xref: /openbmc/qemu/include/exec/ram_addr.h (revision 9c4218e9)
1 /*
2  * Declarations for cpu physical memory functions
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * later.  See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * This header is for use by exec.c and memory.c ONLY.  Do not include it.
16  * The functions declared here will be removed soon.
17  */
18 
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21 
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
24 
25 struct RAMBlock {
26     struct rcu_head rcu;
27     struct MemoryRegion *mr;
28     uint8_t *host;
29     ram_addr_t offset;
30     ram_addr_t used_length;
31     ram_addr_t max_length;
32     void (*resized)(const char*, uint64_t length, void *host);
33     uint32_t flags;
34     /* Protected by iothread lock.  */
35     char idstr[256];
36     /* RCU-enabled, writes protected by the ramlist lock */
37     QLIST_ENTRY(RAMBlock) next;
38     int fd;
39 };
40 
41 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
42 {
43     assert(offset < block->used_length);
44     assert(block->host);
45     return (char *)block->host + offset;
46 }
47 
48 typedef struct RAMList {
49     QemuMutex mutex;
50     /* Protected by the iothread lock.  */
51     unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
52     RAMBlock *mru_block;
53     /* RCU-enabled, writes protected by the ramlist lock. */
54     QLIST_HEAD(, RAMBlock) blocks;
55     uint32_t version;
56 } RAMList;
57 extern RAMList ram_list;
58 
59 ram_addr_t last_ram_offset(void);
60 void qemu_mutex_lock_ramlist(void);
61 void qemu_mutex_unlock_ramlist(void);
62 
63 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
64                                     bool share, const char *mem_path,
65                                     Error **errp);
66 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
67                                    MemoryRegion *mr, Error **errp);
68 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
69 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
70                                      void (*resized)(const char*,
71                                                      uint64_t length,
72                                                      void *host),
73                                      MemoryRegion *mr, Error **errp);
74 int qemu_get_ram_fd(ram_addr_t addr);
75 void qemu_set_ram_fd(ram_addr_t addr, int fd);
76 void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
77 void qemu_ram_free(ram_addr_t addr);
78 
79 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);
80 
81 #define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
82 #define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
83 
84 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
85                                                  ram_addr_t length,
86                                                  unsigned client)
87 {
88     unsigned long end, page, next;
89 
90     assert(client < DIRTY_MEMORY_NUM);
91 
92     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
93     page = start >> TARGET_PAGE_BITS;
94     next = find_next_bit(ram_list.dirty_memory[client], end, page);
95 
96     return next < end;
97 }
98 
99 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
100                                                  ram_addr_t length,
101                                                  unsigned client)
102 {
103     unsigned long end, page, next;
104 
105     assert(client < DIRTY_MEMORY_NUM);
106 
107     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
108     page = start >> TARGET_PAGE_BITS;
109     next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
110 
111     return next >= end;
112 }
113 
114 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
115                                                       unsigned client)
116 {
117     return cpu_physical_memory_get_dirty(addr, 1, client);
118 }
119 
120 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
121 {
122     bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
123     bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
124     bool migration =
125         cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
126     return !(vga && code && migration);
127 }
128 
129 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
130                                                                ram_addr_t length,
131                                                                uint8_t mask)
132 {
133     uint8_t ret = 0;
134 
135     if (mask & (1 << DIRTY_MEMORY_VGA) &&
136         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
137         ret |= (1 << DIRTY_MEMORY_VGA);
138     }
139     if (mask & (1 << DIRTY_MEMORY_CODE) &&
140         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
141         ret |= (1 << DIRTY_MEMORY_CODE);
142     }
143     if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
144         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
145         ret |= (1 << DIRTY_MEMORY_MIGRATION);
146     }
147     return ret;
148 }
149 
150 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
151                                                       unsigned client)
152 {
153     assert(client < DIRTY_MEMORY_NUM);
154     set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
155 }
156 
157 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
158                                                        ram_addr_t length,
159                                                        uint8_t mask)
160 {
161     unsigned long end, page;
162     unsigned long **d = ram_list.dirty_memory;
163 
164     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
165     page = start >> TARGET_PAGE_BITS;
166     if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
167         bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
168     }
169     if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
170         bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
171     }
172     if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
173         bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
174     }
175     xen_modified_memory(start, length);
176 }
177 
178 #if !defined(_WIN32)
179 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
180                                                           ram_addr_t start,
181                                                           ram_addr_t pages)
182 {
183     unsigned long i, j;
184     unsigned long page_number, c;
185     hwaddr addr;
186     ram_addr_t ram_addr;
187     unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
188     unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
189     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
190 
191     /* start address is aligned at the start of a word? */
192     if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
193         (hpratio == 1)) {
194         long k;
195         long nr = BITS_TO_LONGS(pages);
196 
197         for (k = 0; k < nr; k++) {
198             if (bitmap[k]) {
199                 unsigned long temp = leul_to_cpu(bitmap[k]);
200                 unsigned long **d = ram_list.dirty_memory;
201 
202                 atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
203                 atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
204                 if (tcg_enabled()) {
205                     atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
206                 }
207             }
208         }
209         xen_modified_memory(start, pages << TARGET_PAGE_BITS);
210     } else {
211         uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
212         /*
213          * bitmap-traveling is faster than memory-traveling (for addr...)
214          * especially when most of the memory is not dirty.
215          */
216         for (i = 0; i < len; i++) {
217             if (bitmap[i] != 0) {
218                 c = leul_to_cpu(bitmap[i]);
219                 do {
220                     j = ctzl(c);
221                     c &= ~(1ul << j);
222                     page_number = (i * HOST_LONG_BITS + j) * hpratio;
223                     addr = page_number * TARGET_PAGE_SIZE;
224                     ram_addr = start + addr;
225                     cpu_physical_memory_set_dirty_range(ram_addr,
226                                        TARGET_PAGE_SIZE * hpratio, clients);
227                 } while (c != 0);
228             }
229         }
230     }
231 }
232 #endif /* not _WIN32 */
233 
234 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
235                                               ram_addr_t length,
236                                               unsigned client);
237 
238 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
239                                                          ram_addr_t length)
240 {
241     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
242     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
243     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
244 }
245 
246 
247 static inline
248 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
249                                                ram_addr_t start,
250                                                ram_addr_t length)
251 {
252     ram_addr_t addr;
253     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
254     uint64_t num_dirty = 0;
255 
256     /* start address is aligned at the start of a word? */
257     if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
258         int k;
259         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
260         unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
261 
262         for (k = page; k < page + nr; k++) {
263             if (src[k]) {
264                 unsigned long bits = atomic_xchg(&src[k], 0);
265                 unsigned long new_dirty;
266                 new_dirty = ~dest[k];
267                 dest[k] |= bits;
268                 new_dirty &= bits;
269                 num_dirty += ctpopl(new_dirty);
270             }
271         }
272     } else {
273         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
274             if (cpu_physical_memory_test_and_clear_dirty(
275                         start + addr,
276                         TARGET_PAGE_SIZE,
277                         DIRTY_MEMORY_MIGRATION)) {
278                 long k = (start + addr) >> TARGET_PAGE_BITS;
279                 if (!test_and_set_bit(k, dest)) {
280                     num_dirty++;
281                 }
282             }
283         }
284     }
285 
286     return num_dirty;
287 }
288 
289 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
290 #endif
291 #endif
292