1 /* 2 * Declarations for cpu physical memory functions 3 * 4 * Copyright 2011 Red Hat, Inc. and/or its affiliates 5 * 6 * Authors: 7 * Avi Kivity <avi@redhat.com> 8 * 9 * This work is licensed under the terms of the GNU GPL, version 2 or 10 * later. See the COPYING file in the top-level directory. 11 * 12 */ 13 14 /* 15 * This header is for use by exec.c and memory.c ONLY. Do not include it. 16 * The functions declared here will be removed soon. 17 */ 18 19 #ifndef RAM_ADDR_H 20 #define RAM_ADDR_H 21 22 #ifndef CONFIG_USER_ONLY 23 #include "hw/xen/xen.h" 24 25 struct RAMBlock { 26 struct rcu_head rcu; 27 struct MemoryRegion *mr; 28 uint8_t *host; 29 ram_addr_t offset; 30 ram_addr_t used_length; 31 ram_addr_t max_length; 32 void (*resized)(const char*, uint64_t length, void *host); 33 uint32_t flags; 34 /* Protected by iothread lock. */ 35 char idstr[256]; 36 /* RCU-enabled, writes protected by the ramlist lock */ 37 QLIST_ENTRY(RAMBlock) next; 38 int fd; 39 }; 40 41 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset) 42 { 43 assert(offset < block->used_length); 44 assert(block->host); 45 return (char *)block->host + offset; 46 } 47 48 typedef struct RAMList { 49 QemuMutex mutex; 50 /* Protected by the iothread lock. */ 51 unsigned long *dirty_memory[DIRTY_MEMORY_NUM]; 52 RAMBlock *mru_block; 53 /* RCU-enabled, writes protected by the ramlist lock. */ 54 QLIST_HEAD(, RAMBlock) blocks; 55 uint32_t version; 56 } RAMList; 57 extern RAMList ram_list; 58 59 ram_addr_t last_ram_offset(void); 60 void qemu_mutex_lock_ramlist(void); 61 void qemu_mutex_unlock_ramlist(void); 62 63 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr, 64 bool share, const char *mem_path, 65 Error **errp); 66 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host, 67 MemoryRegion *mr, Error **errp); 68 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp); 69 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size, 70 void (*resized)(const char*, 71 uint64_t length, 72 void *host), 73 MemoryRegion *mr, Error **errp); 74 int qemu_get_ram_fd(ram_addr_t addr); 75 void qemu_set_ram_fd(ram_addr_t addr, int fd); 76 void *qemu_get_ram_block_host_ptr(ram_addr_t addr); 77 void qemu_ram_free(ram_addr_t addr); 78 79 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp); 80 81 #define DIRTY_CLIENTS_ALL ((1 << DIRTY_MEMORY_NUM) - 1) 82 #define DIRTY_CLIENTS_NOCODE (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE)) 83 84 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start, 85 ram_addr_t length, 86 unsigned client) 87 { 88 unsigned long end, page, next; 89 90 assert(client < DIRTY_MEMORY_NUM); 91 92 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 93 page = start >> TARGET_PAGE_BITS; 94 next = find_next_bit(ram_list.dirty_memory[client], end, page); 95 96 return next < end; 97 } 98 99 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start, 100 ram_addr_t length, 101 unsigned client) 102 { 103 unsigned long end, page, next; 104 105 assert(client < DIRTY_MEMORY_NUM); 106 107 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 108 page = start >> TARGET_PAGE_BITS; 109 next = find_next_zero_bit(ram_list.dirty_memory[client], end, page); 110 111 return next >= end; 112 } 113 114 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr, 115 unsigned client) 116 { 117 return cpu_physical_memory_get_dirty(addr, 1, client); 118 } 119 120 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr) 121 { 122 bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA); 123 bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE); 124 bool migration = 125 cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION); 126 return !(vga && code && migration); 127 } 128 129 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start, 130 ram_addr_t length, 131 uint8_t mask) 132 { 133 uint8_t ret = 0; 134 135 if (mask & (1 << DIRTY_MEMORY_VGA) && 136 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) { 137 ret |= (1 << DIRTY_MEMORY_VGA); 138 } 139 if (mask & (1 << DIRTY_MEMORY_CODE) && 140 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) { 141 ret |= (1 << DIRTY_MEMORY_CODE); 142 } 143 if (mask & (1 << DIRTY_MEMORY_MIGRATION) && 144 !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) { 145 ret |= (1 << DIRTY_MEMORY_MIGRATION); 146 } 147 return ret; 148 } 149 150 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr, 151 unsigned client) 152 { 153 assert(client < DIRTY_MEMORY_NUM); 154 set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]); 155 } 156 157 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start, 158 ram_addr_t length, 159 uint8_t mask) 160 { 161 unsigned long end, page; 162 unsigned long **d = ram_list.dirty_memory; 163 164 end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS; 165 page = start >> TARGET_PAGE_BITS; 166 if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) { 167 bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page); 168 } 169 if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) { 170 bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page); 171 } 172 if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) { 173 bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page); 174 } 175 xen_modified_memory(start, length); 176 } 177 178 #if !defined(_WIN32) 179 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap, 180 ram_addr_t start, 181 ram_addr_t pages) 182 { 183 unsigned long i, j; 184 unsigned long page_number, c; 185 hwaddr addr; 186 ram_addr_t ram_addr; 187 unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS; 188 unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE; 189 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); 190 191 /* start address is aligned at the start of a word? */ 192 if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) && 193 (hpratio == 1)) { 194 long k; 195 long nr = BITS_TO_LONGS(pages); 196 197 for (k = 0; k < nr; k++) { 198 if (bitmap[k]) { 199 unsigned long temp = leul_to_cpu(bitmap[k]); 200 unsigned long **d = ram_list.dirty_memory; 201 202 atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp); 203 atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp); 204 if (tcg_enabled()) { 205 atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp); 206 } 207 } 208 } 209 xen_modified_memory(start, pages << TARGET_PAGE_BITS); 210 } else { 211 uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE; 212 /* 213 * bitmap-traveling is faster than memory-traveling (for addr...) 214 * especially when most of the memory is not dirty. 215 */ 216 for (i = 0; i < len; i++) { 217 if (bitmap[i] != 0) { 218 c = leul_to_cpu(bitmap[i]); 219 do { 220 j = ctzl(c); 221 c &= ~(1ul << j); 222 page_number = (i * HOST_LONG_BITS + j) * hpratio; 223 addr = page_number * TARGET_PAGE_SIZE; 224 ram_addr = start + addr; 225 cpu_physical_memory_set_dirty_range(ram_addr, 226 TARGET_PAGE_SIZE * hpratio, clients); 227 } while (c != 0); 228 } 229 } 230 } 231 } 232 #endif /* not _WIN32 */ 233 234 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start, 235 ram_addr_t length, 236 unsigned client); 237 238 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start, 239 ram_addr_t length) 240 { 241 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION); 242 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA); 243 cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE); 244 } 245 246 247 static inline 248 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest, 249 ram_addr_t start, 250 ram_addr_t length) 251 { 252 ram_addr_t addr; 253 unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS); 254 uint64_t num_dirty = 0; 255 256 /* start address is aligned at the start of a word? */ 257 if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) { 258 int k; 259 int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS); 260 unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION]; 261 262 for (k = page; k < page + nr; k++) { 263 if (src[k]) { 264 unsigned long bits = atomic_xchg(&src[k], 0); 265 unsigned long new_dirty; 266 new_dirty = ~dest[k]; 267 dest[k] |= bits; 268 new_dirty &= bits; 269 num_dirty += ctpopl(new_dirty); 270 } 271 } 272 } else { 273 for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) { 274 if (cpu_physical_memory_test_and_clear_dirty( 275 start + addr, 276 TARGET_PAGE_SIZE, 277 DIRTY_MEMORY_MIGRATION)) { 278 long k = (start + addr) >> TARGET_PAGE_BITS; 279 if (!test_and_set_bit(k, dest)) { 280 num_dirty++; 281 } 282 } 283 } 284 } 285 286 return num_dirty; 287 } 288 289 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new); 290 #endif 291 #endif 292