xref: /openbmc/qemu/include/exec/ram_addr.h (revision 6a0acfff)
1 /*
2  * Declarations for cpu physical memory functions
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * later.  See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * This header is for use by exec.c and memory.c ONLY.  Do not include it.
16  * The functions declared here will be removed soon.
17  */
18 
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21 
22 #ifndef CONFIG_USER_ONLY
23 #include "cpu.h"
24 #include "hw/xen/xen.h"
25 #include "sysemu/tcg.h"
26 #include "exec/ramlist.h"
27 
28 struct RAMBlock {
29     struct rcu_head rcu;
30     struct MemoryRegion *mr;
31     uint8_t *host;
32     uint8_t *colo_cache; /* For colo, VM's ram cache */
33     ram_addr_t offset;
34     ram_addr_t used_length;
35     ram_addr_t max_length;
36     void (*resized)(const char*, uint64_t length, void *host);
37     uint32_t flags;
38     /* Protected by iothread lock.  */
39     char idstr[256];
40     /* RCU-enabled, writes protected by the ramlist lock */
41     QLIST_ENTRY(RAMBlock) next;
42     QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
43     int fd;
44     size_t page_size;
45     /* dirty bitmap used during migration */
46     unsigned long *bmap;
47     /* bitmap of pages that haven't been sent even once
48      * only maintained and used in postcopy at the moment
49      * where it's used to send the dirtymap at the start
50      * of the postcopy phase
51      */
52     unsigned long *unsentmap;
53     /* bitmap of already received pages in postcopy */
54     unsigned long *receivedmap;
55 
56     /*
57      * bitmap to track already cleared dirty bitmap.  When the bit is
58      * set, it means the corresponding memory chunk needs a log-clear.
59      * Set this up to non-NULL to enable the capability to postpone
60      * and split clearing of dirty bitmap on the remote node (e.g.,
61      * KVM).  The bitmap will be set only when doing global sync.
62      *
63      * NOTE: this bitmap is different comparing to the other bitmaps
64      * in that one bit can represent multiple guest pages (which is
65      * decided by the `clear_bmap_shift' variable below).  On
66      * destination side, this should always be NULL, and the variable
67      * `clear_bmap_shift' is meaningless.
68      */
69     unsigned long *clear_bmap;
70     uint8_t clear_bmap_shift;
71 };
72 
73 /**
74  * clear_bmap_size: calculate clear bitmap size
75  *
76  * @pages: number of guest pages
77  * @shift: guest page number shift
78  *
79  * Returns: number of bits for the clear bitmap
80  */
81 static inline long clear_bmap_size(uint64_t pages, uint8_t shift)
82 {
83     return DIV_ROUND_UP(pages, 1UL << shift);
84 }
85 
86 /**
87  * clear_bmap_set: set clear bitmap for the page range
88  *
89  * @rb: the ramblock to operate on
90  * @start: the start page number
91  * @size: number of pages to set in the bitmap
92  *
93  * Returns: None
94  */
95 static inline void clear_bmap_set(RAMBlock *rb, uint64_t start,
96                                   uint64_t npages)
97 {
98     uint8_t shift = rb->clear_bmap_shift;
99 
100     bitmap_set_atomic(rb->clear_bmap, start >> shift,
101                       clear_bmap_size(npages, shift));
102 }
103 
104 /**
105  * clear_bmap_test_and_clear: test clear bitmap for the page, clear if set
106  *
107  * @rb: the ramblock to operate on
108  * @page: the page number to check
109  *
110  * Returns: true if the bit was set, false otherwise
111  */
112 static inline bool clear_bmap_test_and_clear(RAMBlock *rb, uint64_t page)
113 {
114     uint8_t shift = rb->clear_bmap_shift;
115 
116     return bitmap_test_and_clear_atomic(rb->clear_bmap, page >> shift, 1);
117 }
118 
119 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
120 {
121     return (b && b->host && offset < b->used_length) ? true : false;
122 }
123 
124 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
125 {
126     assert(offset_in_ramblock(block, offset));
127     return (char *)block->host + offset;
128 }
129 
130 static inline unsigned long int ramblock_recv_bitmap_offset(void *host_addr,
131                                                             RAMBlock *rb)
132 {
133     uint64_t host_addr_offset =
134             (uint64_t)(uintptr_t)(host_addr - (void *)rb->host);
135     return host_addr_offset >> TARGET_PAGE_BITS;
136 }
137 
138 bool ramblock_is_pmem(RAMBlock *rb);
139 
140 long qemu_minrampagesize(void);
141 long qemu_maxrampagesize(void);
142 
143 /**
144  * qemu_ram_alloc_from_file,
145  * qemu_ram_alloc_from_fd:  Allocate a ram block from the specified backing
146  *                          file or device
147  *
148  * Parameters:
149  *  @size: the size in bytes of the ram block
150  *  @mr: the memory region where the ram block is
151  *  @ram_flags: specify the properties of the ram block, which can be one
152  *              or bit-or of following values
153  *              - RAM_SHARED: mmap the backing file or device with MAP_SHARED
154  *              - RAM_PMEM: the backend @mem_path or @fd is persistent memory
155  *              Other bits are ignored.
156  *  @mem_path or @fd: specify the backing file or device
157  *  @errp: pointer to Error*, to store an error if it happens
158  *
159  * Return:
160  *  On success, return a pointer to the ram block.
161  *  On failure, return NULL.
162  */
163 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
164                                    uint32_t ram_flags, const char *mem_path,
165                                    Error **errp);
166 RAMBlock *qemu_ram_alloc_from_fd(ram_addr_t size, MemoryRegion *mr,
167                                  uint32_t ram_flags, int fd,
168                                  Error **errp);
169 
170 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
171                                   MemoryRegion *mr, Error **errp);
172 RAMBlock *qemu_ram_alloc(ram_addr_t size, bool share, MemoryRegion *mr,
173                          Error **errp);
174 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
175                                     void (*resized)(const char*,
176                                                     uint64_t length,
177                                                     void *host),
178                                     MemoryRegion *mr, Error **errp);
179 void qemu_ram_free(RAMBlock *block);
180 
181 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
182 
183 #define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
184 #define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
185 
186 void tb_invalidate_phys_range(ram_addr_t start, ram_addr_t end);
187 
188 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
189                                                  ram_addr_t length,
190                                                  unsigned client)
191 {
192     DirtyMemoryBlocks *blocks;
193     unsigned long end, page;
194     unsigned long idx, offset, base;
195     bool dirty = false;
196 
197     assert(client < DIRTY_MEMORY_NUM);
198 
199     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
200     page = start >> TARGET_PAGE_BITS;
201 
202     rcu_read_lock();
203 
204     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
205 
206     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
207     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
208     base = page - offset;
209     while (page < end) {
210         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
211         unsigned long num = next - base;
212         unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
213         if (found < num) {
214             dirty = true;
215             break;
216         }
217 
218         page = next;
219         idx++;
220         offset = 0;
221         base += DIRTY_MEMORY_BLOCK_SIZE;
222     }
223 
224     rcu_read_unlock();
225 
226     return dirty;
227 }
228 
229 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
230                                                  ram_addr_t length,
231                                                  unsigned client)
232 {
233     DirtyMemoryBlocks *blocks;
234     unsigned long end, page;
235     unsigned long idx, offset, base;
236     bool dirty = true;
237 
238     assert(client < DIRTY_MEMORY_NUM);
239 
240     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
241     page = start >> TARGET_PAGE_BITS;
242 
243     rcu_read_lock();
244 
245     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
246 
247     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
248     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
249     base = page - offset;
250     while (page < end) {
251         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
252         unsigned long num = next - base;
253         unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
254         if (found < num) {
255             dirty = false;
256             break;
257         }
258 
259         page = next;
260         idx++;
261         offset = 0;
262         base += DIRTY_MEMORY_BLOCK_SIZE;
263     }
264 
265     rcu_read_unlock();
266 
267     return dirty;
268 }
269 
270 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
271                                                       unsigned client)
272 {
273     return cpu_physical_memory_get_dirty(addr, 1, client);
274 }
275 
276 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
277 {
278     bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
279     bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
280     bool migration =
281         cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
282     return !(vga && code && migration);
283 }
284 
285 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
286                                                                ram_addr_t length,
287                                                                uint8_t mask)
288 {
289     uint8_t ret = 0;
290 
291     if (mask & (1 << DIRTY_MEMORY_VGA) &&
292         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
293         ret |= (1 << DIRTY_MEMORY_VGA);
294     }
295     if (mask & (1 << DIRTY_MEMORY_CODE) &&
296         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
297         ret |= (1 << DIRTY_MEMORY_CODE);
298     }
299     if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
300         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
301         ret |= (1 << DIRTY_MEMORY_MIGRATION);
302     }
303     return ret;
304 }
305 
306 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
307                                                       unsigned client)
308 {
309     unsigned long page, idx, offset;
310     DirtyMemoryBlocks *blocks;
311 
312     assert(client < DIRTY_MEMORY_NUM);
313 
314     page = addr >> TARGET_PAGE_BITS;
315     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
316     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
317 
318     rcu_read_lock();
319 
320     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
321 
322     set_bit_atomic(offset, blocks->blocks[idx]);
323 
324     rcu_read_unlock();
325 }
326 
327 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
328                                                        ram_addr_t length,
329                                                        uint8_t mask)
330 {
331     DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
332     unsigned long end, page;
333     unsigned long idx, offset, base;
334     int i;
335 
336     if (!mask && !xen_enabled()) {
337         return;
338     }
339 
340     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
341     page = start >> TARGET_PAGE_BITS;
342 
343     rcu_read_lock();
344 
345     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
346         blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
347     }
348 
349     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
350     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
351     base = page - offset;
352     while (page < end) {
353         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
354 
355         if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
356             bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
357                               offset, next - page);
358         }
359         if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
360             bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
361                               offset, next - page);
362         }
363         if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
364             bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
365                               offset, next - page);
366         }
367 
368         page = next;
369         idx++;
370         offset = 0;
371         base += DIRTY_MEMORY_BLOCK_SIZE;
372     }
373 
374     rcu_read_unlock();
375 
376     xen_hvm_modified_memory(start, length);
377 }
378 
379 #if !defined(_WIN32)
380 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
381                                                           ram_addr_t start,
382                                                           ram_addr_t pages)
383 {
384     unsigned long i, j;
385     unsigned long page_number, c;
386     hwaddr addr;
387     ram_addr_t ram_addr;
388     unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
389     unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
390     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
391 
392     /* start address is aligned at the start of a word? */
393     if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
394         (hpratio == 1)) {
395         unsigned long **blocks[DIRTY_MEMORY_NUM];
396         unsigned long idx;
397         unsigned long offset;
398         long k;
399         long nr = BITS_TO_LONGS(pages);
400 
401         idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
402         offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
403                           DIRTY_MEMORY_BLOCK_SIZE);
404 
405         rcu_read_lock();
406 
407         for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
408             blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
409         }
410 
411         for (k = 0; k < nr; k++) {
412             if (bitmap[k]) {
413                 unsigned long temp = leul_to_cpu(bitmap[k]);
414 
415                 atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
416 
417                 if (global_dirty_log) {
418                     atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset],
419                               temp);
420                 }
421 
422                 if (tcg_enabled()) {
423                     atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
424                 }
425             }
426 
427             if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
428                 offset = 0;
429                 idx++;
430             }
431         }
432 
433         rcu_read_unlock();
434 
435         xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
436     } else {
437         uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
438 
439         if (!global_dirty_log) {
440             clients &= ~(1 << DIRTY_MEMORY_MIGRATION);
441         }
442 
443         /*
444          * bitmap-traveling is faster than memory-traveling (for addr...)
445          * especially when most of the memory is not dirty.
446          */
447         for (i = 0; i < len; i++) {
448             if (bitmap[i] != 0) {
449                 c = leul_to_cpu(bitmap[i]);
450                 do {
451                     j = ctzl(c);
452                     c &= ~(1ul << j);
453                     page_number = (i * HOST_LONG_BITS + j) * hpratio;
454                     addr = page_number * TARGET_PAGE_SIZE;
455                     ram_addr = start + addr;
456                     cpu_physical_memory_set_dirty_range(ram_addr,
457                                        TARGET_PAGE_SIZE * hpratio, clients);
458                 } while (c != 0);
459             }
460         }
461     }
462 }
463 #endif /* not _WIN32 */
464 
465 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
466                                               ram_addr_t length,
467                                               unsigned client);
468 
469 DirtyBitmapSnapshot *cpu_physical_memory_snapshot_and_clear_dirty
470     (MemoryRegion *mr, hwaddr offset, hwaddr length, unsigned client);
471 
472 bool cpu_physical_memory_snapshot_get_dirty(DirtyBitmapSnapshot *snap,
473                                             ram_addr_t start,
474                                             ram_addr_t length);
475 
476 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
477                                                          ram_addr_t length)
478 {
479     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
480     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
481     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
482 }
483 
484 
485 /* Called with RCU critical section */
486 static inline
487 uint64_t cpu_physical_memory_sync_dirty_bitmap(RAMBlock *rb,
488                                                ram_addr_t start,
489                                                ram_addr_t length,
490                                                uint64_t *real_dirty_pages)
491 {
492     ram_addr_t addr;
493     unsigned long word = BIT_WORD((start + rb->offset) >> TARGET_PAGE_BITS);
494     uint64_t num_dirty = 0;
495     unsigned long *dest = rb->bmap;
496 
497     /* start address and length is aligned at the start of a word? */
498     if (((word * BITS_PER_LONG) << TARGET_PAGE_BITS) ==
499          (start + rb->offset) &&
500         !(length & ((BITS_PER_LONG << TARGET_PAGE_BITS) - 1))) {
501         int k;
502         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
503         unsigned long * const *src;
504         unsigned long idx = (word * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
505         unsigned long offset = BIT_WORD((word * BITS_PER_LONG) %
506                                         DIRTY_MEMORY_BLOCK_SIZE);
507         unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
508 
509         src = atomic_rcu_read(
510                 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
511 
512         for (k = page; k < page + nr; k++) {
513             if (src[idx][offset]) {
514                 unsigned long bits = atomic_xchg(&src[idx][offset], 0);
515                 unsigned long new_dirty;
516                 *real_dirty_pages += ctpopl(bits);
517                 new_dirty = ~dest[k];
518                 dest[k] |= bits;
519                 new_dirty &= bits;
520                 num_dirty += ctpopl(new_dirty);
521             }
522 
523             if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
524                 offset = 0;
525                 idx++;
526             }
527         }
528 
529         if (rb->clear_bmap) {
530             /*
531              * Postpone the dirty bitmap clear to the point before we
532              * really send the pages, also we will split the clear
533              * dirty procedure into smaller chunks.
534              */
535             clear_bmap_set(rb, start >> TARGET_PAGE_BITS,
536                            length >> TARGET_PAGE_BITS);
537         } else {
538             /* Slow path - still do that in a huge chunk */
539             memory_region_clear_dirty_bitmap(rb->mr, start, length);
540         }
541     } else {
542         ram_addr_t offset = rb->offset;
543 
544         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
545             if (cpu_physical_memory_test_and_clear_dirty(
546                         start + addr + offset,
547                         TARGET_PAGE_SIZE,
548                         DIRTY_MEMORY_MIGRATION)) {
549                 *real_dirty_pages += 1;
550                 long k = (start + addr) >> TARGET_PAGE_BITS;
551                 if (!test_and_set_bit(k, dest)) {
552                     num_dirty++;
553                 }
554             }
555         }
556     }
557 
558     return num_dirty;
559 }
560 #endif
561 #endif
562