xref: /openbmc/qemu/include/exec/ram_addr.h (revision e4ec5ad4)
1 /*
2  * Declarations for cpu physical memory functions
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * later.  See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * This header is for use by exec.c and memory.c ONLY.  Do not include it.
16  * The functions declared here will be removed soon.
17  */
18 
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21 
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "hw/xen/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
27 
28 struct RAMBlock {
29     struct rcu_head rcu;
30     struct MemoryRegion *mr;
31     uint8_t *host;
32     uint8_t *colo_cache; /* For colo, VM's ram cache */
33     ram_addr_t offset;
34     ram_addr_t used_length;
35     ram_addr_t max_length;
36     void (*resized)(const char*, uint64_t length, void *host);
37     uint32_t flags;
38     /* Protected by iothread lock.  */
39     char idstr[256];
40     /* RCU-enabled, writes protected by the ramlist lock */
41     QLIST_ENTRY(RAMBlock) next;
42     QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
43     int fd;
44     size_t page_size;
45     /* dirty bitmap used during migration */
46     unsigned long *bmap;
47     /* bitmap of already received pages in postcopy */
48     unsigned long *receivedmap;
49 
50     /*
51      * bitmap to track already cleared dirty bitmap.  When the bit is
52      * set, it means the corresponding memory chunk needs a log-clear.
53      * Set this up to non-NULL to enable the capability to postpone
54      * and split clearing of dirty bitmap on the remote node (e.g.,
55      * KVM).  The bitmap will be set only when doing global sync.
56      *
57      * NOTE: this bitmap is different comparing to the other bitmaps
58      * in that one bit can represent multiple guest pages (which is
59      * decided by the `clear_bmap_shift' variable below).  On
60      * destination side, this should always be NULL, and the variable
61      * `clear_bmap_shift' is meaningless.
62      */
63     unsigned long *clear_bmap;
64     uint8_t clear_bmap_shift;
65 };
66 
67 /**
68  * clear_bmap_size: calculate clear bitmap size
69  *
70  * @pages: number of guest pages
71  * @shift: guest page number shift
72  *
73  * Returns: number of bits for the clear bitmap
74  */
75 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
76 {
77     return DIV_ROUND_UP(pages, 1UL << shift);
78 }
79 
80 /**
81  * clear_bmap_set: set clear bitmap for the page range
82  *
83  * @rb: the ramblock to operate on
84  * @start: the start page number
85  * @size: number of pages to set in the bitmap
86  *
87  * Returns: None
88  */
89 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
90                                   uint64_t npages)
91 {
92     uint8_t shift = rb->clear_bmap_shift;
93 
94     bitmap_set_atomic(rb->clear_bmap, start >> shift,
95                       clear_bmap_size(npages, shift));
96 }
97 
98 /**
99  * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
100  *
101  * @rb: the ramblock to operate on
102  * @page: the page number to check
103  *
104  * Returns: true if the bit was set, false otherwise
105  */
106 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
107 {
108     uint8_t shift = rb->clear_bmap_shift;
109 
110     return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
111 }
112 
113 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
114 {
115     return (b && b->host && offset < b->used_length) ? true : false;
116 }
117 
118 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
119 {
120     assert(offset_in_ramblock(block, offset));
121     return (char *)block->host + offset;
122 }
123 
124 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
125                                                             RAMBlock *rb)
126 {
127     uint64_t host_addr_offset =
128             (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
129     return host_addr_offset >> TARGET_PAGE_BITS;
130 }
131 
132 bool ramblock_is_pmem(RAMBlock *rb);
133 
134 long qemu_minrampagesize(void);
135 long qemu_maxrampagesize(void);
136 
137 /**
138  * qemu_ram_alloc_from_file,
139  * qemu_ram_alloc_from_fd:  Allocate a ram block from the specified backing
140  *                          file or device
141  *
142  * Parameters:
143  *  @size: the size in bytes of the ram block
144  *  @mr: the memory region where the ram block is
145  *  @ram_flags: specify the properties of the ram block, which can be one
146  *              or bit-or of following values
147  *              - RAM_SHARED: mmap the backing file or device with MAP_SHARED
148  *              - RAM_PMEM: the backend @mem_path or @fd is persistent memory
149  *              Other bits are ignored.
150  *  @mem_path or @fd: specify the backing file or device
151  *  @errp: pointer to Error*, to store an error if it happens
152  *
153  * Return:
154  *  On success, return a pointer to the ram block.
155  *  On failure, return NULL.
156  */
157 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
158                                    uint32_t ram_flags, const char *mem_path,
159                                    Error **errp);
160 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
161                                  uint32_t ram_flags, int fd,
162                                  Error **errp);
163 
164 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
165                                   MemoryRegion *mr, Error **errp);
166 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr,
167                          Error **errp);
168 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
169                                     void (*resized)(const char*,
170                                                     uint64_t length,
171                                                     void *host),
172                                     MemoryRegion *mr, Error **errp);
173 void qemu_ram_free(RAMBlock *block);
174 
175 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
176 
177 #define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
178 #define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
179 
180 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
181 
182 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
183                                                  ram_addr_t length,
184                                                  unsigned client)
185 {
186     DirtyMemoryBlocks *blocks;
187     unsigned long end, page;
188     unsigned long idx, offset, base;
189     bool dirty = false;
190 
191     assert(client < DIRTY_MEMORY_NUM);
192 
193     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
194     page = start >> TARGET_PAGE_BITS;
195 
196     rcu_read_lock();
197 
198     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
199 
200     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
201     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
202     base = page - offset;
203     while (page < end) {
204         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
205         unsigned long num = next - base;
206         unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
207         if (found < num) {
208             dirty = true;
209             break;
210         }
211 
212         page = next;
213         idx++;
214         offset = 0;
215         base += DIRTY_MEMORY_BLOCK_SIZE;
216     }
217 
218     rcu_read_unlock();
219 
220     return dirty;
221 }
222 
223 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
224                                                  ram_addr_t length,
225                                                  unsigned client)
226 {
227     DirtyMemoryBlocks *blocks;
228     unsigned long end, page;
229     unsigned long idx, offset, base;
230     bool dirty = true;
231 
232     assert(client < DIRTY_MEMORY_NUM);
233 
234     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
235     page = start >> TARGET_PAGE_BITS;
236 
237     rcu_read_lock();
238 
239     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
240 
241     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
242     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
243     base = page - offset;
244     while (page < end) {
245         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
246         unsigned long num = next - base;
247         unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
248         if (found < num) {
249             dirty = false;
250             break;
251         }
252 
253         page = next;
254         idx++;
255         offset = 0;
256         base += DIRTY_MEMORY_BLOCK_SIZE;
257     }
258 
259     rcu_read_unlock();
260 
261     return dirty;
262 }
263 
264 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
265                                                       unsigned client)
266 {
267     return cpu_physical_memory_get_dirty(addr, 1, client);
268 }
269 
270 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
271 {
272     bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
273     bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
274     bool migration =
275         cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
276     return !(vga && code && migration);
277 }
278 
279 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
280                                                                ram_addr_t length,
281                                                                uint8_t mask)
282 {
283     uint8_t ret = 0;
284 
285     if (mask & (1 << DIRTY_MEMORY_VGA) &&
286         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
287         ret |= (1 << DIRTY_MEMORY_VGA);
288     }
289     if (mask & (1 << DIRTY_MEMORY_CODE) &&
290         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
291         ret |= (1 << DIRTY_MEMORY_CODE);
292     }
293     if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
294         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
295         ret |= (1 << DIRTY_MEMORY_MIGRATION);
296     }
297     return ret;
298 }
299 
300 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
301                                                       unsigned client)
302 {
303     unsigned long page, idx, offset;
304     DirtyMemoryBlocks *blocks;
305 
306     assert(client < DIRTY_MEMORY_NUM);
307 
308     page = addr >> TARGET_PAGE_BITS;
309     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
310     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
311 
312     rcu_read_lock();
313 
314     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
315 
316     set_bit_atomic(offset, blocks->blocks[idx]);
317 
318     rcu_read_unlock();
319 }
320 
321 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
322                                                        ram_addr_t length,
323                                                        uint8_t mask)
324 {
325     DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
326     unsigned long end, page;
327     unsigned long idx, offset, base;
328     int i;
329 
330     if (!mask && !xen_enabled()) {
331         return;
332     }
333 
334     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
335     page = start >> TARGET_PAGE_BITS;
336 
337     rcu_read_lock();
338 
339     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
340         blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
341     }
342 
343     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
344     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
345     base = page - offset;
346     while (page < end) {
347         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
348 
349         if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
350             bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
351                               offset, next - page);
352         }
353         if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
354             bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
355                               offset, next - page);
356         }
357         if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
358             bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
359                               offset, next - page);
360         }
361 
362         page = next;
363         idx++;
364         offset = 0;
365         base += DIRTY_MEMORY_BLOCK_SIZE;
366     }
367 
368     rcu_read_unlock();
369 
370     xen_hvm_modified_memory(start, length);
371 }
372 
373 #if !defined(_WIN32)
374 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
375                                                           ram_addr_t start,
376                                                           ram_addr_t pages)
377 {
378     unsigned long i, j;
379     unsigned long page_number, c;
380     hwaddr addr;
381     ram_addr_t ram_addr;
382     unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
383     unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
384     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
385 
386     /* start address is aligned at the start of a word? */
387     if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
388         (hpratio == 1)) {
389         unsigned long **blocks[DIRTY_MEMORY_NUM];
390         unsigned long idx;
391         unsigned long offset;
392         long k;
393         long nr = BITS_TO_LONGS(pages);
394 
395         idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
396         offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
397                           DIRTY_MEMORY_BLOCK_SIZE);
398 
399         rcu_read_lock();
400 
401         for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
402             blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
403         }
404 
405         for (k = 0; k < nr; k++) {
406             if (bitmap[k]) {
407                 unsigned long temp = leul_to_cpu(bitmap[k]);
408 
409                 atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
410 
411                 if (global_dirty_log) {
412                     atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
413                               temp);
414                 }
415 
416                 if (tcg_enabled()) {
417                     atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
418                 }
419             }
420 
421             if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
422                 offset = 0;
423                 idx++;
424             }
425         }
426 
427         rcu_read_unlock();
428 
429         xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
430     } else {
431         uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
432 
433         if (!global_dirty_log) {
434             clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
435         }
436 
437         /*
438          * bitmap-traveling is faster than memory-traveling (for addr...)
439          * especially when most of the memory is not dirty.
440          */
441         for (i = 0; i < len; i++) {
442             if (bitmap[i] != 0) {
443                 c = leul_to_cpu(bitmap[i]);
444                 do {
445                     j = ctzl(c);
446                     c &= ~(1ul << j);
447                     page_number = (i * HOST_LONG_BITS + j) * hpratio;
448                     addr = page_number * TARGET_PAGE_SIZE;
449                     ram_addr = start + addr;
450                     cpu_physical_memory_set_dirty_range(ram_addr,
451                                        TARGET_PAGE_SIZE * hpratio, clients);
452                 } while (c != 0);
453             }
454         }
455     }
456 }
457 #endif /* not _WIN32 */
458 
459 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
460                                               ram_addr_t length,
461                                               unsigned client);
462 
463 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
464     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
465 
466 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
467                                             ram_addr_t start,
468                                             ram_addr_t length);
469 
470 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
471                                                          ram_addr_t length)
472 {
473     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
474     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
475     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
476 }
477 
478 
479 /* Called with RCU critical section */
480 static inline
481 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
482                                                ram_addr_t start,
483                                                ram_addr_t length,
484                                                uint64_t *real_dirty_pages)
485 {
486     ram_addr_t addr;
487     unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
488     uint64_t num_dirty = 0;
489     unsigned long *dest = rb->bmap;
490 
491     /* start address and length is aligned at the start of a word? */
492     if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
493          (start + rb->offset) &&
494         !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
495         int k;
496         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
497         unsigned long * const *src;
498         unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
499         unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
500                                         DIRTY_MEMORY_BLOCK_SIZE);
501         unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
502 
503         src = atomic_rcu_read(
504                 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
505 
506         for (k = page; k < page + nr; k++) {
507             if (src[idx][offset]) {
508                 unsigned long bits = atomic_xchg(&src[idx][offset], 0);
509                 unsigned long new_dirty;
510                 *real_dirty_pages += ctpopl(bits);
511                 new_dirty = ~dest[k];
512                 dest[k] |= bits;
513                 new_dirty &= bits;
514                 num_dirty += ctpopl(new_dirty);
515             }
516 
517             if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
518                 offset = 0;
519                 idx++;
520             }
521         }
522 
523         if (rb->clear_bmap) {
524             /*
525              * Postpone the dirty bitmap clear to the point before we
526              * really send the pages, also we will split the clear
527              * dirty procedure into smaller chunks.
528              */
529             clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
530                            length >> TARGET_PAGE_BITS);
531         } else {
532             /* Slow path - still do that in a huge chunk */
533             memory_region_clear_dirty_bitmap(rb->mr, start, length);
534         }
535     } else {
536         ram_addr_t offset = rb->offset;
537 
538         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
539             if (cpu_physical_memory_test_and_clear_dirty(
540                         start + addr + offset,
541                         TARGET_PAGE_SIZE,
542                         DIRTY_MEMORY_MIGRATION)) {
543                 *real_dirty_pages += 1;
544                 long k = (start + addr) >> TARGET_PAGE_BITS;
545                 if (!test_and_set_bit(k, dest)) {
546                     num_dirty++;
547                 }
548             }
549         }
550     }
551 
552     return num_dirty;
553 }
554 #endif
555 #endif
556