xref: /openbmc/qemu/include/fpu/softfloat.h (revision 2822c1b6)
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17 
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22 
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32 
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38 
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43 
44 ===============================================================================
45 */
46 
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77 
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81 
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84 
85 #if defined(CONFIG_SOLARIS) && defined(CONFIG_NEEDS_LIBSUNMATH)
86 #include <sunmath.h>
87 #endif
88 
89 #include <inttypes.h>
90 #include "config-host.h"
91 #include "qemu/osdep.h"
92 
93 /*----------------------------------------------------------------------------
94 | Each of the following `typedef's defines the most convenient type that holds
95 | integers of at least as many bits as specified.  For example, `uint8' should
96 | be the most convenient type that can hold unsigned integers of as many as
97 | 8 bits.  The `flag' type must be able to hold either a 0 or 1.  For most
98 | implementations of C, `flag', `uint8', and `int8' should all be `typedef'ed
99 | to the same as `int'.
100 *----------------------------------------------------------------------------*/
101 typedef uint8_t flag;
102 typedef uint8_t uint8;
103 typedef int8_t int8;
104 typedef unsigned int uint32;
105 typedef signed int int32;
106 typedef uint64_t uint64;
107 typedef int64_t int64;
108 
109 #define LIT64( a ) a##LL
110 
111 /*----------------------------------------------------------------------------
112 | Software IEC/IEEE floating-point ordering relations
113 *----------------------------------------------------------------------------*/
114 enum {
115     float_relation_less      = -1,
116     float_relation_equal     =  0,
117     float_relation_greater   =  1,
118     float_relation_unordered =  2
119 };
120 
121 /*----------------------------------------------------------------------------
122 | Software IEC/IEEE floating-point types.
123 *----------------------------------------------------------------------------*/
124 /* Use structures for soft-float types.  This prevents accidentally mixing
125    them with native int/float types.  A sufficiently clever compiler and
126    sane ABI should be able to see though these structs.  However
127    x86/gcc 3.x seems to struggle a bit, so leave them disabled by default.  */
128 //#define USE_SOFTFLOAT_STRUCT_TYPES
129 #ifdef USE_SOFTFLOAT_STRUCT_TYPES
130 typedef struct {
131     uint16_t v;
132 } float16;
133 #define float16_val(x) (((float16)(x)).v)
134 #define make_float16(x) __extension__ ({ float16 f16_val = {x}; f16_val; })
135 #define const_float16(x) { x }
136 typedef struct {
137     uint32_t v;
138 } float32;
139 /* The cast ensures an error if the wrong type is passed.  */
140 #define float32_val(x) (((float32)(x)).v)
141 #define make_float32(x) __extension__ ({ float32 f32_val = {x}; f32_val; })
142 #define const_float32(x) { x }
143 typedef struct {
144     uint64_t v;
145 } float64;
146 #define float64_val(x) (((float64)(x)).v)
147 #define make_float64(x) __extension__ ({ float64 f64_val = {x}; f64_val; })
148 #define const_float64(x) { x }
149 #else
150 typedef uint16_t float16;
151 typedef uint32_t float32;
152 typedef uint64_t float64;
153 #define float16_val(x) (x)
154 #define float32_val(x) (x)
155 #define float64_val(x) (x)
156 #define make_float16(x) (x)
157 #define make_float32(x) (x)
158 #define make_float64(x) (x)
159 #define const_float16(x) (x)
160 #define const_float32(x) (x)
161 #define const_float64(x) (x)
162 #endif
163 typedef struct {
164     uint64_t low;
165     uint16_t high;
166 } floatx80;
167 #define make_floatx80(exp, mant) ((floatx80) { mant, exp })
168 #define make_floatx80_init(exp, mant) { .low = mant, .high = exp }
169 typedef struct {
170 #ifdef HOST_WORDS_BIGENDIAN
171     uint64_t high, low;
172 #else
173     uint64_t low, high;
174 #endif
175 } float128;
176 #define make_float128(high_, low_) ((float128) { .high = high_, .low = low_ })
177 #define make_float128_init(high_, low_) { .high = high_, .low = low_ }
178 
179 /*----------------------------------------------------------------------------
180 | Software IEC/IEEE floating-point underflow tininess-detection mode.
181 *----------------------------------------------------------------------------*/
182 enum {
183     float_tininess_after_rounding  = 0,
184     float_tininess_before_rounding = 1
185 };
186 
187 /*----------------------------------------------------------------------------
188 | Software IEC/IEEE floating-point rounding mode.
189 *----------------------------------------------------------------------------*/
190 enum {
191     float_round_nearest_even = 0,
192     float_round_down         = 1,
193     float_round_up           = 2,
194     float_round_to_zero      = 3,
195     float_round_ties_away    = 4,
196 };
197 
198 /*----------------------------------------------------------------------------
199 | Software IEC/IEEE floating-point exception flags.
200 *----------------------------------------------------------------------------*/
201 enum {
202     float_flag_invalid   =  1,
203     float_flag_divbyzero =  4,
204     float_flag_overflow  =  8,
205     float_flag_underflow = 16,
206     float_flag_inexact   = 32,
207     float_flag_input_denormal = 64,
208     float_flag_output_denormal = 128
209 };
210 
211 typedef struct float_status {
212     signed char float_detect_tininess;
213     signed char float_rounding_mode;
214     signed char float_exception_flags;
215     signed char floatx80_rounding_precision;
216     /* should denormalised results go to zero and set the inexact flag? */
217     flag flush_to_zero;
218     /* should denormalised inputs go to zero and set the input_denormal flag? */
219     flag flush_inputs_to_zero;
220     flag default_nan_mode;
221 } float_status;
222 
223 static inline void set_float_detect_tininess(int val, float_status *status)
224 {
225     status->float_detect_tininess = val;
226 }
227 static inline void set_float_rounding_mode(int val, float_status *status)
228 {
229     status->float_rounding_mode = val;
230 }
231 static inline void set_float_exception_flags(int val, float_status *status)
232 {
233     status->float_exception_flags = val;
234 }
235 static inline void set_floatx80_rounding_precision(int val,
236                                                    float_status *status)
237 {
238     status->floatx80_rounding_precision = val;
239 }
240 static inline void set_flush_to_zero(flag val, float_status *status)
241 {
242     status->flush_to_zero = val;
243 }
244 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
245 {
246     status->flush_inputs_to_zero = val;
247 }
248 static inline void set_default_nan_mode(flag val, float_status *status)
249 {
250     status->default_nan_mode = val;
251 }
252 static inline int get_float_detect_tininess(float_status *status)
253 {
254     return status->float_detect_tininess;
255 }
256 static inline int get_float_rounding_mode(float_status *status)
257 {
258     return status->float_rounding_mode;
259 }
260 static inline int get_float_exception_flags(float_status *status)
261 {
262     return status->float_exception_flags;
263 }
264 static inline int get_floatx80_rounding_precision(float_status *status)
265 {
266     return status->floatx80_rounding_precision;
267 }
268 static inline flag get_flush_to_zero(float_status *status)
269 {
270     return status->flush_to_zero;
271 }
272 static inline flag get_flush_inputs_to_zero(float_status *status)
273 {
274     return status->flush_inputs_to_zero;
275 }
276 static inline flag get_default_nan_mode(float_status *status)
277 {
278     return status->default_nan_mode;
279 }
280 
281 /*----------------------------------------------------------------------------
282 | Routine to raise any or all of the software IEC/IEEE floating-point
283 | exception flags.
284 *----------------------------------------------------------------------------*/
285 void float_raise(int8 flags, float_status *status);
286 
287 /*----------------------------------------------------------------------------
288 | If `a' is denormal and we are in flush-to-zero mode then set the
289 | input-denormal exception and return zero. Otherwise just return the value.
290 *----------------------------------------------------------------------------*/
291 float32 float32_squash_input_denormal(float32 a, float_status *status);
292 float64 float64_squash_input_denormal(float64 a, float_status *status);
293 
294 /*----------------------------------------------------------------------------
295 | Options to indicate which negations to perform in float*_muladd()
296 | Using these differs from negating an input or output before calling
297 | the muladd function in that this means that a NaN doesn't have its
298 | sign bit inverted before it is propagated.
299 | We also support halving the result before rounding, as a special
300 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
301 *----------------------------------------------------------------------------*/
302 enum {
303     float_muladd_negate_c = 1,
304     float_muladd_negate_product = 2,
305     float_muladd_negate_result = 4,
306     float_muladd_halve_result = 8,
307 };
308 
309 /*----------------------------------------------------------------------------
310 | Software IEC/IEEE integer-to-floating-point conversion routines.
311 *----------------------------------------------------------------------------*/
312 float32 int32_to_float32(int32_t, float_status *status);
313 float64 int32_to_float64(int32_t, float_status *status);
314 float32 uint32_to_float32(uint32_t, float_status *status);
315 float64 uint32_to_float64(uint32_t, float_status *status);
316 floatx80 int32_to_floatx80(int32_t, float_status *status);
317 float128 int32_to_float128(int32_t, float_status *status);
318 float32 int64_to_float32(int64_t, float_status *status);
319 float64 int64_to_float64(int64_t, float_status *status);
320 floatx80 int64_to_floatx80(int64_t, float_status *status);
321 float128 int64_to_float128(int64_t, float_status *status);
322 float32 uint64_to_float32(uint64_t, float_status *status);
323 float64 uint64_to_float64(uint64_t, float_status *status);
324 float128 uint64_to_float128(uint64_t, float_status *status);
325 
326 /* We provide the int16 versions for symmetry of API with float-to-int */
327 static inline float32 int16_to_float32(int16_t v, float_status *status)
328 {
329     return int32_to_float32(v, status);
330 }
331 
332 static inline float32 uint16_to_float32(uint16_t v, float_status *status)
333 {
334     return uint32_to_float32(v, status);
335 }
336 
337 static inline float64 int16_to_float64(int16_t v, float_status *status)
338 {
339     return int32_to_float64(v, status);
340 }
341 
342 static inline float64 uint16_to_float64(uint16_t v, float_status *status)
343 {
344     return uint32_to_float64(v, status);
345 }
346 
347 /*----------------------------------------------------------------------------
348 | Software half-precision conversion routines.
349 *----------------------------------------------------------------------------*/
350 float16 float32_to_float16(float32, flag, float_status *status);
351 float32 float16_to_float32(float16, flag, float_status *status);
352 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
353 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
354 
355 /*----------------------------------------------------------------------------
356 | Software half-precision operations.
357 *----------------------------------------------------------------------------*/
358 int float16_is_quiet_nan( float16 );
359 int float16_is_signaling_nan( float16 );
360 float16 float16_maybe_silence_nan( float16 );
361 
362 static inline int float16_is_any_nan(float16 a)
363 {
364     return ((float16_val(a) & ~0x8000) > 0x7c00);
365 }
366 
367 /*----------------------------------------------------------------------------
368 | The pattern for a default generated half-precision NaN.
369 *----------------------------------------------------------------------------*/
370 extern const float16 float16_default_nan;
371 
372 /*----------------------------------------------------------------------------
373 | Software IEC/IEEE single-precision conversion routines.
374 *----------------------------------------------------------------------------*/
375 int_fast16_t float32_to_int16(float32, float_status *status);
376 uint_fast16_t float32_to_uint16(float32, float_status *status);
377 int_fast16_t float32_to_int16_round_to_zero(float32, float_status *status);
378 uint_fast16_t float32_to_uint16_round_to_zero(float32, float_status *status);
379 int32 float32_to_int32(float32, float_status *status);
380 int32 float32_to_int32_round_to_zero(float32, float_status *status);
381 uint32 float32_to_uint32(float32, float_status *status);
382 uint32 float32_to_uint32_round_to_zero(float32, float_status *status);
383 int64 float32_to_int64(float32, float_status *status);
384 uint64 float32_to_uint64(float32, float_status *status);
385 uint64 float32_to_uint64_round_to_zero(float32, float_status *status);
386 int64 float32_to_int64_round_to_zero(float32, float_status *status);
387 float64 float32_to_float64(float32, float_status *status);
388 floatx80 float32_to_floatx80(float32, float_status *status);
389 float128 float32_to_float128(float32, float_status *status);
390 
391 /*----------------------------------------------------------------------------
392 | Software IEC/IEEE single-precision operations.
393 *----------------------------------------------------------------------------*/
394 float32 float32_round_to_int(float32, float_status *status);
395 float32 float32_add(float32, float32, float_status *status);
396 float32 float32_sub(float32, float32, float_status *status);
397 float32 float32_mul(float32, float32, float_status *status);
398 float32 float32_div(float32, float32, float_status *status);
399 float32 float32_rem(float32, float32, float_status *status);
400 float32 float32_muladd(float32, float32, float32, int, float_status *status);
401 float32 float32_sqrt(float32, float_status *status);
402 float32 float32_exp2(float32, float_status *status);
403 float32 float32_log2(float32, float_status *status);
404 int float32_eq(float32, float32, float_status *status);
405 int float32_le(float32, float32, float_status *status);
406 int float32_lt(float32, float32, float_status *status);
407 int float32_unordered(float32, float32, float_status *status);
408 int float32_eq_quiet(float32, float32, float_status *status);
409 int float32_le_quiet(float32, float32, float_status *status);
410 int float32_lt_quiet(float32, float32, float_status *status);
411 int float32_unordered_quiet(float32, float32, float_status *status);
412 int float32_compare(float32, float32, float_status *status);
413 int float32_compare_quiet(float32, float32, float_status *status);
414 float32 float32_min(float32, float32, float_status *status);
415 float32 float32_max(float32, float32, float_status *status);
416 float32 float32_minnum(float32, float32, float_status *status);
417 float32 float32_maxnum(float32, float32, float_status *status);
418 float32 float32_minnummag(float32, float32, float_status *status);
419 float32 float32_maxnummag(float32, float32, float_status *status);
420 int float32_is_quiet_nan( float32 );
421 int float32_is_signaling_nan( float32 );
422 float32 float32_maybe_silence_nan( float32 );
423 float32 float32_scalbn(float32, int, float_status *status);
424 
425 static inline float32 float32_abs(float32 a)
426 {
427     /* Note that abs does *not* handle NaN specially, nor does
428      * it flush denormal inputs to zero.
429      */
430     return make_float32(float32_val(a) & 0x7fffffff);
431 }
432 
433 static inline float32 float32_chs(float32 a)
434 {
435     /* Note that chs does *not* handle NaN specially, nor does
436      * it flush denormal inputs to zero.
437      */
438     return make_float32(float32_val(a) ^ 0x80000000);
439 }
440 
441 static inline int float32_is_infinity(float32 a)
442 {
443     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
444 }
445 
446 static inline int float32_is_neg(float32 a)
447 {
448     return float32_val(a) >> 31;
449 }
450 
451 static inline int float32_is_zero(float32 a)
452 {
453     return (float32_val(a) & 0x7fffffff) == 0;
454 }
455 
456 static inline int float32_is_any_nan(float32 a)
457 {
458     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
459 }
460 
461 static inline int float32_is_zero_or_denormal(float32 a)
462 {
463     return (float32_val(a) & 0x7f800000) == 0;
464 }
465 
466 static inline float32 float32_set_sign(float32 a, int sign)
467 {
468     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
469 }
470 
471 #define float32_zero make_float32(0)
472 #define float32_one make_float32(0x3f800000)
473 #define float32_ln2 make_float32(0x3f317218)
474 #define float32_pi make_float32(0x40490fdb)
475 #define float32_half make_float32(0x3f000000)
476 #define float32_infinity make_float32(0x7f800000)
477 
478 
479 /*----------------------------------------------------------------------------
480 | The pattern for a default generated single-precision NaN.
481 *----------------------------------------------------------------------------*/
482 extern const float32 float32_default_nan;
483 
484 /*----------------------------------------------------------------------------
485 | Software IEC/IEEE double-precision conversion routines.
486 *----------------------------------------------------------------------------*/
487 int_fast16_t float64_to_int16(float64, float_status *status);
488 uint_fast16_t float64_to_uint16(float64, float_status *status);
489 int_fast16_t float64_to_int16_round_to_zero(float64, float_status *status);
490 uint_fast16_t float64_to_uint16_round_to_zero(float64, float_status *status);
491 int32 float64_to_int32(float64, float_status *status);
492 int32 float64_to_int32_round_to_zero(float64, float_status *status);
493 uint32 float64_to_uint32(float64, float_status *status);
494 uint32 float64_to_uint32_round_to_zero(float64, float_status *status);
495 int64 float64_to_int64(float64, float_status *status);
496 int64 float64_to_int64_round_to_zero(float64, float_status *status);
497 uint64 float64_to_uint64(float64 a, float_status *status);
498 uint64 float64_to_uint64_round_to_zero(float64 a, float_status *status);
499 float32 float64_to_float32(float64, float_status *status);
500 floatx80 float64_to_floatx80(float64, float_status *status);
501 float128 float64_to_float128(float64, float_status *status);
502 
503 /*----------------------------------------------------------------------------
504 | Software IEC/IEEE double-precision operations.
505 *----------------------------------------------------------------------------*/
506 float64 float64_round_to_int(float64, float_status *status);
507 float64 float64_trunc_to_int(float64, float_status *status);
508 float64 float64_add(float64, float64, float_status *status);
509 float64 float64_sub(float64, float64, float_status *status);
510 float64 float64_mul(float64, float64, float_status *status);
511 float64 float64_div(float64, float64, float_status *status);
512 float64 float64_rem(float64, float64, float_status *status);
513 float64 float64_muladd(float64, float64, float64, int, float_status *status);
514 float64 float64_sqrt(float64, float_status *status);
515 float64 float64_log2(float64, float_status *status);
516 int float64_eq(float64, float64, float_status *status);
517 int float64_le(float64, float64, float_status *status);
518 int float64_lt(float64, float64, float_status *status);
519 int float64_unordered(float64, float64, float_status *status);
520 int float64_eq_quiet(float64, float64, float_status *status);
521 int float64_le_quiet(float64, float64, float_status *status);
522 int float64_lt_quiet(float64, float64, float_status *status);
523 int float64_unordered_quiet(float64, float64, float_status *status);
524 int float64_compare(float64, float64, float_status *status);
525 int float64_compare_quiet(float64, float64, float_status *status);
526 float64 float64_min(float64, float64, float_status *status);
527 float64 float64_max(float64, float64, float_status *status);
528 float64 float64_minnum(float64, float64, float_status *status);
529 float64 float64_maxnum(float64, float64, float_status *status);
530 float64 float64_minnummag(float64, float64, float_status *status);
531 float64 float64_maxnummag(float64, float64, float_status *status);
532 int float64_is_quiet_nan( float64 a );
533 int float64_is_signaling_nan( float64 );
534 float64 float64_maybe_silence_nan( float64 );
535 float64 float64_scalbn(float64, int, float_status *status);
536 
537 static inline float64 float64_abs(float64 a)
538 {
539     /* Note that abs does *not* handle NaN specially, nor does
540      * it flush denormal inputs to zero.
541      */
542     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
543 }
544 
545 static inline float64 float64_chs(float64 a)
546 {
547     /* Note that chs does *not* handle NaN specially, nor does
548      * it flush denormal inputs to zero.
549      */
550     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
551 }
552 
553 static inline int float64_is_infinity(float64 a)
554 {
555     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
556 }
557 
558 static inline int float64_is_neg(float64 a)
559 {
560     return float64_val(a) >> 63;
561 }
562 
563 static inline int float64_is_zero(float64 a)
564 {
565     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
566 }
567 
568 static inline int float64_is_any_nan(float64 a)
569 {
570     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
571 }
572 
573 static inline int float64_is_zero_or_denormal(float64 a)
574 {
575     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
576 }
577 
578 static inline float64 float64_set_sign(float64 a, int sign)
579 {
580     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
581                         | ((int64_t)sign << 63));
582 }
583 
584 #define float64_zero make_float64(0)
585 #define float64_one make_float64(0x3ff0000000000000LL)
586 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
587 #define float64_pi make_float64(0x400921fb54442d18LL)
588 #define float64_half make_float64(0x3fe0000000000000LL)
589 #define float64_infinity make_float64(0x7ff0000000000000LL)
590 
591 /*----------------------------------------------------------------------------
592 | The pattern for a default generated double-precision NaN.
593 *----------------------------------------------------------------------------*/
594 extern const float64 float64_default_nan;
595 
596 /*----------------------------------------------------------------------------
597 | Software IEC/IEEE extended double-precision conversion routines.
598 *----------------------------------------------------------------------------*/
599 int32 floatx80_to_int32(floatx80, float_status *status);
600 int32 floatx80_to_int32_round_to_zero(floatx80, float_status *status);
601 int64 floatx80_to_int64(floatx80, float_status *status);
602 int64 floatx80_to_int64_round_to_zero(floatx80, float_status *status);
603 float32 floatx80_to_float32(floatx80, float_status *status);
604 float64 floatx80_to_float64(floatx80, float_status *status);
605 float128 floatx80_to_float128(floatx80, float_status *status);
606 
607 /*----------------------------------------------------------------------------
608 | Software IEC/IEEE extended double-precision operations.
609 *----------------------------------------------------------------------------*/
610 floatx80 floatx80_round_to_int(floatx80, float_status *status);
611 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
612 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
613 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
614 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
615 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
616 floatx80 floatx80_sqrt(floatx80, float_status *status);
617 int floatx80_eq(floatx80, floatx80, float_status *status);
618 int floatx80_le(floatx80, floatx80, float_status *status);
619 int floatx80_lt(floatx80, floatx80, float_status *status);
620 int floatx80_unordered(floatx80, floatx80, float_status *status);
621 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
622 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
623 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
624 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
625 int floatx80_compare(floatx80, floatx80, float_status *status);
626 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
627 int floatx80_is_quiet_nan( floatx80 );
628 int floatx80_is_signaling_nan( floatx80 );
629 floatx80 floatx80_maybe_silence_nan( floatx80 );
630 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
631 
632 static inline floatx80 floatx80_abs(floatx80 a)
633 {
634     a.high &= 0x7fff;
635     return a;
636 }
637 
638 static inline floatx80 floatx80_chs(floatx80 a)
639 {
640     a.high ^= 0x8000;
641     return a;
642 }
643 
644 static inline int floatx80_is_infinity(floatx80 a)
645 {
646     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
647 }
648 
649 static inline int floatx80_is_neg(floatx80 a)
650 {
651     return a.high >> 15;
652 }
653 
654 static inline int floatx80_is_zero(floatx80 a)
655 {
656     return (a.high & 0x7fff) == 0 && a.low == 0;
657 }
658 
659 static inline int floatx80_is_zero_or_denormal(floatx80 a)
660 {
661     return (a.high & 0x7fff) == 0;
662 }
663 
664 static inline int floatx80_is_any_nan(floatx80 a)
665 {
666     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
667 }
668 
669 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
670 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
671 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
672 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
673 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
674 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
675 
676 /*----------------------------------------------------------------------------
677 | The pattern for a default generated extended double-precision NaN.
678 *----------------------------------------------------------------------------*/
679 extern const floatx80 floatx80_default_nan;
680 
681 /*----------------------------------------------------------------------------
682 | Software IEC/IEEE quadruple-precision conversion routines.
683 *----------------------------------------------------------------------------*/
684 int32 float128_to_int32(float128, float_status *status);
685 int32 float128_to_int32_round_to_zero(float128, float_status *status);
686 int64 float128_to_int64(float128, float_status *status);
687 int64 float128_to_int64_round_to_zero(float128, float_status *status);
688 float32 float128_to_float32(float128, float_status *status);
689 float64 float128_to_float64(float128, float_status *status);
690 floatx80 float128_to_floatx80(float128, float_status *status);
691 
692 /*----------------------------------------------------------------------------
693 | Software IEC/IEEE quadruple-precision operations.
694 *----------------------------------------------------------------------------*/
695 float128 float128_round_to_int(float128, float_status *status);
696 float128 float128_add(float128, float128, float_status *status);
697 float128 float128_sub(float128, float128, float_status *status);
698 float128 float128_mul(float128, float128, float_status *status);
699 float128 float128_div(float128, float128, float_status *status);
700 float128 float128_rem(float128, float128, float_status *status);
701 float128 float128_sqrt(float128, float_status *status);
702 int float128_eq(float128, float128, float_status *status);
703 int float128_le(float128, float128, float_status *status);
704 int float128_lt(float128, float128, float_status *status);
705 int float128_unordered(float128, float128, float_status *status);
706 int float128_eq_quiet(float128, float128, float_status *status);
707 int float128_le_quiet(float128, float128, float_status *status);
708 int float128_lt_quiet(float128, float128, float_status *status);
709 int float128_unordered_quiet(float128, float128, float_status *status);
710 int float128_compare(float128, float128, float_status *status);
711 int float128_compare_quiet(float128, float128, float_status *status);
712 int float128_is_quiet_nan( float128 );
713 int float128_is_signaling_nan( float128 );
714 float128 float128_maybe_silence_nan( float128 );
715 float128 float128_scalbn(float128, int, float_status *status);
716 
717 static inline float128 float128_abs(float128 a)
718 {
719     a.high &= 0x7fffffffffffffffLL;
720     return a;
721 }
722 
723 static inline float128 float128_chs(float128 a)
724 {
725     a.high ^= 0x8000000000000000LL;
726     return a;
727 }
728 
729 static inline int float128_is_infinity(float128 a)
730 {
731     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
732 }
733 
734 static inline int float128_is_neg(float128 a)
735 {
736     return a.high >> 63;
737 }
738 
739 static inline int float128_is_zero(float128 a)
740 {
741     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
742 }
743 
744 static inline int float128_is_zero_or_denormal(float128 a)
745 {
746     return (a.high & 0x7fff000000000000LL) == 0;
747 }
748 
749 static inline int float128_is_any_nan(float128 a)
750 {
751     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
752         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
753 }
754 
755 #define float128_zero make_float128(0, 0)
756 
757 /*----------------------------------------------------------------------------
758 | The pattern for a default generated quadruple-precision NaN.
759 *----------------------------------------------------------------------------*/
760 extern const float128 float128_default_nan;
761 
762 #endif /* !SOFTFLOAT_H */
763