xref: /openbmc/qemu/include/exec/ram_addr.h (revision e0091133)
1 /*
2  * Declarations for cpu physical memory functions
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * later.  See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * This header is for use by exec.c and memory.c ONLY.  Do not include it.
16  * The functions declared here will be removed soon.
17  */
18 
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21 
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "sysemu/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
27 #include "exec/ramblock.h"
28 
29 extern uint64_t total_dirty_pages;
30 
31 /**
32  * clear_bmap_size: calculate clear bitmap size
33  *
34  * @pages: number of guest pages
35  * @shift: guest page number shift
36  *
37  * Returns: number of bits for the clear bitmap
38  */
39 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
40 {
41     return DIV_ROUND_UP(pages, 1UL << shift);
42 }
43 
44 /**
45  * clear_bmap_set: set clear bitmap for the page range
46  *
47  * @rb: the ramblock to operate on
48  * @start: the start page number
49  * @size: number of pages to set in the bitmap
50  *
51  * Returns: None
52  */
53 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
54                                   uint64_t npages)
55 {
56     uint8_t shift = rb->clear_bmap_shift;
57 
58     bitmap_set_atomic(rb->clear_bmap, start >> shift,
59                       clear_bmap_size(npages, shift));
60 }
61 
62 /**
63  * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
64  *
65  * @rb: the ramblock to operate on
66  * @page: the page number to check
67  *
68  * Returns: true if the bit was set, false otherwise
69  */
70 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
71 {
72     uint8_t shift = rb->clear_bmap_shift;
73 
74     return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
75 }
76 
77 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
78 {
79     return (b && b->host && offset < b->used_length) ? true : false;
80 }
81 
82 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
83 {
84     assert(offset_in_ramblock(block, offset));
85     return (char *)block->host + offset;
86 }
87 
88 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
89                                                             RAMBlock *rb)
90 {
91     uint64_t host_addr_offset =
92             (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
93     return host_addr_offset >> TARGET_PAGE_BITS;
94 }
95 
96 bool ramblock_is_pmem(RAMBlock *rb);
97 
98 long qemu_minrampagesize(void);
99 long qemu_maxrampagesize(void);
100 
101 /**
102  * qemu_ram_alloc_from_file,
103  * qemu_ram_alloc_from_fd:  Allocate a ram block from the specified backing
104  *                          file or device
105  *
106  * Parameters:
107  *  @size: the size in bytes of the ram block
108  *  @mr: the memory region where the ram block is
109  *  @ram_flags: RamBlock flags. Supported flags: RAM_SHARED, RAM_PMEM,
110  *              RAM_NORESERVE.
111  *  @mem_path or @fd: specify the backing file or device
112  *  @readonly: true to open @path for reading, false for read/write.
113  *  @errp: pointer to Error*, to store an error if it happens
114  *
115  * Return:
116  *  On success, return a pointer to the ram block.
117  *  On failure, return NULL.
118  */
119 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
120                                    uint32_t ram_flags, const char *mem_path,
121                                    bool readonly, Error **errp);
122 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
123                                  uint32_t ram_flags, int fd, off_t offset,
124                                  bool readonly, Error **errp);
125 
126 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
127                                   MemoryRegion *mr, Error **errp);
128 RAMBlock *qemu_ram_alloc(ram_addr_t size, uint32_t ram_flags, MemoryRegion *mr,
129                          Error **errp);
130 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
131                                     void (*resized)(const char*,
132                                                     uint64_t length,
133                                                     void *host),
134                                     MemoryRegion *mr, Error **errp);
135 void qemu_ram_free(RAMBlock *block);
136 
137 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
138 
139 void qemu_ram_msync(RAMBlock *block, ram_addr_t start, ram_addr_t length);
140 
141 /* Clear whole block of mem */
142 static inline void qemu_ram_block_writeback(RAMBlock *block)
143 {
144     qemu_ram_msync(block, 0, block->used_length);
145 }
146 
147 #define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
148 #define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
149 
150 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
151                                                  ram_addr_t length,
152                                                  unsigned client)
153 {
154     DirtyMemoryBlocks *blocks;
155     unsigned long end, page;
156     unsigned long idx, offset, base;
157     bool dirty = false;
158 
159     assert(client < DIRTY_MEMORY_NUM);
160 
161     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
162     page = start >> TARGET_PAGE_BITS;
163 
164     WITH_RCU_READ_LOCK_GUARD() {
165         blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
166 
167         idx = page / DIRTY_MEMORY_BLOCK_SIZE;
168         offset = page % DIRTY_MEMORY_BLOCK_SIZE;
169         base = page - offset;
170         while (page < end) {
171             unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
172             unsigned long num = next - base;
173             unsigned long found = find_next_bit(blocks->blocks[idx],
174                                                 num, offset);
175             if (found < num) {
176                 dirty = true;
177                 break;
178             }
179 
180             page = next;
181             idx++;
182             offset = 0;
183             base += DIRTY_MEMORY_BLOCK_SIZE;
184         }
185     }
186 
187     return dirty;
188 }
189 
190 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
191                                                  ram_addr_t length,
192                                                  unsigned client)
193 {
194     DirtyMemoryBlocks *blocks;
195     unsigned long end, page;
196     unsigned long idx, offset, base;
197     bool dirty = true;
198 
199     assert(client < DIRTY_MEMORY_NUM);
200 
201     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
202     page = start >> TARGET_PAGE_BITS;
203 
204     RCU_READ_LOCK_GUARD();
205 
206     blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
207 
208     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
209     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
210     base = page - offset;
211     while (page < end) {
212         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
213         unsigned long num = next - base;
214         unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
215         if (found < num) {
216             dirty = false;
217             break;
218         }
219 
220         page = next;
221         idx++;
222         offset = 0;
223         base += DIRTY_MEMORY_BLOCK_SIZE;
224     }
225 
226     return dirty;
227 }
228 
229 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
230                                                       unsigned client)
231 {
232     return cpu_physical_memory_get_dirty(addr, 1, client);
233 }
234 
235 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
236 {
237     bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
238     bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
239     bool migration =
240         cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
241     return !(vga && code && migration);
242 }
243 
244 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
245                                                                ram_addr_t length,
246                                                                uint8_t mask)
247 {
248     uint8_t ret = 0;
249 
250     if (mask & (1 << DIRTY_MEMORY_VGA) &&
251         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
252         ret |= (1 << DIRTY_MEMORY_VGA);
253     }
254     if (mask & (1 << DIRTY_MEMORY_CODE) &&
255         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
256         ret |= (1 << DIRTY_MEMORY_CODE);
257     }
258     if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
259         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
260         ret |= (1 << DIRTY_MEMORY_MIGRATION);
261     }
262     return ret;
263 }
264 
265 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
266                                                       unsigned client)
267 {
268     unsigned long page, idx, offset;
269     DirtyMemoryBlocks *blocks;
270 
271     assert(client < DIRTY_MEMORY_NUM);
272 
273     page = addr >> TARGET_PAGE_BITS;
274     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
275     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
276 
277     RCU_READ_LOCK_GUARD();
278 
279     blocks = qatomic_rcu_read(&ram_list.dirty_memory[client]);
280 
281     set_bit_atomic(offset, blocks->blocks[idx]);
282 }
283 
284 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
285                                                        ram_addr_t length,
286                                                        uint8_t mask)
287 {
288     DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
289     unsigned long end, page;
290     unsigned long idx, offset, base;
291     int i;
292 
293     if (!mask && !xen_enabled()) {
294         return;
295     }
296 
297     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
298     page = start >> TARGET_PAGE_BITS;
299 
300     WITH_RCU_READ_LOCK_GUARD() {
301         for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
302             blocks[i] = qatomic_rcu_read(&ram_list.dirty_memory[i]);
303         }
304 
305         idx = page / DIRTY_MEMORY_BLOCK_SIZE;
306         offset = page % DIRTY_MEMORY_BLOCK_SIZE;
307         base = page - offset;
308         while (page < end) {
309             unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
310 
311             if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
312                 bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
313                                   offset, next - page);
314             }
315             if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
316                 bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
317                                   offset, next - page);
318             }
319             if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
320                 bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
321                                   offset, next - page);
322             }
323 
324             page = next;
325             idx++;
326             offset = 0;
327             base += DIRTY_MEMORY_BLOCK_SIZE;
328         }
329     }
330 
331     xen_hvm_modified_memory(start, length);
332 }
333 
334 #if !defined(_WIN32)
335 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
336                                                           ram_addr_t start,
337                                                           ram_addr_t pages)
338 {
339     unsigned long i, j;
340     unsigned long page_number, c;
341     hwaddr addr;
342     ram_addr_t ram_addr;
343     unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
344     unsigned long hpratio = qemu_real_host_page_size() / TARGET_PAGE_SIZE;
345     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
346 
347     /* start address is aligned at the start of a word? */
348     if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
349         (hpratio == 1)) {
350         unsigned long **blocks[DIRTY_MEMORY_NUM];
351         unsigned long idx;
352         unsigned long offset;
353         long k;
354         long nr = BITS_TO_LONGS(pages);
355 
356         idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
357         offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
358                           DIRTY_MEMORY_BLOCK_SIZE);
359 
360         WITH_RCU_READ_LOCK_GUARD() {
361             for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
362                 blocks[i] =
363                     qatomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
364             }
365 
366             for (k = 0; k < nr; k++) {
367                 if (bitmap[k]) {
368                     unsigned long temp = leul_to_cpu(bitmap[k]);
369 
370                     qatomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
371 
372                     if (global_dirty_tracking) {
373                         qatomic_or(
374                                 &blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
375                                 temp);
376                         if (unlikely(
377                             global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
378                             total_dirty_pages += ctpopl(temp);
379                         }
380                     }
381 
382                     if (tcg_enabled()) {
383                         qatomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset],
384                                    temp);
385                     }
386                 }
387 
388                 if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
389                     offset = 0;
390                     idx++;
391                 }
392             }
393         }
394 
395         xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
396     } else {
397         uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
398 
399         if (!global_dirty_tracking) {
400             clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
401         }
402 
403         /*
404          * bitmap-traveling is faster than memory-traveling (for addr...)
405          * especially when most of the memory is not dirty.
406          */
407         for (i = 0; i < len; i++) {
408             if (bitmap[i] != 0) {
409                 c = leul_to_cpu(bitmap[i]);
410                 if (unlikely(global_dirty_tracking & GLOBAL_DIRTY_DIRTY_RATE)) {
411                     total_dirty_pages += ctpopl(c);
412                 }
413                 do {
414                     j = ctzl(c);
415                     c &= ~(1ul << j);
416                     page_number = (i * HOST_LONG_BITS + j) * hpratio;
417                     addr = page_number * TARGET_PAGE_SIZE;
418                     ram_addr = start + addr;
419                     cpu_physical_memory_set_dirty_range(ram_addr,
420                                        TARGET_PAGE_SIZE * hpratio, clients);
421                 } while (c != 0);
422             }
423         }
424     }
425 }
426 #endif /* not _WIN32 */
427 
428 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
429                                               ram_addr_t length,
430                                               unsigned client);
431 
432 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
433     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
434 
435 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
436                                             ram_addr_t start,
437                                             ram_addr_t length);
438 
439 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
440                                                          ram_addr_t length)
441 {
442     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
443     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
444     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
445 }
446 
447 
448 /* Called with RCU critical section */
449 static inline
450 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
451                                                ram_addr_t start,
452                                                ram_addr_t length)
453 {
454     ram_addr_t addr;
455     unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
456     uint64_t num_dirty = 0;
457     unsigned long *dest = rb->bmap;
458 
459     /* start address and length is aligned at the start of a word? */
460     if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
461          (start + rb->offset) &&
462         !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
463         int k;
464         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
465         unsigned long * const *src;
466         unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
467         unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
468                                         DIRTY_MEMORY_BLOCK_SIZE);
469         unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
470 
471         src = qatomic_rcu_read(
472                 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
473 
474         for (k = page; k < page + nr; k++) {
475             if (src[idx][offset]) {
476                 unsigned long bits = qatomic_xchg(&src[idx][offset], 0);
477                 unsigned long new_dirty;
478                 new_dirty = ~dest[k];
479                 dest[k] |= bits;
480                 new_dirty &= bits;
481                 num_dirty += ctpopl(new_dirty);
482             }
483 
484             if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
485                 offset = 0;
486                 idx++;
487             }
488         }
489 
490         if (rb->clear_bmap) {
491             /*
492              * Postpone the dirty bitmap clear to the point before we
493              * really send the pages, also we will split the clear
494              * dirty procedure into smaller chunks.
495              */
496             clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
497                            length >> TARGET_PAGE_BITS);
498         } else {
499             /* Slow path - still do that in a huge chunk */
500             memory_region_clear_dirty_bitmap(rb->mr, start, length);
501         }
502     } else {
503         ram_addr_t offset = rb->offset;
504 
505         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
506             if (cpu_physical_memory_test_and_clear_dirty(
507                         start + addr + offset,
508                         TARGET_PAGE_SIZE,
509                         DIRTY_MEMORY_MIGRATION)) {
510                 long k = (start + addr) >> TARGET_PAGE_BITS;
511                 if (!test_and_set_bit(k, dest)) {
512                     num_dirty++;
513                 }
514             }
515         }
516     }
517 
518     return num_dirty;
519 }
520 #endif
521 #endif
522