xref: /openbmc/qemu/include/exec/ram_addr.h (revision 6f2e2730)
1 /*
2  * Declarations for cpu physical memory functions
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * later.  See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * This header is for use by exec.c and memory.c ONLY.  Do not include it.
16  * The functions declared here will be removed soon.
17  */
18 
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21 
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
24 
25 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
26                                     bool share, const char *mem_path,
27                                     Error **errp);
28 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
29                                    MemoryRegion *mr);
30 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr);
31 int qemu_get_ram_fd(ram_addr_t addr);
32 void *qemu_get_ram_ptr(ram_addr_t addr);
33 void qemu_ram_free(ram_addr_t addr);
34 void qemu_ram_free_from_ptr(ram_addr_t addr);
35 
36 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
37                                                  ram_addr_t length,
38                                                  unsigned client)
39 {
40     unsigned long end, page, next;
41 
42     assert(client < DIRTY_MEMORY_NUM);
43 
44     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
45     page = start >> TARGET_PAGE_BITS;
46     next = find_next_bit(ram_list.dirty_memory[client], end, page);
47 
48     return next < end;
49 }
50 
51 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
52                                                       unsigned client)
53 {
54     return cpu_physical_memory_get_dirty(addr, 1, client);
55 }
56 
57 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
58 {
59     bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
60     bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
61     bool migration =
62         cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
63     return !(vga && code && migration);
64 }
65 
66 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
67                                                       unsigned client)
68 {
69     assert(client < DIRTY_MEMORY_NUM);
70     set_bit(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
71 }
72 
73 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
74                                                        ram_addr_t length)
75 {
76     unsigned long end, page;
77 
78     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
79     page = start >> TARGET_PAGE_BITS;
80     bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION], page, end - page);
81     bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_VGA], page, end - page);
82     bitmap_set(ram_list.dirty_memory[DIRTY_MEMORY_CODE], page, end - page);
83     xen_modified_memory(start, length);
84 }
85 
86 #if !defined(_WIN32)
87 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
88                                                           ram_addr_t start,
89                                                           ram_addr_t pages)
90 {
91     unsigned long i, j;
92     unsigned long page_number, c;
93     hwaddr addr;
94     ram_addr_t ram_addr;
95     unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
96     unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
97     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
98 
99     /* start address is aligned at the start of a word? */
100     if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
101         (hpratio == 1)) {
102         long k;
103         long nr = BITS_TO_LONGS(pages);
104 
105         for (k = 0; k < nr; k++) {
106             if (bitmap[k]) {
107                 unsigned long temp = leul_to_cpu(bitmap[k]);
108 
109                 ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION][page + k] |= temp;
110                 ram_list.dirty_memory[DIRTY_MEMORY_VGA][page + k] |= temp;
111                 ram_list.dirty_memory[DIRTY_MEMORY_CODE][page + k] |= temp;
112             }
113         }
114         xen_modified_memory(start, pages);
115     } else {
116         /*
117          * bitmap-traveling is faster than memory-traveling (for addr...)
118          * especially when most of the memory is not dirty.
119          */
120         for (i = 0; i < len; i++) {
121             if (bitmap[i] != 0) {
122                 c = leul_to_cpu(bitmap[i]);
123                 do {
124                     j = ctzl(c);
125                     c &= ~(1ul << j);
126                     page_number = (i * HOST_LONG_BITS + j) * hpratio;
127                     addr = page_number * TARGET_PAGE_SIZE;
128                     ram_addr = start + addr;
129                     cpu_physical_memory_set_dirty_range(ram_addr,
130                                        TARGET_PAGE_SIZE * hpratio);
131                 } while (c != 0);
132             }
133         }
134     }
135 }
136 #endif /* not _WIN32 */
137 
138 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
139                                                          ram_addr_t length,
140                                                          unsigned client)
141 {
142     unsigned long end, page;
143 
144     assert(client < DIRTY_MEMORY_NUM);
145     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
146     page = start >> TARGET_PAGE_BITS;
147     bitmap_clear(ram_list.dirty_memory[client], page, end - page);
148 }
149 
150 void cpu_physical_memory_reset_dirty(ram_addr_t start, ram_addr_t length,
151                                      unsigned client);
152 
153 #endif
154 #endif
155