 }; 197 198 typedef struct float_status { 199 signed char float_detect_tininess; 200 signed char float_rounding_mode; 201 uint8_t float_exception_flags; 202 signed char floatx80_rounding_precision; 203 /* should denormalised results go to zero and set the inexact flag? */ 204 flag flush_to_zero; 205 /* should denormalised inputs go to zero and set the input_denormal flag? */ 206 flag flush_inputs_to_zero; 207 flag default_nan_mode; 208 flag snan_bit_is_one; 209 } float_status; 210 211 static inline void set_float_detect_tininess(int val, float_status *status) 212 { 213 status->float_detect_tininess = val; 214 } 215 static inline void set_float_rounding_mode(int val, float_status *status) 216 { 217 status->float_rounding_mode = val; 218 } 219 static inline void set_float_exception_flags(int val, float_status *status) 220 { 221 status->float_exception_flags = val; 222 } 223 static inline void set_floatx80_rounding_precision(int val, 224 float_status *status) 225 { 226 status->floatx80_rounding_precision = val; 227 } 228 static inline void set_flush_to_zero(flag val, float_status *status) 229 { 230 status->flush_to_zero = val; 231 } 232 static inline void set_flush_inputs_to_zero(flag val, float_status *status) 233 { 234 status->flush_inputs_to_zero = val; 235 } 236 static inline void set_default_nan_mode(flag val, float_status *status) 237 { 238 status->default_nan_mode = val; 239 } 240 static inline void set_snan_bit_is_one(flag val, float_status *status) 241 { 242 status->snan_bit_is_one = val; 243 } 244 static inline int get_float_detect_tininess(float_status *status) 245 { 246 return status->float_detect_tininess; 247 } 248 static inline int get_float_rounding_mode(float_status *status) 249 { 250 return status->float_rounding_mode; 251 } 252 static inline int get_float_exception_flags(float_status *status) 253 { 254 return status->float_exception_flags; 255 } 256 static inline int get_floatx80_rounding_precision(float_status *status) 257 { 258 return status->floatx80_rounding_precision; 259 } 260 static inline flag get_flush_to_zero(float_status *status) 261 { 262 return status->flush_to_zero; 263 } 264 static inline flag get_flush_inputs_to_zero(float_status *status) 265 { 266 return status->flush_inputs_to_zero; 267 } 268 static inline flag get_default_nan_mode(float_status *status) 269 { 270 return status->default_nan_mode; 271 } 272 273 /*---------------------------------------------------------------------------- 274 | Routine to raise any or all of the software IEC/IEEE floating-point 275 | exception flags. 276 *----------------------------------------------------------------------------*/ 277 void float_raise(uint8_t flags, float_status *status); 278 279 /*---------------------------------------------------------------------------- 280 | If `a' is denormal and we are in flush-to-zero mode then set the 281 | input-denormal exception and return zero. Otherwise just return the value. 282 *----------------------------------------------------------------------------*/ 283 float32 float32_squash_input_denormal(float32 a, float_status *status); 284 float64 float64_squash_input_denormal(float64 a, float_status *status); 285 286 /*---------------------------------------------------------------------------- 287 | Options to indicate which negations to perform in float*_muladd() 288 | Using these differs from negating an input or output before calling 289 | the muladd function in that this means that a NaN doesn't have its 290 | sign bit inverted before it is propagated. 291 | We also support halving the result before rounding, as a special 292 | case to support the ARM fused-sqrt-step instruction FRSQRTS. 293 *----------------------------------------------------------------------------*/ 294 enum { 295 float_muladd_negate_c = 1, 296 float_muladd_negate_product = 2, 297 float_muladd_negate_result = 4, 298 float_muladd_halve_result = 8, 299 }; 300 301 /*---------------------------------------------------------------------------- 302 | Software IEC/IEEE integer-to-floating-point conversion routines. 303 *----------------------------------------------------------------------------*/ 304 float32 int32_to_float32(int32_t, float_status *status); 305 float64 int32_to_float64(int32_t, float_status *status); 306 float32 uint32_to_float32(uint32_t, float_status *status); 307 float64 uint32_to_float64(uint32_t, float_status *status); 308 floatx80 int32_to_floatx80(int32_t, float_status *status); 309 float128 int32_to_float128(int32_t, float_status *status); 310 float32 int64_to_float32(int64_t, float_status *status); 311 float64 int64_to_float64(int64_t, float_status *status); 312 floatx80 int64_to_floatx80(int64_t, float_status *status); 313 float128 int64_to_float128(int64_t, float_status *status); 314 float32 uint64_to_float32(uint64_t, float_status *status); 315 float64 uint64_to_float64(uint64_t, float_status *status); 316 float128 uint64_to_float128(uint64_t, float_status *status); 317 318 /* We provide the int16 versions for symmetry of API with float-to-int */ 319 static inline float32 int16_to_float32(int16_t v, float_status *status) 320 { 321 return int32_to_float32(v, status); 322 } 323 324 static inline float32 uint16_to_float32(uint16_t v, float_status *status) 325 { 326 return uint32_to_float32(v, status); 327 } 328 329 static inline float64 int16_to_float64(int16_t v, float_status *status) 330 { 331 return int32_to_float64(v, status); 332 } 333 334 static inline float64 uint16_to_float64(uint16_t v, float_status *status) 335 { 336 return uint32_to_float64(v, status); 337 } 338 339 /*---------------------------------------------------------------------------- 340 | Software half-precision conversion routines. 341 *----------------------------------------------------------------------------*/ 342 float16 float32_to_float16(float32, flag, float_status *status); 343 float32 float16_to_float32(float16, flag, float_status *status); 344 float16 float64_to_float16(float64 a, flag ieee, float_status *status); 345 float64 float16_to_float64(float16 a, flag ieee, float_status *status); 346 347 /*---------------------------------------------------------------------------- 348 | Software half-precision operations. 349 *----------------------------------------------------------------------------*/ 350 int float16_is_quiet_nan(float16, float_status *status); 351 int float16_is_signaling_nan(float16, float_status *status); 352 float16 float16_maybe_silence_nan(float16, float_status *status); 353 354 static inline int float16_is_any_nan(float16 a) 355 { 356 return ((float16_val(a) & ~0x8000) > 0x7c00); 357 } 358 359 static inline int float16_is_neg(float16 a) 360 { 361 return float16_val(a) >> 15; 362 } 363 364 static inline int float16_is_infinity(float16 a) 365 { 366 return (float16_val(a) & 0x7fff) == 0x7c00; 367 } 368 369 static inline int float16_is_zero(float16 a) 370 { 371 return (float16_val(a) & 0x7fff) == 0; 372 } 373 374 static inline int float16_is_zero_or_denormal(float16 a) 375 { 376 return (float16_val(a) & 0x7c00) == 0; 377 } 378 379 /*---------------------------------------------------------------------------- 380 | The pattern for a default generated half-precision NaN. 381 *----------------------------------------------------------------------------*/ 382 float16 float16_default_nan(float_status *status); 383 384 /*---------------------------------------------------------------------------- 385 | Software IEC/IEEE single-precision conversion routines. 386 *----------------------------------------------------------------------------*/ 387 int16_t float32_to_int16(float32, float_status *status); 388 uint16_t float32_to_uint16(float32, float_status *status); 389 int16_t float32_to_int16_round_to_zero(float32, float_status *status); 390 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status); 391 int32_t float32_to_int32(float32, float_status *status); 392 int32_t float32_to_int32_round_to_zero(float32, float_status *status); 393 uint32_t float32_to_uint32(float32, float_status *status); 394 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status); 395 int64_t float32_to_int64(float32, float_status *status); 396 uint64_t float32_to_uint64(float32, float_status *status); 397 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status); 398 int64_t float32_to_int64_round_to_zero(float32, float_status *status); 399 float64 float32_to_float64(float32, float_status *status); 400 floatx80 float32_to_floatx80(float32, float_status *status); 401 float128 float32_to_float128(float32, float_status *status); 402 403 /*---------------------------------------------------------------------------- 404 | Software IEC/IEEE single-precision operations. 405 *----------------------------------------------------------------------------*/ 406 float32 float32_round_to_int(float32, float_status *status); 407 float32 float32_add(float32, float32, float_status *status); 408 float32 float32_sub(float32, float32, float_status *status); 409 float32 float32_mul(float32, float32, float_status *status); 410 float32 float32_div(float32, float32, float_status *status); 411 float32 float32_rem(float32, float32, float_status *status); 412 float32 float32_muladd(float32, float32, float32, int, float_status *status); 413 float32 float32_sqrt(float32, float_status *status); 414 float32 float32_exp2(float32, float_status *status); 415 float32 float32_log2(float32, float_status *status); 416 int float32_eq(float32, float32, float_status *status); 417 int float32_le(float32, float32, float_status *status); 418 int float32_lt(float32, float32, float_status *status); 419 int float32_unordered(float32, float32, float_status *status); 420 int float32_eq_quiet(float32, float32, float_status *status); 421 int float32_le_quiet(float32, float32, float_status *status); 422 int float32_lt_quiet(float32, float32, float_status *status); 423 int float32_unordered_quiet(float32, float32, float_status *status); 424 int float32_compare(float32, float32, float_status *status); 425 int float32_compare_quiet(float32, float32, float_status *status); 426 float32 float32_min(float32, float32, float_status *status); 427 float32 float32_max(float32, float32, float_status *status); 428 float32 float32_minnum(float32, float32, float_status *status); 429 float32 float32_maxnum(float32, float32, float_status *status); 430 float32 float32_minnummag(float32, float32, float_status *status); 431 float32 float32_maxnummag(float32, float32, float_status *status); 432 int float32_is_quiet_nan(float32, float_status *status); 433 int float32_is_signaling_nan(float32, float_status *status); 434 float32 float32_maybe_silence_nan(float32, float_status *status); 435 float32 float32_scalbn(float32, int, float_status *status); 436 437 static inline float32 float32_abs(float32 a) 438 { 439 /* Note that abs does *not* handle NaN specially, nor does 440 * it flush denormal inputs to zero. 441 */ 442 return make_float32(float32_val(a) & 0x7fffffff); 443 } 444 445 static inline float32 float32_chs(float32 a) 446 { 447 /* Note that chs does *not* handle NaN specially, nor does 448 * it flush denormal inputs to zero. 449 */ 450 return make_float32(float32_val(a) ^ 0x80000000); 451 } 452 453 static inline int float32_is_infinity(float32 a) 454 { 455 return (float32_val(a) & 0x7fffffff) == 0x7f800000; 456 } 457 458 static inline int float32_is_neg(float32 a) 459 { 460 return float32_val(a) >> 31; 461 } 462 463 static inline int float32_is_zero(float32 a) 464 { 465 return (float32_val(a) & 0x7fffffff) == 0; 466 } 467 468 static inline int float32_is_any_nan(float32 a) 469 { 470 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); 471 } 472 473 static inline int float32_is_zero_or_denormal(float32 a) 474 { 475 return (float32_val(a) & 0x7f800000) == 0; 476 } 477 478 static inline float32 float32_set_sign(float32 a, int sign) 479 { 480 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); 481 } 482 483 #define float32_zero make_float32(0) 484 #define float32_one make_float32(0x3f800000) 485 #define float32_ln2 make_float32(0x3f317218) 486 #define float32_pi make_float32(0x40490fdb) 487 #define float32_half make_float32(0x3f000000) 488 #define float32_infinity make_float32(0x7f800000) 489 490 491 /*---------------------------------------------------------------------------- 492 | The pattern for a default generated single-precision NaN. 493 *----------------------------------------------------------------------------*/ 494 float32 float32_default_nan(float_status *status); 495 496 /*---------------------------------------------------------------------------- 497 | Software IEC/IEEE double-precision conversion routines. 498 *----------------------------------------------------------------------------*/ 499 int16_t float64_to_int16(float64, float_status *status); 500 uint16_t float64_to_uint16(float64, float_status *status); 501 int16_t float64_to_int16_round_to_zero(float64, float_status *status); 502 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status); 503 int32_t float64_to_int32(float64, float_status *status); 504 int32_t float64_to_int32_round_to_zero(float64, float_status *status); 505 uint32_t float64_to_uint32(float64, float_status *status); 506 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status); 507 int64_t float64_to_int64(float64, float_status *status); 508 int64_t float64_to_int64_round_to_zero(float64, float_status *status); 509 uint64_t float64_to_uint64(float64 a, float_status *status); 510 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status); 511 float32 float64_to_float32(float64, float_status *status); 512 floatx80 float64_to_floatx80(float64, float_status *status); 513 float128 float64_to_float128(float64, float_status *status); 514 515 /*---------------------------------------------------------------------------- 516 | Software IEC/IEEE double-precision operations. 517 *----------------------------------------------------------------------------*/ 518 float64 float64_round_to_int(float64, float_status *status); 519 float64 float64_trunc_to_int(float64, float_status *status); 520 float64 float64_add(float64, float64, float_status *status); 521 float64 float64_sub(float64, float64, float_status *status); 522 float64 float64_mul(float64, float64, float_status *status); 523 float64 float64_div(float64, float64, float_status *status); 524 float64 float64_rem(float64, float64, float_status *status); 525 float64 float64_muladd(float64, float64, float64, int, float_status *status); 526 float64 float64_sqrt(float64, float_status *status); 527 float64 float64_log2(float64, float_status *status); 528 int float64_eq(float64, float64, float_status *status); 529 int float64_le(float64, float64, float_status *status); 530 int float64_lt(float64, float64, float_status *status); 531 int float64_unordered(float64, float64, float_status *status); 532 int float64_eq_quiet(float64, float64, float_status *status); 533 int float64_le_quiet(float64, float64, float_status *status); 534 int float64_lt_quiet(float64, float64, float_status *status); 535 int float64_unordered_quiet(float64, float64, float_status *status); 536 int float64_compare(float64, float64, float_status *status); 537 int float64_compare_quiet(float64, float64, float_status *status); 538 float64 float64_min(float64, float64, float_status *status); 539 float64 float64_max(float64, float64, float_status *status); 540 float64 float64_minnum(float64, float64, float_status *status); 541 float64 float64_maxnum(float64, float64, float_status *status); 542 float64 float64_minnummag(float64, float64, float_status *status); 543 float64 float64_maxnummag(float64, float64, float_status *status); 544 int float64_is_quiet_nan(float64 a, float_status *status); 545 int float64_is_signaling_nan(float64, float_status *status); 546 float64 float64_maybe_silence_nan(float64, float_status *status); 547 float64 float64_scalbn(float64, int, float_status *status); 548 549 static inline float64 float64_abs(float64 a) 550 { 551 /* Note that abs does *not* handle NaN specially, nor does 552 * it flush denormal inputs to zero. 553 */ 554 return make_float64(float64_val(a) & 0x7fffffffffffffffLL); 555 } 556 557 static inline float64 float64_chs(float64 a) 558 { 559 /* Note that chs does *not* handle NaN specially, nor does 560 * it flush denormal inputs to zero. 561 */ 562 return make_float64(float64_val(a) ^ 0x8000000000000000LL); 563 } 564 565 static inline int float64_is_infinity(float64 a) 566 { 567 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; 568 } 569 570 static inline int float64_is_neg(float64 a) 571 { 572 return float64_val(a) >> 63; 573 } 574 575 static inline int float64_is_zero(float64 a) 576 { 577 return (float64_val(a) & 0x7fffffffffffffffLL) == 0; 578 } 579 580 static inline int float64_is_any_nan(float64 a) 581 { 582 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); 583 } 584 585 static inline int float64_is_zero_or_denormal(float64 a) 586 { 587 return (float64_val(a) & 0x7ff0000000000000LL) == 0; 588 } 589 590 static inline float64 float64_set_sign(float64 a, int sign) 591 { 592 return make_float64((float64_val(a) & 0x7fffffffffffffffULL) 593 | ((int64_t)sign << 63)); 594 } 595 596 #define float64_zero make_float64(0) 597 #define float64_one make_float64(0x3ff0000000000000LL) 598 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) 599 #define float64_pi make_float64(0x400921fb54442d18LL) 600 #define float64_half make_float64(0x3fe0000000000000LL) 601 #define float64_infinity make_float64(0x7ff0000000000000LL) 602 603 /*---------------------------------------------------------------------------- 604 | The pattern for a default generated double-precision NaN. 605 *----------------------------------------------------------------------------*/ 606 float64 float64_default_nan(float_status *status); 607 608 /*---------------------------------------------------------------------------- 609 | Software IEC/IEEE extended double-precision conversion routines. 610 *----------------------------------------------------------------------------*/ 611 int32_t floatx80_to_int32(floatx80, float_status *status); 612 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status); 613 int64_t floatx80_to_int64(floatx80, float_status *status); 614 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status); 615 float32 floatx80_to_float32(floatx80, float_status *status); 616 float64 floatx80_to_float64(floatx80, float_status *status); 617 float128 floatx80_to_float128(floatx80, float_status *status); 618 619 /*---------------------------------------------------------------------------- 620 | Software IEC/IEEE extended double-precision operations. 621 *----------------------------------------------------------------------------*/ 622 floatx80 floatx80_round_to_int(floatx80, float_status *status); 623 floatx80 floatx80_add(floatx80, floatx80, float_status *status); 624 floatx80 floatx80_sub(floatx80, floatx80, float_status *status); 625 floatx80 floatx80_mul(floatx80, floatx80, float_status *status); 626 floatx80 floatx80_div(floatx80, floatx80, float_status *status); 627 floatx80 floatx80_rem(floatx80, floatx80, float_status *status); 628 floatx80 floatx80_sqrt(floatx80, float_status *status); 629 int floatx80_eq(floatx80, floatx80, float_status *status); 630 int floatx80_le(floatx80, floatx80, float_status *status); 631 int floatx80_lt(floatx80, floatx80, float_status *status); 632 int floatx80_unordered(floatx80, floatx80, float_status *status); 633 int floatx80_eq_quiet(floatx80, floatx80, float_status *status); 634 int floatx80_le_quiet(floatx80, floatx80, float_status *status); 635 int floatx80_lt_quiet(floatx80, floatx80, float_status *status); 636 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status); 637 int floatx80_compare(floatx80, floatx80, float_status *status); 638 int floatx80_compare_quiet(floatx80, floatx80, float_status *status); 639 int floatx80_is_quiet_nan(floatx80, float_status *status); 640 int floatx80_is_signaling_nan(floatx80, float_status *status); 641 floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status); 642 floatx80 floatx80_scalbn(floatx80, int, float_status *status); 643 644 static inline floatx80 floatx80_abs(floatx80 a) 645 { 646 a.high &= 0x7fff; 647 return a; 648 } 649 650 static inline floatx80 floatx80_chs(floatx80 a) 651 { 652 a.high ^= 0x8000; 653 return a; 654 } 655 656 static inline int floatx80_is_infinity(floatx80 a) 657 { 658 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; 659 } 660 661 static inline int floatx80_is_neg(floatx80 a) 662 { 663 return a.high >> 15; 664 } 665 666 static inline int floatx80_is_zero(floatx80 a) 667 { 668 return (a.high & 0x7fff) == 0 && a.low == 0; 669 } 670 671 static inline int floatx80_is_zero_or_denormal(floatx80 a) 672 { 673 return (a.high & 0x7fff) == 0; 674 } 675 676 static inline int floatx80_is_any_nan(floatx80 a) 677 { 678 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); 679 } 680 681 /*---------------------------------------------------------------------------- 682 | Return whether the given value is an invalid floatx80 encoding. 683 | Invalid floatx80 encodings arise when the integer bit is not set, but 684 | the exponent is not zero. The only times the integer bit is permitted to 685 | be zero is in subnormal numbers and the value zero. 686 | This includes what the Intel software developer's manual calls pseudo-NaNs, 687 | pseudo-infinities and un-normal numbers. It does not include 688 | pseudo-denormals, which must still be correctly handled as inputs even 689 | if they are never generated as outputs. 690 *----------------------------------------------------------------------------*/ 691 static inline bool floatx80_invalid_encoding(floatx80 a) 692 { 693 return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0; 694 } 695 696 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) 697 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) 698 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) 699 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) 700 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) 701 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) 702 703 /*---------------------------------------------------------------------------- 704 | The pattern for a default generated extended double-precision NaN. 705 *----------------------------------------------------------------------------*/ 706 floatx80 floatx80_default_nan(float_status *status); 707 708 /*---------------------------------------------------------------------------- 709 | Software IEC/IEEE quadruple-precision conversion routines. 710 *----------------------------------------------------------------------------*/ 711 int32_t float128_to_int32(float128, float_status *status); 712 int32_t float128_to_int32_round_to_zero(float128, float_status *status); 713 int64_t float128_to_int64(float128, float_status *status); 714 int64_t float128_to_int64_round_to_zero(float128, float_status *status); 715 float32 float128_to_float32(float128, float_status *status); 716 float64 float128_to_float64(float128, float_status *status); 717 floatx80 float128_to_floatx80(float128, float_status *status); 718 719 /*---------------------------------------------------------------------------- 720 | Software IEC/IEEE quadruple-precision operations. 721 *----------------------------------------------------------------------------*/ 722 float128 float128_round_to_int(float128, float_status *status); 723 float128 float128_add(float128, float128, float_status *status); 724 float128 float128_sub(float128, float128, float_status *status); 725 float128 float128_mul(float128, float128, float_status *status); 726 float128 float128_div(float128, float128, float_status *status); 727 float128 float128_rem(float128, float128, float_status *status); 728 float128 float128_sqrt(float128, float_status *status); 729 int float128_eq(float128, float128, float_status *status); 730 int float128_le(float128, float128, float_status *status); 731 int float128_lt(float128, float128, float_status *status); 732 int float128_unordered(float128, float128, float_status *status); 733 int float128_eq_quiet(float128, float128, float_status *status); 734 int float128_le_quiet(float128, float128, float_status *status); 735 int float128_lt_quiet(float128, float128, float_status *status); 736 int float128_unordered_quiet(float128, float128, float_status *status); 737 int float128_compare(float128, float128, float_status *status); 738 int float128_compare_quiet(float128, float128, float_status *status); 739 int float128_is_quiet_nan(float128, float_status *status); 740 int float128_is_signaling_nan(float128, float_status *status); 741 float128 float128_maybe_silence_nan(float128, float_status *status); 742 float128 float128_scalbn(float128, int, float_status *status); 743 744 static inline float128 float128_abs(float128 a) 745 { 746 a.high &= 0x7fffffffffffffffLL; 747 return a; 748 } 749 750 static inline float128 float128_chs(float128 a) 751 { 752 a.high ^= 0x8000000000000000LL; 753 return a; 754 } 755 756 static inline int float128_is_infinity(float128 a) 757 { 758 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; 759 } 760 761 static inline int float128_is_neg(float128 a) 762 { 763 return a.high >> 63; 764 } 765 766 static inline int float128_is_zero(float128 a) 767 { 768 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; 769 } 770 771 static inline int float128_is_zero_or_denormal(float128 a) 772 { 773 return (a.high & 0x7fff000000000000LL) == 0; 774 } 775 776 static inline int float128_is_any_nan(float128 a) 777 { 778 return ((a.high >> 48) & 0x7fff) == 0x7fff && 779 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); 780 } 781 782 #define float128_zero make_float128(0, 0) 783 784 /*---------------------------------------------------------------------------- 785 | The pattern for a default generated quadruple-precision NaN. 786 *----------------------------------------------------------------------------*/ 787 float128 float128_default_nan(float_status *status); 788 789 #endif /* SOFTFLOAT_H */ 790