xref: /openbmc/qemu/include/exec/ram_addr.h (revision 56e2cd24)
1 /*
2  * Declarations for cpu physical memory functions
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * later.  See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * This header is for use by exec.c and memory.c ONLY.  Do not include it.
16  * The functions declared here will be removed soon.
17  */
18 
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21 
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
24 #include "exec/ramlist.h"
25 
26 struct RAMBlock {
27     struct rcu_head rcu;
28     struct MemoryRegion *mr;
29     uint8_t *host;
30     ram_addr_t offset;
31     ram_addr_t used_length;
32     ram_addr_t max_length;
33     void (*resized)(const char*, uint64_t length, void *host);
34     uint32_t flags;
35     /* Protected by iothread lock.  */
36     char idstr[256];
37     /* RCU-enabled, writes protected by the ramlist lock */
38     QLIST_ENTRY(RAMBlock) next;
39     QLIST_HEAD(, RAMBlockNotifier) ramblock_notifiers;
40     int fd;
41     size_t page_size;
42 };
43 
44 static inline bool offset_in_ramblock(RAMBlock *b, ram_addr_t offset)
45 {
46     return (b && b->host && offset < b->used_length) ? true : false;
47 }
48 
49 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
50 {
51     assert(offset_in_ramblock(block, offset));
52     return (char *)block->host + offset;
53 }
54 
55 long qemu_getrampagesize(void);
56 ram_addr_t last_ram_offset(void);
57 RAMBlock *qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
58                                    bool share, const char *mem_path,
59                                    Error **errp);
60 RAMBlock *qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
61                                   MemoryRegion *mr, Error **errp);
62 RAMBlock *qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
63 RAMBlock *qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
64                                     void (*resized)(const char*,
65                                                     uint64_t length,
66                                                     void *host),
67                                     MemoryRegion *mr, Error **errp);
68 void qemu_ram_free(RAMBlock *block);
69 
70 int qemu_ram_resize(RAMBlock *block, ram_addr_t newsize, Error **errp);
71 
72 #define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
73 #define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
74 
75 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
76                                                  ram_addr_t length,
77                                                  unsigned client)
78 {
79     DirtyMemoryBlocks *blocks;
80     unsigned long end, page;
81     unsigned long idx, offset, base;
82     bool dirty = false;
83 
84     assert(client < DIRTY_MEMORY_NUM);
85 
86     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
87     page = start >> TARGET_PAGE_BITS;
88 
89     rcu_read_lock();
90 
91     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
92 
93     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
94     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
95     base = page - offset;
96     while (page < end) {
97         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
98         unsigned long num = next - base;
99         unsigned long found = find_next_bit(blocks->blocks[idx], num, offset);
100         if (found < num) {
101             dirty = true;
102             break;
103         }
104 
105         page = next;
106         idx++;
107         offset = 0;
108         base += DIRTY_MEMORY_BLOCK_SIZE;
109     }
110 
111     rcu_read_unlock();
112 
113     return dirty;
114 }
115 
116 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
117                                                  ram_addr_t length,
118                                                  unsigned client)
119 {
120     DirtyMemoryBlocks *blocks;
121     unsigned long end, page;
122     unsigned long idx, offset, base;
123     bool dirty = true;
124 
125     assert(client < DIRTY_MEMORY_NUM);
126 
127     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
128     page = start >> TARGET_PAGE_BITS;
129 
130     rcu_read_lock();
131 
132     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
133 
134     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
135     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
136     base = page - offset;
137     while (page < end) {
138         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
139         unsigned long num = next - base;
140         unsigned long found = find_next_zero_bit(blocks->blocks[idx], num, offset);
141         if (found < num) {
142             dirty = false;
143             break;
144         }
145 
146         page = next;
147         idx++;
148         offset = 0;
149         base += DIRTY_MEMORY_BLOCK_SIZE;
150     }
151 
152     rcu_read_unlock();
153 
154     return dirty;
155 }
156 
157 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
158                                                       unsigned client)
159 {
160     return cpu_physical_memory_get_dirty(addr, 1, client);
161 }
162 
163 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
164 {
165     bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
166     bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
167     bool migration =
168         cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
169     return !(vga && code && migration);
170 }
171 
172 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
173                                                                ram_addr_t length,
174                                                                uint8_t mask)
175 {
176     uint8_t ret = 0;
177 
178     if (mask & (1 << DIRTY_MEMORY_VGA) &&
179         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
180         ret |= (1 << DIRTY_MEMORY_VGA);
181     }
182     if (mask & (1 << DIRTY_MEMORY_CODE) &&
183         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
184         ret |= (1 << DIRTY_MEMORY_CODE);
185     }
186     if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
187         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
188         ret |= (1 << DIRTY_MEMORY_MIGRATION);
189     }
190     return ret;
191 }
192 
193 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
194                                                       unsigned client)
195 {
196     unsigned long page, idx, offset;
197     DirtyMemoryBlocks *blocks;
198 
199     assert(client < DIRTY_MEMORY_NUM);
200 
201     page = addr >> TARGET_PAGE_BITS;
202     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
203     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
204 
205     rcu_read_lock();
206 
207     blocks = atomic_rcu_read(&ram_list.dirty_memory[client]);
208 
209     set_bit_atomic(offset, blocks->blocks[idx]);
210 
211     rcu_read_unlock();
212 }
213 
214 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
215                                                        ram_addr_t length,
216                                                        uint8_t mask)
217 {
218     DirtyMemoryBlocks *blocks[DIRTY_MEMORY_NUM];
219     unsigned long end, page;
220     unsigned long idx, offset, base;
221     int i;
222 
223     if (!mask && !xen_enabled()) {
224         return;
225     }
226 
227     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
228     page = start >> TARGET_PAGE_BITS;
229 
230     rcu_read_lock();
231 
232     for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
233         blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i]);
234     }
235 
236     idx = page / DIRTY_MEMORY_BLOCK_SIZE;
237     offset = page % DIRTY_MEMORY_BLOCK_SIZE;
238     base = page - offset;
239     while (page < end) {
240         unsigned long next = MIN(end, base + DIRTY_MEMORY_BLOCK_SIZE);
241 
242         if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
243             bitmap_set_atomic(blocks[DIRTY_MEMORY_MIGRATION]->blocks[idx],
244                               offset, next - page);
245         }
246         if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
247             bitmap_set_atomic(blocks[DIRTY_MEMORY_VGA]->blocks[idx],
248                               offset, next - page);
249         }
250         if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
251             bitmap_set_atomic(blocks[DIRTY_MEMORY_CODE]->blocks[idx],
252                               offset, next - page);
253         }
254 
255         page = next;
256         idx++;
257         offset = 0;
258         base += DIRTY_MEMORY_BLOCK_SIZE;
259     }
260 
261     rcu_read_unlock();
262 
263     xen_hvm_modified_memory(start, length);
264 }
265 
266 #if !defined(_WIN32)
267 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
268                                                           ram_addr_t start,
269                                                           ram_addr_t pages)
270 {
271     unsigned long i, j;
272     unsigned long page_number, c;
273     hwaddr addr;
274     ram_addr_t ram_addr;
275     unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
276     unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
277     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
278 
279     /* start address is aligned at the start of a word? */
280     if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
281         (hpratio == 1)) {
282         unsigned long **blocks[DIRTY_MEMORY_NUM];
283         unsigned long idx;
284         unsigned long offset;
285         long k;
286         long nr = BITS_TO_LONGS(pages);
287 
288         idx = (start >> TARGET_PAGE_BITS) / DIRTY_MEMORY_BLOCK_SIZE;
289         offset = BIT_WORD((start >> TARGET_PAGE_BITS) %
290                           DIRTY_MEMORY_BLOCK_SIZE);
291 
292         rcu_read_lock();
293 
294         for (i = 0; i < DIRTY_MEMORY_NUM; i++) {
295             blocks[i] = atomic_rcu_read(&ram_list.dirty_memory[i])->blocks;
296         }
297 
298         for (k = 0; k < nr; k++) {
299             if (bitmap[k]) {
300                 unsigned long temp = leul_to_cpu(bitmap[k]);
301 
302                 atomic_or(&blocks[DIRTY_MEMORY_MIGRATION][idx][offset], temp);
303                 atomic_or(&blocks[DIRTY_MEMORY_VGA][idx][offset], temp);
304                 if (tcg_enabled()) {
305                     atomic_or(&blocks[DIRTY_MEMORY_CODE][idx][offset], temp);
306                 }
307             }
308 
309             if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
310                 offset = 0;
311                 idx++;
312             }
313         }
314 
315         rcu_read_unlock();
316 
317         xen_hvm_modified_memory(start, pages << TARGET_PAGE_BITS);
318     } else {
319         uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
320         /*
321          * bitmap-traveling is faster than memory-traveling (for addr...)
322          * especially when most of the memory is not dirty.
323          */
324         for (i = 0; i < len; i++) {
325             if (bitmap[i] != 0) {
326                 c = leul_to_cpu(bitmap[i]);
327                 do {
328                     j = ctzl(c);
329                     c &= ~(1ul << j);
330                     page_number = (i * HOST_LONG_BITS + j) * hpratio;
331                     addr = page_number * TARGET_PAGE_SIZE;
332                     ram_addr = start + addr;
333                     cpu_physical_memory_set_dirty_range(ram_addr,
334                                        TARGET_PAGE_SIZE * hpratio, clients);
335                 } while (c != 0);
336             }
337         }
338     }
339 }
340 #endif /* not _WIN32 */
341 
342 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
343                                               ram_addr_t length,
344                                               unsigned client);
345 
346 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
347                                                          ram_addr_t length)
348 {
349     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
350     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
351     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
352 }
353 
354 
355 static inline
356 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
357                                                ram_addr_t start,
358                                                ram_addr_t length,
359                                                int64_t *real_dirty_pages)
360 {
361     ram_addr_t addr;
362     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
363     uint64_t num_dirty = 0;
364 
365     /* start address is aligned at the start of a word? */
366     if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
367         int k;
368         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
369         unsigned long * const *src;
370         unsigned long idx = (page * BITS_PER_LONG) / DIRTY_MEMORY_BLOCK_SIZE;
371         unsigned long offset = BIT_WORD((page * BITS_PER_LONG) %
372                                         DIRTY_MEMORY_BLOCK_SIZE);
373 
374         rcu_read_lock();
375 
376         src = atomic_rcu_read(
377                 &ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION])->blocks;
378 
379         for (k = page; k < page + nr; k++) {
380             if (src[idx][offset]) {
381                 unsigned long bits = atomic_xchg(&src[idx][offset], 0);
382                 unsigned long new_dirty;
383                 *real_dirty_pages += ctpopl(bits);
384                 new_dirty = ~dest[k];
385                 dest[k] |= bits;
386                 new_dirty &= bits;
387                 num_dirty += ctpopl(new_dirty);
388             }
389 
390             if (++offset >= BITS_TO_LONGS(DIRTY_MEMORY_BLOCK_SIZE)) {
391                 offset = 0;
392                 idx++;
393             }
394         }
395 
396         rcu_read_unlock();
397     } else {
398         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
399             if (cpu_physical_memory_test_and_clear_dirty(
400                         start + addr,
401                         TARGET_PAGE_SIZE,
402                         DIRTY_MEMORY_MIGRATION)) {
403                 *real_dirty_pages += 1;
404                 long k = (start + addr) >> TARGET_PAGE_BITS;
405                 if (!test_and_set_bit(k, dest)) {
406                     num_dirty++;
407                 }
408             }
409         }
410     }
411 
412     return num_dirty;
413 }
414 
415 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
416 #endif
417 #endif
418