xref: /openbmc/qemu/include/fpu/softfloat.h (revision 042cea27)
1 /*
2  * QEMU float support
3  *
4  * The code in this source file is derived from release 2a of the SoftFloat
5  * IEC/IEEE Floating-point Arithmetic Package. Those parts of the code (and
6  * some later contributions) are provided under that license, as detailed below.
7  * It has subsequently been modified by contributors to the QEMU Project,
8  * so some portions are provided under:
9  *  the SoftFloat-2a license
10  *  the BSD license
11  *  GPL-v2-or-later
12  *
13  * Any future contributions to this file after December 1st 2014 will be
14  * taken to be licensed under the Softfloat-2a license unless specifically
15  * indicated otherwise.
16  */
17 
18 /*
19 ===============================================================================
20 This C header file is part of the SoftFloat IEC/IEEE Floating-point
21 Arithmetic Package, Release 2a.
22 
23 Written by John R. Hauser.  This work was made possible in part by the
24 International Computer Science Institute, located at Suite 600, 1947 Center
25 Street, Berkeley, California 94704.  Funding was partially provided by the
26 National Science Foundation under grant MIP-9311980.  The original version
27 of this code was written as part of a project to build a fixed-point vector
28 processor in collaboration with the University of California at Berkeley,
29 overseen by Profs. Nelson Morgan and John Wawrzynek.  More information
30 is available through the Web page `http://HTTP.CS.Berkeley.EDU/~jhauser/
31 arithmetic/SoftFloat.html'.
32 
33 THIS SOFTWARE IS DISTRIBUTED AS IS, FOR FREE.  Although reasonable effort
34 has been made to avoid it, THIS SOFTWARE MAY CONTAIN FAULTS THAT WILL AT
35 TIMES RESULT IN INCORRECT BEHAVIOR.  USE OF THIS SOFTWARE IS RESTRICTED TO
36 PERSONS AND ORGANIZATIONS WHO CAN AND WILL TAKE FULL RESPONSIBILITY FOR ANY
37 AND ALL LOSSES, COSTS, OR OTHER PROBLEMS ARISING FROM ITS USE.
38 
39 Derivative works are acceptable, even for commercial purposes, so long as
40 (1) they include prominent notice that the work is derivative, and (2) they
41 include prominent notice akin to these four paragraphs for those parts of
42 this code that are retained.
43 
44 ===============================================================================
45 */
46 
47 /* BSD licensing:
48  * Copyright (c) 2006, Fabrice Bellard
49  * All rights reserved.
50  *
51  * Redistribution and use in source and binary forms, with or without
52  * modification, are permitted provided that the following conditions are met:
53  *
54  * 1. Redistributions of source code must retain the above copyright notice,
55  * this list of conditions and the following disclaimer.
56  *
57  * 2. Redistributions in binary form must reproduce the above copyright notice,
58  * this list of conditions and the following disclaimer in the documentation
59  * and/or other materials provided with the distribution.
60  *
61  * 3. Neither the name of the copyright holder nor the names of its contributors
62  * may be used to endorse or promote products derived from this software without
63  * specific prior written permission.
64  *
65  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
66  * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
67  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
68  * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE
69  * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
70  * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
71  * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
72  * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
73  * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
74  * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF
75  * THE POSSIBILITY OF SUCH DAMAGE.
76  */
77 
78 /* Portions of this work are licensed under the terms of the GNU GPL,
79  * version 2 or later. See the COPYING file in the top-level directory.
80  */
81 
82 #ifndef SOFTFLOAT_H
83 #define SOFTFLOAT_H
84 
85 #define LIT64( a ) a##LL
86 
87 /*----------------------------------------------------------------------------
88 | Software IEC/IEEE floating-point ordering relations
89 *----------------------------------------------------------------------------*/
90 enum {
91     float_relation_less      = -1,
92     float_relation_equal     =  0,
93     float_relation_greater   =  1,
94     float_relation_unordered =  2
95 };
96 
97 #include "fpu/softfloat-types.h"
98 
99 static inline void set_float_detect_tininess(int val, float_status *status)
100 {
101     status->float_detect_tininess = val;
102 }
103 static inline void set_float_rounding_mode(int val, float_status *status)
104 {
105     status->float_rounding_mode = val;
106 }
107 static inline void set_float_exception_flags(int val, float_status *status)
108 {
109     status->float_exception_flags = val;
110 }
111 static inline void set_floatx80_rounding_precision(int val,
112                                                    float_status *status)
113 {
114     status->floatx80_rounding_precision = val;
115 }
116 static inline void set_flush_to_zero(flag val, float_status *status)
117 {
118     status->flush_to_zero = val;
119 }
120 static inline void set_flush_inputs_to_zero(flag val, float_status *status)
121 {
122     status->flush_inputs_to_zero = val;
123 }
124 static inline void set_default_nan_mode(flag val, float_status *status)
125 {
126     status->default_nan_mode = val;
127 }
128 static inline void set_snan_bit_is_one(flag val, float_status *status)
129 {
130     status->snan_bit_is_one = val;
131 }
132 static inline int get_float_detect_tininess(float_status *status)
133 {
134     return status->float_detect_tininess;
135 }
136 static inline int get_float_rounding_mode(float_status *status)
137 {
138     return status->float_rounding_mode;
139 }
140 static inline int get_float_exception_flags(float_status *status)
141 {
142     return status->float_exception_flags;
143 }
144 static inline int get_floatx80_rounding_precision(float_status *status)
145 {
146     return status->floatx80_rounding_precision;
147 }
148 static inline flag get_flush_to_zero(float_status *status)
149 {
150     return status->flush_to_zero;
151 }
152 static inline flag get_flush_inputs_to_zero(float_status *status)
153 {
154     return status->flush_inputs_to_zero;
155 }
156 static inline flag get_default_nan_mode(float_status *status)
157 {
158     return status->default_nan_mode;
159 }
160 
161 /*----------------------------------------------------------------------------
162 | Routine to raise any or all of the software IEC/IEEE floating-point
163 | exception flags.
164 *----------------------------------------------------------------------------*/
165 void float_raise(uint8_t flags, float_status *status);
166 
167 /*----------------------------------------------------------------------------
168 | If `a' is denormal and we are in flush-to-zero mode then set the
169 | input-denormal exception and return zero. Otherwise just return the value.
170 *----------------------------------------------------------------------------*/
171 float16 float16_squash_input_denormal(float16 a, float_status *status);
172 float32 float32_squash_input_denormal(float32 a, float_status *status);
173 float64 float64_squash_input_denormal(float64 a, float_status *status);
174 
175 /*----------------------------------------------------------------------------
176 | Options to indicate which negations to perform in float*_muladd()
177 | Using these differs from negating an input or output before calling
178 | the muladd function in that this means that a NaN doesn't have its
179 | sign bit inverted before it is propagated.
180 | We also support halving the result before rounding, as a special
181 | case to support the ARM fused-sqrt-step instruction FRSQRTS.
182 *----------------------------------------------------------------------------*/
183 enum {
184     float_muladd_negate_c = 1,
185     float_muladd_negate_product = 2,
186     float_muladd_negate_result = 4,
187     float_muladd_halve_result = 8,
188 };
189 
190 /*----------------------------------------------------------------------------
191 | Software IEC/IEEE integer-to-floating-point conversion routines.
192 *----------------------------------------------------------------------------*/
193 float32 int16_to_float32(int16_t, float_status *status);
194 float32 int32_to_float32(int32_t, float_status *status);
195 float64 int16_to_float64(int16_t, float_status *status);
196 float64 int32_to_float64(int32_t, float_status *status);
197 float32 uint16_to_float32(uint16_t, float_status *status);
198 float32 uint32_to_float32(uint32_t, float_status *status);
199 float64 uint16_to_float64(uint16_t, float_status *status);
200 float64 uint32_to_float64(uint32_t, float_status *status);
201 floatx80 int32_to_floatx80(int32_t, float_status *status);
202 float128 int32_to_float128(int32_t, float_status *status);
203 float32 int64_to_float32(int64_t, float_status *status);
204 float64 int64_to_float64(int64_t, float_status *status);
205 floatx80 int64_to_floatx80(int64_t, float_status *status);
206 float128 int64_to_float128(int64_t, float_status *status);
207 float32 uint64_to_float32(uint64_t, float_status *status);
208 float64 uint64_to_float64(uint64_t, float_status *status);
209 float128 uint64_to_float128(uint64_t, float_status *status);
210 
211 /*----------------------------------------------------------------------------
212 | Software half-precision conversion routines.
213 *----------------------------------------------------------------------------*/
214 float16 float32_to_float16(float32, flag, float_status *status);
215 float32 float16_to_float32(float16, flag, float_status *status);
216 float16 float64_to_float16(float64 a, flag ieee, float_status *status);
217 float64 float16_to_float64(float16 a, flag ieee, float_status *status);
218 int16_t float16_to_int16(float16, float_status *status);
219 uint16_t float16_to_uint16(float16 a, float_status *status);
220 int16_t float16_to_int16_round_to_zero(float16, float_status *status);
221 uint16_t float16_to_uint16_round_to_zero(float16 a, float_status *status);
222 int32_t float16_to_int32(float16, float_status *status);
223 uint32_t float16_to_uint32(float16 a, float_status *status);
224 int32_t float16_to_int32_round_to_zero(float16, float_status *status);
225 uint32_t float16_to_uint32_round_to_zero(float16 a, float_status *status);
226 int64_t float16_to_int64(float16, float_status *status);
227 uint64_t float16_to_uint64(float16 a, float_status *status);
228 int64_t float16_to_int64_round_to_zero(float16, float_status *status);
229 uint64_t float16_to_uint64_round_to_zero(float16 a, float_status *status);
230 float16 int16_to_float16(int16_t a, float_status *status);
231 float16 int32_to_float16(int32_t a, float_status *status);
232 float16 int64_to_float16(int64_t a, float_status *status);
233 float16 uint16_to_float16(uint16_t a, float_status *status);
234 float16 uint32_to_float16(uint32_t a, float_status *status);
235 float16 uint64_to_float16(uint64_t a, float_status *status);
236 
237 /*----------------------------------------------------------------------------
238 | Software half-precision operations.
239 *----------------------------------------------------------------------------*/
240 
241 float16 float16_round_to_int(float16, float_status *status);
242 float16 float16_add(float16, float16, float_status *status);
243 float16 float16_sub(float16, float16, float_status *status);
244 float16 float16_mul(float16, float16, float_status *status);
245 float16 float16_muladd(float16, float16, float16, int, float_status *status);
246 float16 float16_div(float16, float16, float_status *status);
247 float16 float16_scalbn(float16, int, float_status *status);
248 float16 float16_min(float16, float16, float_status *status);
249 float16 float16_max(float16, float16, float_status *status);
250 float16 float16_minnum(float16, float16, float_status *status);
251 float16 float16_maxnum(float16, float16, float_status *status);
252 float16 float16_minnummag(float16, float16, float_status *status);
253 float16 float16_maxnummag(float16, float16, float_status *status);
254 float16 float16_sqrt(float16, float_status *status);
255 int float16_compare(float16, float16, float_status *status);
256 int float16_compare_quiet(float16, float16, float_status *status);
257 
258 int float16_is_quiet_nan(float16, float_status *status);
259 int float16_is_signaling_nan(float16, float_status *status);
260 float16 float16_maybe_silence_nan(float16, float_status *status);
261 
262 static inline int float16_is_any_nan(float16 a)
263 {
264     return ((float16_val(a) & ~0x8000) > 0x7c00);
265 }
266 
267 static inline int float16_is_neg(float16 a)
268 {
269     return float16_val(a) >> 15;
270 }
271 
272 static inline int float16_is_infinity(float16 a)
273 {
274     return (float16_val(a) & 0x7fff) == 0x7c00;
275 }
276 
277 static inline int float16_is_zero(float16 a)
278 {
279     return (float16_val(a) & 0x7fff) == 0;
280 }
281 
282 static inline int float16_is_zero_or_denormal(float16 a)
283 {
284     return (float16_val(a) & 0x7c00) == 0;
285 }
286 
287 static inline float16 float16_abs(float16 a)
288 {
289     /* Note that abs does *not* handle NaN specially, nor does
290      * it flush denormal inputs to zero.
291      */
292     return make_float16(float16_val(a) & 0x7fff);
293 }
294 
295 static inline float16 float16_chs(float16 a)
296 {
297     /* Note that chs does *not* handle NaN specially, nor does
298      * it flush denormal inputs to zero.
299      */
300     return make_float16(float16_val(a) ^ 0x8000);
301 }
302 
303 static inline float16 float16_set_sign(float16 a, int sign)
304 {
305     return make_float16((float16_val(a) & 0x7fff) | (sign << 15));
306 }
307 
308 #define float16_zero make_float16(0)
309 #define float16_one make_float16(0x3c00)
310 #define float16_half make_float16(0x3800)
311 #define float16_infinity make_float16(0x7c00)
312 
313 /*----------------------------------------------------------------------------
314 | The pattern for a default generated half-precision NaN.
315 *----------------------------------------------------------------------------*/
316 float16 float16_default_nan(float_status *status);
317 
318 /*----------------------------------------------------------------------------
319 | Software IEC/IEEE single-precision conversion routines.
320 *----------------------------------------------------------------------------*/
321 int16_t float32_to_int16(float32, float_status *status);
322 uint16_t float32_to_uint16(float32, float_status *status);
323 int16_t float32_to_int16_round_to_zero(float32, float_status *status);
324 uint16_t float32_to_uint16_round_to_zero(float32, float_status *status);
325 int32_t float32_to_int32(float32, float_status *status);
326 int32_t float32_to_int32_round_to_zero(float32, float_status *status);
327 uint32_t float32_to_uint32(float32, float_status *status);
328 uint32_t float32_to_uint32_round_to_zero(float32, float_status *status);
329 int64_t float32_to_int64(float32, float_status *status);
330 uint64_t float32_to_uint64(float32, float_status *status);
331 uint64_t float32_to_uint64_round_to_zero(float32, float_status *status);
332 int64_t float32_to_int64_round_to_zero(float32, float_status *status);
333 float64 float32_to_float64(float32, float_status *status);
334 floatx80 float32_to_floatx80(float32, float_status *status);
335 float128 float32_to_float128(float32, float_status *status);
336 
337 /*----------------------------------------------------------------------------
338 | Software IEC/IEEE single-precision operations.
339 *----------------------------------------------------------------------------*/
340 float32 float32_round_to_int(float32, float_status *status);
341 float32 float32_add(float32, float32, float_status *status);
342 float32 float32_sub(float32, float32, float_status *status);
343 float32 float32_mul(float32, float32, float_status *status);
344 float32 float32_div(float32, float32, float_status *status);
345 float32 float32_rem(float32, float32, float_status *status);
346 float32 float32_muladd(float32, float32, float32, int, float_status *status);
347 float32 float32_sqrt(float32, float_status *status);
348 float32 float32_exp2(float32, float_status *status);
349 float32 float32_log2(float32, float_status *status);
350 int float32_eq(float32, float32, float_status *status);
351 int float32_le(float32, float32, float_status *status);
352 int float32_lt(float32, float32, float_status *status);
353 int float32_unordered(float32, float32, float_status *status);
354 int float32_eq_quiet(float32, float32, float_status *status);
355 int float32_le_quiet(float32, float32, float_status *status);
356 int float32_lt_quiet(float32, float32, float_status *status);
357 int float32_unordered_quiet(float32, float32, float_status *status);
358 int float32_compare(float32, float32, float_status *status);
359 int float32_compare_quiet(float32, float32, float_status *status);
360 float32 float32_min(float32, float32, float_status *status);
361 float32 float32_max(float32, float32, float_status *status);
362 float32 float32_minnum(float32, float32, float_status *status);
363 float32 float32_maxnum(float32, float32, float_status *status);
364 float32 float32_minnummag(float32, float32, float_status *status);
365 float32 float32_maxnummag(float32, float32, float_status *status);
366 int float32_is_quiet_nan(float32, float_status *status);
367 int float32_is_signaling_nan(float32, float_status *status);
368 float32 float32_maybe_silence_nan(float32, float_status *status);
369 float32 float32_scalbn(float32, int, float_status *status);
370 
371 static inline float32 float32_abs(float32 a)
372 {
373     /* Note that abs does *not* handle NaN specially, nor does
374      * it flush denormal inputs to zero.
375      */
376     return make_float32(float32_val(a) & 0x7fffffff);
377 }
378 
379 static inline float32 float32_chs(float32 a)
380 {
381     /* Note that chs does *not* handle NaN specially, nor does
382      * it flush denormal inputs to zero.
383      */
384     return make_float32(float32_val(a) ^ 0x80000000);
385 }
386 
387 static inline int float32_is_infinity(float32 a)
388 {
389     return (float32_val(a) & 0x7fffffff) == 0x7f800000;
390 }
391 
392 static inline int float32_is_neg(float32 a)
393 {
394     return float32_val(a) >> 31;
395 }
396 
397 static inline int float32_is_zero(float32 a)
398 {
399     return (float32_val(a) & 0x7fffffff) == 0;
400 }
401 
402 static inline int float32_is_any_nan(float32 a)
403 {
404     return ((float32_val(a) & ~(1 << 31)) > 0x7f800000UL);
405 }
406 
407 static inline int float32_is_zero_or_denormal(float32 a)
408 {
409     return (float32_val(a) & 0x7f800000) == 0;
410 }
411 
412 static inline float32 float32_set_sign(float32 a, int sign)
413 {
414     return make_float32((float32_val(a) & 0x7fffffff) | (sign << 31));
415 }
416 
417 #define float32_zero make_float32(0)
418 #define float32_one make_float32(0x3f800000)
419 #define float32_half make_float32(0x3f000000)
420 #define float32_infinity make_float32(0x7f800000)
421 
422 
423 /*----------------------------------------------------------------------------
424 | The pattern for a default generated single-precision NaN.
425 *----------------------------------------------------------------------------*/
426 float32 float32_default_nan(float_status *status);
427 
428 /*----------------------------------------------------------------------------
429 | Software IEC/IEEE double-precision conversion routines.
430 *----------------------------------------------------------------------------*/
431 int16_t float64_to_int16(float64, float_status *status);
432 uint16_t float64_to_uint16(float64, float_status *status);
433 int16_t float64_to_int16_round_to_zero(float64, float_status *status);
434 uint16_t float64_to_uint16_round_to_zero(float64, float_status *status);
435 int32_t float64_to_int32(float64, float_status *status);
436 int32_t float64_to_int32_round_to_zero(float64, float_status *status);
437 uint32_t float64_to_uint32(float64, float_status *status);
438 uint32_t float64_to_uint32_round_to_zero(float64, float_status *status);
439 int64_t float64_to_int64(float64, float_status *status);
440 int64_t float64_to_int64_round_to_zero(float64, float_status *status);
441 uint64_t float64_to_uint64(float64 a, float_status *status);
442 uint64_t float64_to_uint64_round_to_zero(float64 a, float_status *status);
443 float32 float64_to_float32(float64, float_status *status);
444 floatx80 float64_to_floatx80(float64, float_status *status);
445 float128 float64_to_float128(float64, float_status *status);
446 
447 /*----------------------------------------------------------------------------
448 | Software IEC/IEEE double-precision operations.
449 *----------------------------------------------------------------------------*/
450 float64 float64_round_to_int(float64, float_status *status);
451 float64 float64_trunc_to_int(float64, float_status *status);
452 float64 float64_add(float64, float64, float_status *status);
453 float64 float64_sub(float64, float64, float_status *status);
454 float64 float64_mul(float64, float64, float_status *status);
455 float64 float64_div(float64, float64, float_status *status);
456 float64 float64_rem(float64, float64, float_status *status);
457 float64 float64_muladd(float64, float64, float64, int, float_status *status);
458 float64 float64_sqrt(float64, float_status *status);
459 float64 float64_log2(float64, float_status *status);
460 int float64_eq(float64, float64, float_status *status);
461 int float64_le(float64, float64, float_status *status);
462 int float64_lt(float64, float64, float_status *status);
463 int float64_unordered(float64, float64, float_status *status);
464 int float64_eq_quiet(float64, float64, float_status *status);
465 int float64_le_quiet(float64, float64, float_status *status);
466 int float64_lt_quiet(float64, float64, float_status *status);
467 int float64_unordered_quiet(float64, float64, float_status *status);
468 int float64_compare(float64, float64, float_status *status);
469 int float64_compare_quiet(float64, float64, float_status *status);
470 float64 float64_min(float64, float64, float_status *status);
471 float64 float64_max(float64, float64, float_status *status);
472 float64 float64_minnum(float64, float64, float_status *status);
473 float64 float64_maxnum(float64, float64, float_status *status);
474 float64 float64_minnummag(float64, float64, float_status *status);
475 float64 float64_maxnummag(float64, float64, float_status *status);
476 int float64_is_quiet_nan(float64 a, float_status *status);
477 int float64_is_signaling_nan(float64, float_status *status);
478 float64 float64_maybe_silence_nan(float64, float_status *status);
479 float64 float64_scalbn(float64, int, float_status *status);
480 
481 static inline float64 float64_abs(float64 a)
482 {
483     /* Note that abs does *not* handle NaN specially, nor does
484      * it flush denormal inputs to zero.
485      */
486     return make_float64(float64_val(a) & 0x7fffffffffffffffLL);
487 }
488 
489 static inline float64 float64_chs(float64 a)
490 {
491     /* Note that chs does *not* handle NaN specially, nor does
492      * it flush denormal inputs to zero.
493      */
494     return make_float64(float64_val(a) ^ 0x8000000000000000LL);
495 }
496 
497 static inline int float64_is_infinity(float64 a)
498 {
499     return (float64_val(a) & 0x7fffffffffffffffLL ) == 0x7ff0000000000000LL;
500 }
501 
502 static inline int float64_is_neg(float64 a)
503 {
504     return float64_val(a) >> 63;
505 }
506 
507 static inline int float64_is_zero(float64 a)
508 {
509     return (float64_val(a) & 0x7fffffffffffffffLL) == 0;
510 }
511 
512 static inline int float64_is_any_nan(float64 a)
513 {
514     return ((float64_val(a) & ~(1ULL << 63)) > 0x7ff0000000000000ULL);
515 }
516 
517 static inline int float64_is_zero_or_denormal(float64 a)
518 {
519     return (float64_val(a) & 0x7ff0000000000000LL) == 0;
520 }
521 
522 static inline float64 float64_set_sign(float64 a, int sign)
523 {
524     return make_float64((float64_val(a) & 0x7fffffffffffffffULL)
525                         | ((int64_t)sign << 63));
526 }
527 
528 #define float64_zero make_float64(0)
529 #define float64_one make_float64(0x3ff0000000000000LL)
530 #define float64_ln2 make_float64(0x3fe62e42fefa39efLL)
531 #define float64_half make_float64(0x3fe0000000000000LL)
532 #define float64_infinity make_float64(0x7ff0000000000000LL)
533 
534 /*----------------------------------------------------------------------------
535 | The pattern for a default generated double-precision NaN.
536 *----------------------------------------------------------------------------*/
537 float64 float64_default_nan(float_status *status);
538 
539 /*----------------------------------------------------------------------------
540 | Software IEC/IEEE extended double-precision conversion routines.
541 *----------------------------------------------------------------------------*/
542 int32_t floatx80_to_int32(floatx80, float_status *status);
543 int32_t floatx80_to_int32_round_to_zero(floatx80, float_status *status);
544 int64_t floatx80_to_int64(floatx80, float_status *status);
545 int64_t floatx80_to_int64_round_to_zero(floatx80, float_status *status);
546 float32 floatx80_to_float32(floatx80, float_status *status);
547 float64 floatx80_to_float64(floatx80, float_status *status);
548 float128 floatx80_to_float128(floatx80, float_status *status);
549 
550 /*----------------------------------------------------------------------------
551 | Software IEC/IEEE extended double-precision operations.
552 *----------------------------------------------------------------------------*/
553 floatx80 floatx80_round(floatx80 a, float_status *status);
554 floatx80 floatx80_round_to_int(floatx80, float_status *status);
555 floatx80 floatx80_add(floatx80, floatx80, float_status *status);
556 floatx80 floatx80_sub(floatx80, floatx80, float_status *status);
557 floatx80 floatx80_mul(floatx80, floatx80, float_status *status);
558 floatx80 floatx80_div(floatx80, floatx80, float_status *status);
559 floatx80 floatx80_rem(floatx80, floatx80, float_status *status);
560 floatx80 floatx80_sqrt(floatx80, float_status *status);
561 int floatx80_eq(floatx80, floatx80, float_status *status);
562 int floatx80_le(floatx80, floatx80, float_status *status);
563 int floatx80_lt(floatx80, floatx80, float_status *status);
564 int floatx80_unordered(floatx80, floatx80, float_status *status);
565 int floatx80_eq_quiet(floatx80, floatx80, float_status *status);
566 int floatx80_le_quiet(floatx80, floatx80, float_status *status);
567 int floatx80_lt_quiet(floatx80, floatx80, float_status *status);
568 int floatx80_unordered_quiet(floatx80, floatx80, float_status *status);
569 int floatx80_compare(floatx80, floatx80, float_status *status);
570 int floatx80_compare_quiet(floatx80, floatx80, float_status *status);
571 int floatx80_is_quiet_nan(floatx80, float_status *status);
572 int floatx80_is_signaling_nan(floatx80, float_status *status);
573 floatx80 floatx80_maybe_silence_nan(floatx80, float_status *status);
574 floatx80 floatx80_scalbn(floatx80, int, float_status *status);
575 
576 static inline floatx80 floatx80_abs(floatx80 a)
577 {
578     a.high &= 0x7fff;
579     return a;
580 }
581 
582 static inline floatx80 floatx80_chs(floatx80 a)
583 {
584     a.high ^= 0x8000;
585     return a;
586 }
587 
588 static inline int floatx80_is_infinity(floatx80 a)
589 {
590     return (a.high & 0x7fff) == 0x7fff && a.low == 0x8000000000000000LL;
591 }
592 
593 static inline int floatx80_is_neg(floatx80 a)
594 {
595     return a.high >> 15;
596 }
597 
598 static inline int floatx80_is_zero(floatx80 a)
599 {
600     return (a.high & 0x7fff) == 0 && a.low == 0;
601 }
602 
603 static inline int floatx80_is_zero_or_denormal(floatx80 a)
604 {
605     return (a.high & 0x7fff) == 0;
606 }
607 
608 static inline int floatx80_is_any_nan(floatx80 a)
609 {
610     return ((a.high & 0x7fff) == 0x7fff) && (a.low<<1);
611 }
612 
613 /*----------------------------------------------------------------------------
614 | Return whether the given value is an invalid floatx80 encoding.
615 | Invalid floatx80 encodings arise when the integer bit is not set, but
616 | the exponent is not zero. The only times the integer bit is permitted to
617 | be zero is in subnormal numbers and the value zero.
618 | This includes what the Intel software developer's manual calls pseudo-NaNs,
619 | pseudo-infinities and un-normal numbers. It does not include
620 | pseudo-denormals, which must still be correctly handled as inputs even
621 | if they are never generated as outputs.
622 *----------------------------------------------------------------------------*/
623 static inline bool floatx80_invalid_encoding(floatx80 a)
624 {
625     return (a.low & (1ULL << 63)) == 0 && (a.high & 0x7FFF) != 0;
626 }
627 
628 #define floatx80_zero make_floatx80(0x0000, 0x0000000000000000LL)
629 #define floatx80_one make_floatx80(0x3fff, 0x8000000000000000LL)
630 #define floatx80_ln2 make_floatx80(0x3ffe, 0xb17217f7d1cf79acLL)
631 #define floatx80_pi make_floatx80(0x4000, 0xc90fdaa22168c235LL)
632 #define floatx80_half make_floatx80(0x3ffe, 0x8000000000000000LL)
633 #define floatx80_infinity make_floatx80(0x7fff, 0x8000000000000000LL)
634 
635 /*----------------------------------------------------------------------------
636 | The pattern for a default generated extended double-precision NaN.
637 *----------------------------------------------------------------------------*/
638 floatx80 floatx80_default_nan(float_status *status);
639 
640 /*----------------------------------------------------------------------------
641 | Software IEC/IEEE quadruple-precision conversion routines.
642 *----------------------------------------------------------------------------*/
643 int32_t float128_to_int32(float128, float_status *status);
644 int32_t float128_to_int32_round_to_zero(float128, float_status *status);
645 int64_t float128_to_int64(float128, float_status *status);
646 int64_t float128_to_int64_round_to_zero(float128, float_status *status);
647 uint64_t float128_to_uint64(float128, float_status *status);
648 uint64_t float128_to_uint64_round_to_zero(float128, float_status *status);
649 uint32_t float128_to_uint32_round_to_zero(float128, float_status *status);
650 float32 float128_to_float32(float128, float_status *status);
651 float64 float128_to_float64(float128, float_status *status);
652 floatx80 float128_to_floatx80(float128, float_status *status);
653 
654 /*----------------------------------------------------------------------------
655 | Software IEC/IEEE quadruple-precision operations.
656 *----------------------------------------------------------------------------*/
657 float128 float128_round_to_int(float128, float_status *status);
658 float128 float128_add(float128, float128, float_status *status);
659 float128 float128_sub(float128, float128, float_status *status);
660 float128 float128_mul(float128, float128, float_status *status);
661 float128 float128_div(float128, float128, float_status *status);
662 float128 float128_rem(float128, float128, float_status *status);
663 float128 float128_sqrt(float128, float_status *status);
664 int float128_eq(float128, float128, float_status *status);
665 int float128_le(float128, float128, float_status *status);
666 int float128_lt(float128, float128, float_status *status);
667 int float128_unordered(float128, float128, float_status *status);
668 int float128_eq_quiet(float128, float128, float_status *status);
669 int float128_le_quiet(float128, float128, float_status *status);
670 int float128_lt_quiet(float128, float128, float_status *status);
671 int float128_unordered_quiet(float128, float128, float_status *status);
672 int float128_compare(float128, float128, float_status *status);
673 int float128_compare_quiet(float128, float128, float_status *status);
674 int float128_is_quiet_nan(float128, float_status *status);
675 int float128_is_signaling_nan(float128, float_status *status);
676 float128 float128_maybe_silence_nan(float128, float_status *status);
677 float128 float128_scalbn(float128, int, float_status *status);
678 
679 static inline float128 float128_abs(float128 a)
680 {
681     a.high &= 0x7fffffffffffffffLL;
682     return a;
683 }
684 
685 static inline float128 float128_chs(float128 a)
686 {
687     a.high ^= 0x8000000000000000LL;
688     return a;
689 }
690 
691 static inline int float128_is_infinity(float128 a)
692 {
693     return (a.high & 0x7fffffffffffffffLL) == 0x7fff000000000000LL && a.low == 0;
694 }
695 
696 static inline int float128_is_neg(float128 a)
697 {
698     return a.high >> 63;
699 }
700 
701 static inline int float128_is_zero(float128 a)
702 {
703     return (a.high & 0x7fffffffffffffffLL) == 0 && a.low == 0;
704 }
705 
706 static inline int float128_is_zero_or_denormal(float128 a)
707 {
708     return (a.high & 0x7fff000000000000LL) == 0;
709 }
710 
711 static inline int float128_is_any_nan(float128 a)
712 {
713     return ((a.high >> 48) & 0x7fff) == 0x7fff &&
714         ((a.low != 0) || ((a.high & 0xffffffffffffLL) != 0));
715 }
716 
717 #define float128_zero make_float128(0, 0)
718 
719 /*----------------------------------------------------------------------------
720 | The pattern for a default generated quadruple-precision NaN.
721 *----------------------------------------------------------------------------*/
722 float128 float128_default_nan(float_status *status);
723 
724 #endif /* SOFTFLOAT_H */
725