1 /* 2 * QEMU float support 3 * 4 * The code in this source file is derived from release 2a of the SoftFloat 5 * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and 6 * some later contributions) are provided under that license, as detailed below. 7 * It has subsequently been modified by contributors to the QEMU Project, 8 * so some portions are provided under: 9 * the SoftFloat-2a license 10 * the BSD license 11 * GPL-v2-or-later 12 * 13 * Any future contributions to this file after December 1st 2014 will be 14 * taken to be licensed under the Softfloat-2a license unless specifically 15 * indicated otherwise. 16 */ 17 18 /* 19 =============================================================================== 20 This C header file is part of the SoftFloat IEC/IEEE Floating-point 21 Arithmetic Package, Release 2a. 22 23 Written by John R. Hauser. This work was made possible in part by the 24 International Computer Science Institute, located at Suite 600, 1947 Center 25 Street, Berkeley, California 94704. Funding was partially provided by the 26 National Science Foundation under grant MIP-9311980. The original version 27 of this code was written as part of a project to build a fixed-point vector 28 processor in collaboration with the University of California at Berkeley, 29 overseen by Profs. Nelson Morgan and John Wawrzynek. More information 30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/ 31 arithmetic/SoftFloat.html'. 32 33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE. Although reasonable effort 34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT 35 TIMES RESULT IN INCORRECT BEHAVIOR. USE OF THIS SOFTWARE IS RESTRICTED TO 36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY 37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE. 38 39 Derivative works are acceptable, even for commercial purposes, so long as 40 (1) they include prominent notice that the work is derivative, and (2) they 41 include prominent notice akin to these four paragraphs for those parts of 42 this code that are retained. 43 44 =============================================================================== 45 */ 46 47 /* BSD licensing: 48 * Copyright (c) 2006, Fabrice Bellard 49 * All rights reserved. 50 * 51 * Redistribution and use in source and binary forms, with or without 52 * modification, are permitted provided that the following conditions are met: 53 * 54 * 1. Redistributions of source code must retain the above copyright notice, 55 * this list of conditions and the following disclaimer. 56 * 57 * 2. Redistributions in binary form must reproduce the above copyright notice, 58 * this list of conditions and the following disclaimer in the documentation 59 * and/or other materials provided with the distribution. 60 * 61 * 3. Neither the name of the copyright holder nor the names of its contributors 62 * may be used to endorse or promote products derived from this software without 63 * specific prior written permission. 64 * 65 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 66 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 67 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE 68 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE 69 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR 70 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF 71 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS 72 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN 73 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) 74 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF 75 * THE POSSIBILITY OF SUCH DAMAGE. 76 */ 77 78 /* Portions of this work are licensed under the terms of the GNU GPL, 79 * version 2 or later. See the COPYING file in the top-level directory. 80 */ 81 82 #ifndef SOFTFLOAT_H 83 #define SOFTFLOAT_H 84 85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH) 86 #include <sunmath.h> 87 #endif 88 89 #include <inttypes.h> 90 #include "config-host.h" 91 #include "qemu/osdep.h" 92 93 /* This 'flag' type must be able to hold at least 0 and 1. It should 94 * probably be replaced with 'bool' but the uses would need to be audited 95 * to check that they weren't accidentally relying on it being a larger type. 96 */ 97 typedef uint8_t flag; 98 99 #define LIT64( a ) a##LL 100 101 /*---------------------------------------------------------------------------- 102 | Software IEC/IEEE floating-point ordering relations 103 *----------------------------------------------------------------------------*/ 104 enum { 105 float_relation_less = -1, 106 float_relation_equal = 0, 107 float_relation_greater = 1, 108 float_relation_unordered = 2 109 }; 110 111 /*---------------------------------------------------------------------------- 112 | Software IEC/IEEE floating-point types. 113 *----------------------------------------------------------------------------*/ 114 /* Use structures for soft-float types. This prevents accidentally mixing 115 them with native int/float types. A sufficiently clever compiler and 116 sane ABI should be able to see though these structs. However 117 x86/gcc 3.x seems to struggle a bit, so leave them disabled by default. */ 118 //#define USE_SOFTFLOAT_STRUCT_TYPES 119 #ifdef USE_SOFTFLOAT_STRUCT_TYPES 120 typedef struct { 121 uint16_t v; 122 } float16; 123 #define float16_val(x) (((float16)(x)).v) 124 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; }) 125 #define const_float16(x) { x } 126 typedef struct { 127 uint32_t v; 128 } float32; 129 /* The cast ensures an error if the wrong type is passed. */ 130 #define float32_val(x) (((float32)(x)).v) 131 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; }) 132 #define const_float32(x) { x } 133 typedef struct { 134 uint64_t v; 135 } float64; 136 #define float64_val(x) (((float64)(x)).v) 137 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; }) 138 #define const_float64(x) { x } 139 #else 140 typedef uint16_t float16; 141 typedef uint32_t float32; 142 typedef uint64_t float64; 143 #define float16_val(x) (x) 144 #define float32_val(x) (x) 145 #define float64_val(x) (x) 146 #define make_float16(x) (x) 147 #define make_float32(x) (x) 148 #define make_float64(x) (x) 149 #define const_float16(x) (x) 150 #define const_float32(x) (x) 151 #define const_float64(x) (x) 152 #endif 153 typedef struct { 154 uint64_t low; 155 uint16_t high; 156 } floatx80; 157 #define make_floatx80(exp, mant) ((floatx80) { mant, exp }) 158 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp } 159 typedef struct { 160 #ifdef HOST_WORDS_BIGENDIAN 161 uint64_t high, low; 162 #else 163 uint64_t low, high; 164 #endif 165 } float128; 166 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ }) 167 #define make_float128_init(high_, low_) { .high = high_, .low = low_ } 168 169 /*---------------------------------------------------------------------------- 170 | Software IEC/IEEE floating-point underflow tininess-detection mode. 171 *----------------------------------------------------------------------------*/ 172 enum { 173 float_tininess_after_rounding = 0, 174 float_tininess_before_rounding = 1 175 }; 176 177 /*---------------------------------------------------------------------------- 178 | Software IEC/IEEE floating-point rounding mode. 179 *----------------------------------------------------------------------------*/ 180 enum { 181 float_round_nearest_even = 0, 182 float_round_down = 1, 183 float_round_up = 2, 184 float_round_to_zero = 3, 185 float_round_ties_away = 4, 186 }; 187 188 /*---------------------------------------------------------------------------- 189 | Software IEC/IEEE floating-point exception flags. 190 *----------------------------------------------------------------------------*/ 191 enum { 192 float_flag_invalid = 1, 193 float_flag_divbyzero = 4, 194 float_flag_overflow = 8, 195 float_flag_underflow = 16, 196 float_flag_inexact = 32, 197 float_flag_input_denormal = 64, 198 float_flag_output_denormal = 128 199 }; 200 201 typedef struct float_status { 202 signed char float_detect_tininess; 203 signed char float_rounding_mode; 204 signed char float_exception_flags; 205 signed char floatx80_rounding_precision; 206 /* should denormalised results go to zero and set the inexact flag? */ 207 flag flush_to_zero; 208 /* should denormalised inputs go to zero and set the input_denormal flag? */ 209 flag flush_inputs_to_zero; 210 flag default_nan_mode; 211 } float_status; 212 213 static inline void set_float_detect_tininess(int val, float_status *status) 214 { 215 status->float_detect_tininess = val; 216 } 217 static inline void set_float_rounding_mode(int val, float_status *status) 218 { 219 status->float_rounding_mode = val; 220 } 221 static inline void set_float_exception_flags(int val, float_status *status) 222 { 223 status->float_exception_flags = val; 224 } 225 static inline void set_floatx80_rounding_precision(int val, 226 float_status *status) 227 { 228 status->floatx80_rounding_precision = val; 229 } 230 static inline void set_flush_to_zero(flag val, float_status *status) 231 { 232 status->flush_to_zero = val; 233 } 234 static inline void set_flush_inputs_to_zero(flag val, float_status *status) 235 { 236 status->flush_inputs_to_zero = val; 237 } 238 static inline void set_default_nan_mode(flag val, float_status *status) 239 { 240 status->default_nan_mode = val; 241 } 242 static inline int get_float_detect_tininess(float_status *status) 243 { 244 return status->float_detect_tininess; 245 } 246 static inline int get_float_rounding_mode(float_status *status) 247 { 248 return status->float_rounding_mode; 249 } 250 static inline int get_float_exception_flags(float_status *status) 251 { 252 return status->float_exception_flags; 253 } 254 static inline int get_floatx80_rounding_precision(float_status *status) 255 { 256 return status->floatx80_rounding_precision; 257 } 258 static inline flag get_flush_to_zero(float_status *status) 259 { 260 return status->flush_to_zero; 261 } 262 static inline flag get_flush_inputs_to_zero(float_status *status) 263 { 264 return status->flush_inputs_to_zero; 265 } 266 static inline flag get_default_nan_mode(float_status *status) 267 { 268 return status->default_nan_mode; 269 } 270 271 /*---------------------------------------------------------------------------- 272 | Routine to raise any or all of the software IEC/IEEE floating-point 273 | exception flags. 274 *----------------------------------------------------------------------------*/ 275 void float_raise(int8_t flags, float_status *status); 276 277 /*---------------------------------------------------------------------------- 278 | If `a' is denormal and we are in flush-to-zero mode then set the 279 | input-denormal exception and return zero. Otherwise just return the value. 280 *----------------------------------------------------------------------------*/ 281 float32 float32_squash_input_denormal(float32 a, float_status *status); 282 float64 float64_squash_input_denormal(float64 a, float_status *status); 283 284 /*---------------------------------------------------------------------------- 285 | Options to indicate which negations to perform in float*_muladd() 286 | Using these differs from negating an input or output before calling 287 | the muladd function in that this means that a NaN doesn't have its 288 | sign bit inverted before it is propagated. 289 | We also support halving the result before rounding, as a special 290 | case to support the ARM fused-sqrt-step instruction FRSQRTS. 291 *----------------------------------------------------------------------------*/ 292 enum { 293 float_muladd_negate_c = 1, 294 float_muladd_negate_product = 2, 295 float_muladd_negate_result = 4, 296 float_muladd_halve_result = 8, 297 }; 298 299 /*---------------------------------------------------------------------------- 300 | Software IEC/IEEE integer-to-floating-point conversion routines. 301 *----------------------------------------------------------------------------*/ 302 float32 int32_to_float32(int32_t, float_status *status); 303 float64 int32_to_float64(int32_t, float_status *status); 304 float32 uint32_to_float32(uint32_t, float_status *status); 305 float64 uint32_to_float64(uint32_t, float_status *status); 306 floatx80 int32_to_floatx80(int32_t, float_status *status); 307 float128 int32_to_float128(int32_t, float_status *status); 308 float32 int64_to_float32(int64_t, float_status *status); 309 float64 int64_to_float64(int64_t, float_status *status); 310 floatx80 int64_to_floatx80(int64_t, float_status *status); 311 float128 int64_to_float128(int64_t, float_status *status); 312 float32 uint64_to_float32(uint64_t, float_status *status); 313 float64 uint64_to_float64(uint64_t, float_status *status); 314 float128 uint64_to_float128(uint64_t, float_status *status); 315 316 /* We provide the int16 versions for symmetry of API with float-to-int */ 317 static inline float32 int16_to_float32(int16_t v, float_status *status) 318 { 319 return int32_to_float32(v, status); 320 } 321 322 static inline float32 uint16_to_float32(uint16_t v, float_status *status) 323 { 324 return uint32_to_float32(v, status); 325 } 326 327 static inline float64 int16_to_float64(int16_t v, float_status *status) 328 { 329 return int32_to_float64(v, status); 330 } 331 332 static inline float64 uint16_to_float64(uint16_t v, float_status *status) 333 { 334 return uint32_to_float64(v, status); 335 } 336 337 /*---------------------------------------------------------------------------- 338 | Software half-precision conversion routines. 339 *----------------------------------------------------------------------------*/ 340 float16 float32_to_float16(float32, flag, float_status *status); 341 float32 float16_to_float32(float16, flag, float_status *status); 342 float16 float64_to_float16(float64 a, flag ieee, float_status *status); 343 float64 float16_to_float64(float16 a, flag ieee, float_status *status); 344 345 /*---------------------------------------------------------------------------- 346 | Software half-precision operations. 347 *----------------------------------------------------------------------------*/ 348 int float16_is_quiet_nan( float16 ); 349 int float16_is_signaling_nan( float16 ); 350 float16 float16_maybe_silence_nan( float16 ); 351 352 static inline int float16_is_any_nan(float16 a) 353 { 354 return ((float16_val(a) & ~0x8000) > 0x7c00); 355 } 356 357 /*---------------------------------------------------------------------------- 358 | The pattern for a default generated half-precision NaN. 359 *----------------------------------------------------------------------------*/ 360 extern const float16 float16_default_nan; 361 362 /*---------------------------------------------------------------------------- 363 | Software IEC/IEEE single-precision conversion routines. 364 *----------------------------------------------------------------------------*/ 365 int16_t float32_to_int16(float32, float_status *status); 366 uint16_t float32_to_uint16(float32, float_status *status); 367 int16_t float32_to_int16_round_to_zero(float32, float_status *status); 368 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status); 369 int32_t float32_to_int32(float32, float_status *status); 370 int32_t float32_to_int32_round_to_zero(float32, float_status *status); 371 uint32_t float32_to_uint32(float32, float_status *status); 372 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status); 373 int64_t float32_to_int64(float32, float_status *status); 374 uint64_t float32_to_uint64(float32, float_status *status); 375 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status); 376 int64_t float32_to_int64_round_to_zero(float32, float_status *status); 377 float64 float32_to_float64(float32, float_status *status); 378 floatx80 float32_to_floatx80(float32, float_status *status); 379 float128 float32_to_float128(float32, float_status *status); 380 381 /*---------------------------------------------------------------------------- 382 | Software IEC/IEEE single-precision operations. 383 *----------------------------------------------------------------------------*/ 384 float32 float32_round_to_int(float32, float_status *status); 385 float32 float32_add(float32, float32, float_status *status); 386 float32 float32_sub(float32, float32, float_status *status); 387 float32 float32_mul(float32, float32, float_status *status); 388 float32 float32_div(float32, float32, float_status *status); 389 float32 float32_rem(float32, float32, float_status *status); 390 float32 float32_muladd(float32, float32, float32, int, float_status *status); 391 float32 float32_sqrt(float32, float_status *status); 392 float32 float32_exp2(float32, float_status *status); 393 float32 float32_log2(float32, float_status *status); 394 int float32_eq(float32, float32, float_status *status); 395 int float32_le(float32, float32, float_status *status); 396 int float32_lt(float32, float32, float_status *status); 397 int float32_unordered(float32, float32, float_status *status); 398 int float32_eq_quiet(float32, float32, float_status *status); 399 int float32_le_quiet(float32, float32, float_status *status); 400 int float32_lt_quiet(float32, float32, float_status *status); 401 int float32_unordered_quiet(float32, float32, float_status *status); 402 int float32_compare(float32, float32, float_status *status); 403 int float32_compare_quiet(float32, float32, float_status *status); 404 float32 float32_min(float32, float32, float_status *status); 405 float32 float32_max(float32, float32, float_status *status); 406 float32 float32_minnum(float32, float32, float_status *status); 407 float32 float32_maxnum(float32, float32, float_status *status); 408 float32 float32_minnummag(float32, float32, float_status *status); 409 float32 float32_maxnummag(float32, float32, float_status *status); 410 int float32_is_quiet_nan( float32 ); 411 int float32_is_signaling_nan( float32 ); 412 float32 float32_maybe_silence_nan( float32 ); 413 float32 float32_scalbn(float32, int, float_status *status); 414 415 static inline float32 float32_abs(float32 a) 416 { 417 /* Note that abs does *not* handle NaN specially, nor does 418 * it flush denormal inputs to zero. 419 */ 420 return make_float32(float32_val(a) & 0x7fffffff); 421 } 422 423 static inline float32 float32_chs(float32 a) 424 { 425 /* Note that chs does *not* handle NaN specially, nor does 426 * it flush denormal inputs to zero. 427 */ 428 return make_float32(float32_val(a) ^ 0x80000000); 429 } 430 431 static inline int float32_is_infinity(float32 a) 432 { 433 return (float32_val(a) & 0x7fffffff) == 0x7f800000; 434 } 435 436 static inline int float32_is_neg(float32 a) 437 { 438 return float32_val(a) >> 31; 439 } 440 441 static inline int float32_is_zero(float32 a) 442 { 443 return (float32_val(a) & 0x7fffffff) == 0; 444 } 445 446 static inline int float32_is_any_nan(float32 a) 447 { 448 return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL); 449 } 450 451 static inline int float32_is_zero_or_denormal(float32 a) 452 { 453 return (float32_val(a) & 0x7f800000) == 0; 454 } 455 456 static inline float32 float32_set_sign(float32 a, int sign) 457 { 458 return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31)); 459 } 460 461 #define float32_zero make_float32(0) 462 #define float32_one make_float32(0x3f800000) 463 #define float32_ln2 make_float32(0x3f317218) 464 #define float32_pi make_float32(0x40490fdb) 465 #define float32_half make_float32(0x3f000000) 466 #define float32_infinity make_float32(0x7f800000) 467 468 469 /*---------------------------------------------------------------------------- 470 | The pattern for a default generated single-precision NaN. 471 *----------------------------------------------------------------------------*/ 472 extern const float32 float32_default_nan; 473 474 /*---------------------------------------------------------------------------- 475 | Software IEC/IEEE double-precision conversion routines. 476 *----------------------------------------------------------------------------*/ 477 int16_t float64_to_int16(float64, float_status *status); 478 uint16_t float64_to_uint16(float64, float_status *status); 479 int16_t float64_to_int16_round_to_zero(float64, float_status *status); 480 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status); 481 int32_t float64_to_int32(float64, float_status *status); 482 int32_t float64_to_int32_round_to_zero(float64, float_status *status); 483 uint32_t float64_to_uint32(float64, float_status *status); 484 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status); 485 int64_t float64_to_int64(float64, float_status *status); 486 int64_t float64_to_int64_round_to_zero(float64, float_status *status); 487 uint64_t float64_to_uint64(float64 a, float_status *status); 488 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status); 489 float32 float64_to_float32(float64, float_status *status); 490 floatx80 float64_to_floatx80(float64, float_status *status); 491 float128 float64_to_float128(float64, float_status *status); 492 493 /*---------------------------------------------------------------------------- 494 | Software IEC/IEEE double-precision operations. 495 *----------------------------------------------------------------------------*/ 496 float64 float64_round_to_int(float64, float_status *status); 497 float64 float64_trunc_to_int(float64, float_status *status); 498 float64 float64_add(float64, float64, float_status *status); 499 float64 float64_sub(float64, float64, float_status *status); 500 float64 float64_mul(float64, float64, float_status *status); 501 float64 float64_div(float64, float64, float_status *status); 502 float64 float64_rem(float64, float64, float_status *status); 503 float64 float64_muladd(float64, float64, float64, int, float_status *status); 504 float64 float64_sqrt(float64, float_status *status); 505 float64 float64_log2(float64, float_status *status); 506 int float64_eq(float64, float64, float_status *status); 507 int float64_le(float64, float64, float_status *status); 508 int float64_lt(float64, float64, float_status *status); 509 int float64_unordered(float64, float64, float_status *status); 510 int float64_eq_quiet(float64, float64, float_status *status); 511 int float64_le_quiet(float64, float64, float_status *status); 512 int float64_lt_quiet(float64, float64, float_status *status); 513 int float64_unordered_quiet(float64, float64, float_status *status); 514 int float64_compare(float64, float64, float_status *status); 515 int float64_compare_quiet(float64, float64, float_status *status); 516 float64 float64_min(float64, float64, float_status *status); 517 float64 float64_max(float64, float64, float_status *status); 518 float64 float64_minnum(float64, float64, float_status *status); 519 float64 float64_maxnum(float64, float64, float_status *status); 520 float64 float64_minnummag(float64, float64, float_status *status); 521 float64 float64_maxnummag(float64, float64, float_status *status); 522 int float64_is_quiet_nan( float64 a ); 523 int float64_is_signaling_nan( float64 ); 524 float64 float64_maybe_silence_nan( float64 ); 525 float64 float64_scalbn(float64, int, float_status *status); 526 527 static inline float64 float64_abs(float64 a) 528 { 529 /* Note that abs does *not* handle NaN specially, nor does 530 * it flush denormal inputs to zero. 531 */ 532 return make_float64(float64_val(a) & 0x7fffffffffffffffLL); 533 } 534 535 static inline float64 float64_chs(float64 a) 536 { 537 /* Note that chs does *not* handle NaN specially, nor does 538 * it flush denormal inputs to zero. 539 */ 540 return make_float64(float64_val(a) ^ 0x8000000000000000LL); 541 } 542 543 static inline int float64_is_infinity(float64 a) 544 { 545 return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL; 546 } 547 548 static inline int float64_is_neg(float64 a) 549 { 550 return float64_val(a) >> 63; 551 } 552 553 static inline int float64_is_zero(float64 a) 554 { 555 return (float64_val(a) & 0x7fffffffffffffffLL) == 0; 556 } 557 558 static inline int float64_is_any_nan(float64 a) 559 { 560 return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL); 561 } 562 563 static inline int float64_is_zero_or_denormal(float64 a) 564 { 565 return (float64_val(a) & 0x7ff0000000000000LL) == 0; 566 } 567 568 static inline float64 float64_set_sign(float64 a, int sign) 569 { 570 return make_float64((float64_val(a) & 0x7fffffffffffffffULL) 571 | ((int64_t)sign << 63)); 572 } 573 574 #define float64_zero make_float64(0) 575 #define float64_one make_float64(0x3ff0000000000000LL) 576 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL) 577 #define float64_pi make_float64(0x400921fb54442d18LL) 578 #define float64_half make_float64(0x3fe0000000000000LL) 579 #define float64_infinity make_float64(0x7ff0000000000000LL) 580 581 /*---------------------------------------------------------------------------- 582 | The pattern for a default generated double-precision NaN. 583 *----------------------------------------------------------------------------*/ 584 extern const float64 float64_default_nan; 585 586 /*---------------------------------------------------------------------------- 587 | Software IEC/IEEE extended double-precision conversion routines. 588 *----------------------------------------------------------------------------*/ 589 int32_t floatx80_to_int32(floatx80, float_status *status); 590 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status); 591 int64_t floatx80_to_int64(floatx80, float_status *status); 592 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status); 593 float32 floatx80_to_float32(floatx80, float_status *status); 594 float64 floatx80_to_float64(floatx80, float_status *status); 595 float128 floatx80_to_float128(floatx80, float_status *status); 596 597 /*---------------------------------------------------------------------------- 598 | Software IEC/IEEE extended double-precision operations. 599 *----------------------------------------------------------------------------*/ 600 floatx80 floatx80_round_to_int(floatx80, float_status *status); 601 floatx80 floatx80_add(floatx80, floatx80, float_status *status); 602 floatx80 floatx80_sub(floatx80, floatx80, float_status *status); 603 floatx80 floatx80_mul(floatx80, floatx80, float_status *status); 604 floatx80 floatx80_div(floatx80, floatx80, float_status *status); 605 floatx80 floatx80_rem(floatx80, floatx80, float_status *status); 606 floatx80 floatx80_sqrt(floatx80, float_status *status); 607 int floatx80_eq(floatx80, floatx80, float_status *status); 608 int floatx80_le(floatx80, floatx80, float_status *status); 609 int floatx80_lt(floatx80, floatx80, float_status *status); 610 int floatx80_unordered(floatx80, floatx80, float_status *status); 611 int floatx80_eq_quiet(floatx80, floatx80, float_status *status); 612 int floatx80_le_quiet(floatx80, floatx80, float_status *status); 613 int floatx80_lt_quiet(floatx80, floatx80, float_status *status); 614 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status); 615 int floatx80_compare(floatx80, floatx80, float_status *status); 616 int floatx80_compare_quiet(floatx80, floatx80, float_status *status); 617 int floatx80_is_quiet_nan( floatx80 ); 618 int floatx80_is_signaling_nan( floatx80 ); 619 floatx80 floatx80_maybe_silence_nan( floatx80 ); 620 floatx80 floatx80_scalbn(floatx80, int, float_status *status); 621 622 static inline floatx80 floatx80_abs(floatx80 a) 623 { 624 a.high &= 0x7fff; 625 return a; 626 } 627 628 static inline floatx80 floatx80_chs(floatx80 a) 629 { 630 a.high ^= 0x8000; 631 return a; 632 } 633 634 static inline int floatx80_is_infinity(floatx80 a) 635 { 636 return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL; 637 } 638 639 static inline int floatx80_is_neg(floatx80 a) 640 { 641 return a.high >> 15; 642 } 643 644 static inline int floatx80_is_zero(floatx80 a) 645 { 646 return (a.high & 0x7fff) == 0 && a.low == 0; 647 } 648 649 static inline int floatx80_is_zero_or_denormal(floatx80 a) 650 { 651 return (a.high & 0x7fff) == 0; 652 } 653 654 static inline int floatx80_is_any_nan(floatx80 a) 655 { 656 return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1); 657 } 658 659 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL) 660 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL) 661 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL) 662 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL) 663 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL) 664 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL) 665 666 /*---------------------------------------------------------------------------- 667 | The pattern for a default generated extended double-precision NaN. 668 *----------------------------------------------------------------------------*/ 669 extern const floatx80 floatx80_default_nan; 670 671 /*---------------------------------------------------------------------------- 672 | Software IEC/IEEE quadruple-precision conversion routines. 673 *----------------------------------------------------------------------------*/ 674 int32_t float128_to_int32(float128, float_status *status); 675 int32_t float128_to_int32_round_to_zero(float128, float_status *status); 676 int64_t float128_to_int64(float128, float_status *status); 677 int64_t float128_to_int64_round_to_zero(float128, float_status *status); 678 float32 float128_to_float32(float128, float_status *status); 679 float64 float128_to_float64(float128, float_status *status); 680 floatx80 float128_to_floatx80(float128, float_status *status); 681 682 /*---------------------------------------------------------------------------- 683 | Software IEC/IEEE quadruple-precision operations. 684 *----------------------------------------------------------------------------*/ 685 float128 float128_round_to_int(float128, float_status *status); 686 float128 float128_add(float128, float128, float_status *status); 687 float128 float128_sub(float128, float128, float_status *status); 688 float128 float128_mul(float128, float128, float_status *status); 689 float128 float128_div(float128, float128, float_status *status); 690 float128 float128_rem(float128, float128, float_status *status); 691 float128 float128_sqrt(float128, float_status *status); 692 int float128_eq(float128, float128, float_status *status); 693 int float128_le(float128, float128, float_status *status); 694 int float128_lt(float128, float128, float_status *status); 695 int float128_unordered(float128, float128, float_status *status); 696 int float128_eq_quiet(float128, float128, float_status *status); 697 int float128_le_quiet(float128, float128, float_status *status); 698 int float128_lt_quiet(float128, float128, float_status *status); 699 int float128_unordered_quiet(float128, float128, float_status *status); 700 int float128_compare(float128, float128, float_status *status); 701 int float128_compare_quiet(float128, float128, float_status *status); 702 int float128_is_quiet_nan( float128 ); 703 int float128_is_signaling_nan( float128 ); 704 float128 float128_maybe_silence_nan( float128 ); 705 float128 float128_scalbn(float128, int, float_status *status); 706 707 static inline float128 float128_abs(float128 a) 708 { 709 a.high &= 0x7fffffffffffffffLL; 710 return a; 711 } 712 713 static inline float128 float128_chs(float128 a) 714 { 715 a.high ^= 0x8000000000000000LL; 716 return a; 717 } 718 719 static inline int float128_is_infinity(float128 a) 720 { 721 return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0; 722 } 723 724 static inline int float128_is_neg(float128 a) 725 { 726 return a.high >> 63; 727 } 728 729 static inline int float128_is_zero(float128 a) 730 { 731 return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0; 732 } 733 734 static inline int float128_is_zero_or_denormal(float128 a) 735 { 736 return (a.high & 0x7fff000000000000LL) == 0; 737 } 738 739 static inline int float128_is_any_nan(float128 a) 740 { 741 return ((a.high >> 48) & 0x7fff) == 0x7fff && 742 ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0)); 743 } 744 745 #define float128_zero make_float128(0, 0) 746 747 /*---------------------------------------------------------------------------- 748 | The pattern for a default generated quadruple-precision NaN. 749 *----------------------------------------------------------------------------*/ 750 extern const float128 float128_default_nan; 751 752 #endif /* !SOFTFLOAT_H */ 753