xref: /openbmc/qemu/include/exec/ram_addr.h (revision 56411125)
1 /*
2  * Declarations for cpu physical memory functions
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or
10  * later.  See the COPYING file in the top-level directory.
11  *
12  */
13 
14 /*
15  * This header is for use by exec.c and memory.c ONLY.  Do not include it.
16  * The functions declared here will be removed soon.
17  */
18 
19 #ifndef RAM_ADDR_H
20 #define RAM_ADDR_H
21 
22 #ifndef CONFIG_USER_ONLY
23 #include "hw/xen/xen.h"
24 
25 typedef struct RAMBlock RAMBlock;
26 
27 struct RAMBlock {
28     struct rcu_head rcu;
29     struct MemoryRegion *mr;
30     uint8_t *host;
31     ram_addr_t offset;
32     ram_addr_t used_length;
33     ram_addr_t max_length;
34     void (*resized)(const char*, uint64_t length, void *host);
35     uint32_t flags;
36     /* Protected by iothread lock.  */
37     char idstr[256];
38     /* RCU-enabled, writes protected by the ramlist lock */
39     QLIST_ENTRY(RAMBlock) next;
40     int fd;
41 };
42 
43 static inline void *ramblock_ptr(RAMBlock *block, ram_addr_t offset)
44 {
45     assert(offset < block->used_length);
46     assert(block->host);
47     return (char *)block->host + offset;
48 }
49 
50 typedef struct RAMList {
51     QemuMutex mutex;
52     /* Protected by the iothread lock.  */
53     unsigned long *dirty_memory[DIRTY_MEMORY_NUM];
54     RAMBlock *mru_block;
55     /* RCU-enabled, writes protected by the ramlist lock. */
56     QLIST_HEAD(, RAMBlock) blocks;
57     uint32_t version;
58 } RAMList;
59 extern RAMList ram_list;
60 
61 ram_addr_t last_ram_offset(void);
62 void qemu_mutex_lock_ramlist(void);
63 void qemu_mutex_unlock_ramlist(void);
64 
65 ram_addr_t qemu_ram_alloc_from_file(ram_addr_t size, MemoryRegion *mr,
66                                     bool share, const char *mem_path,
67                                     Error **errp);
68 ram_addr_t qemu_ram_alloc_from_ptr(ram_addr_t size, void *host,
69                                    MemoryRegion *mr, Error **errp);
70 ram_addr_t qemu_ram_alloc(ram_addr_t size, MemoryRegion *mr, Error **errp);
71 ram_addr_t qemu_ram_alloc_resizeable(ram_addr_t size, ram_addr_t max_size,
72                                      void (*resized)(const char*,
73                                                      uint64_t length,
74                                                      void *host),
75                                      MemoryRegion *mr, Error **errp);
76 int qemu_get_ram_fd(ram_addr_t addr);
77 void *qemu_get_ram_block_host_ptr(ram_addr_t addr);
78 void *qemu_get_ram_ptr(ram_addr_t addr);
79 void qemu_ram_free(ram_addr_t addr);
80 void qemu_ram_free_from_ptr(ram_addr_t addr);
81 
82 int qemu_ram_resize(ram_addr_t base, ram_addr_t newsize, Error **errp);
83 
84 #define DIRTY_CLIENTS_ALL     ((1 << DIRTY_MEMORY_NUM) - 1)
85 #define DIRTY_CLIENTS_NOCODE  (DIRTY_CLIENTS_ALL & ~(1 << DIRTY_MEMORY_CODE))
86 
87 static inline bool cpu_physical_memory_get_dirty(ram_addr_t start,
88                                                  ram_addr_t length,
89                                                  unsigned client)
90 {
91     unsigned long end, page, next;
92 
93     assert(client < DIRTY_MEMORY_NUM);
94 
95     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
96     page = start >> TARGET_PAGE_BITS;
97     next = find_next_bit(ram_list.dirty_memory[client], end, page);
98 
99     return next < end;
100 }
101 
102 static inline bool cpu_physical_memory_all_dirty(ram_addr_t start,
103                                                  ram_addr_t length,
104                                                  unsigned client)
105 {
106     unsigned long end, page, next;
107 
108     assert(client < DIRTY_MEMORY_NUM);
109 
110     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
111     page = start >> TARGET_PAGE_BITS;
112     next = find_next_zero_bit(ram_list.dirty_memory[client], end, page);
113 
114     return next >= end;
115 }
116 
117 static inline bool cpu_physical_memory_get_dirty_flag(ram_addr_t addr,
118                                                       unsigned client)
119 {
120     return cpu_physical_memory_get_dirty(addr, 1, client);
121 }
122 
123 static inline bool cpu_physical_memory_is_clean(ram_addr_t addr)
124 {
125     bool vga = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_VGA);
126     bool code = cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_CODE);
127     bool migration =
128         cpu_physical_memory_get_dirty_flag(addr, DIRTY_MEMORY_MIGRATION);
129     return !(vga && code && migration);
130 }
131 
132 static inline uint8_t cpu_physical_memory_range_includes_clean(ram_addr_t start,
133                                                                ram_addr_t length,
134                                                                uint8_t mask)
135 {
136     uint8_t ret = 0;
137 
138     if (mask & (1 << DIRTY_MEMORY_VGA) &&
139         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_VGA)) {
140         ret |= (1 << DIRTY_MEMORY_VGA);
141     }
142     if (mask & (1 << DIRTY_MEMORY_CODE) &&
143         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_CODE)) {
144         ret |= (1 << DIRTY_MEMORY_CODE);
145     }
146     if (mask & (1 << DIRTY_MEMORY_MIGRATION) &&
147         !cpu_physical_memory_all_dirty(start, length, DIRTY_MEMORY_MIGRATION)) {
148         ret |= (1 << DIRTY_MEMORY_MIGRATION);
149     }
150     return ret;
151 }
152 
153 static inline void cpu_physical_memory_set_dirty_flag(ram_addr_t addr,
154                                                       unsigned client)
155 {
156     assert(client < DIRTY_MEMORY_NUM);
157     set_bit_atomic(addr >> TARGET_PAGE_BITS, ram_list.dirty_memory[client]);
158 }
159 
160 static inline void cpu_physical_memory_set_dirty_range(ram_addr_t start,
161                                                        ram_addr_t length,
162                                                        uint8_t mask)
163 {
164     unsigned long end, page;
165     unsigned long **d = ram_list.dirty_memory;
166 
167     end = TARGET_PAGE_ALIGN(start + length) >> TARGET_PAGE_BITS;
168     page = start >> TARGET_PAGE_BITS;
169     if (likely(mask & (1 << DIRTY_MEMORY_MIGRATION))) {
170         bitmap_set_atomic(d[DIRTY_MEMORY_MIGRATION], page, end - page);
171     }
172     if (unlikely(mask & (1 << DIRTY_MEMORY_VGA))) {
173         bitmap_set_atomic(d[DIRTY_MEMORY_VGA], page, end - page);
174     }
175     if (unlikely(mask & (1 << DIRTY_MEMORY_CODE))) {
176         bitmap_set_atomic(d[DIRTY_MEMORY_CODE], page, end - page);
177     }
178     xen_modified_memory(start, length);
179 }
180 
181 #if !defined(_WIN32)
182 static inline void cpu_physical_memory_set_dirty_lebitmap(unsigned long *bitmap,
183                                                           ram_addr_t start,
184                                                           ram_addr_t pages)
185 {
186     unsigned long i, j;
187     unsigned long page_number, c;
188     hwaddr addr;
189     ram_addr_t ram_addr;
190     unsigned long len = (pages + HOST_LONG_BITS - 1) / HOST_LONG_BITS;
191     unsigned long hpratio = getpagesize() / TARGET_PAGE_SIZE;
192     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
193 
194     /* start address is aligned at the start of a word? */
195     if ((((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) &&
196         (hpratio == 1)) {
197         long k;
198         long nr = BITS_TO_LONGS(pages);
199 
200         for (k = 0; k < nr; k++) {
201             if (bitmap[k]) {
202                 unsigned long temp = leul_to_cpu(bitmap[k]);
203                 unsigned long **d = ram_list.dirty_memory;
204 
205                 atomic_or(&d[DIRTY_MEMORY_MIGRATION][page + k], temp);
206                 atomic_or(&d[DIRTY_MEMORY_VGA][page + k], temp);
207                 if (tcg_enabled()) {
208                     atomic_or(&d[DIRTY_MEMORY_CODE][page + k], temp);
209                 }
210             }
211         }
212         xen_modified_memory(start, pages << TARGET_PAGE_BITS);
213     } else {
214         uint8_t clients = tcg_enabled() ? DIRTY_CLIENTS_ALL : DIRTY_CLIENTS_NOCODE;
215         /*
216          * bitmap-traveling is faster than memory-traveling (for addr...)
217          * especially when most of the memory is not dirty.
218          */
219         for (i = 0; i < len; i++) {
220             if (bitmap[i] != 0) {
221                 c = leul_to_cpu(bitmap[i]);
222                 do {
223                     j = ctzl(c);
224                     c &= ~(1ul << j);
225                     page_number = (i * HOST_LONG_BITS + j) * hpratio;
226                     addr = page_number * TARGET_PAGE_SIZE;
227                     ram_addr = start + addr;
228                     cpu_physical_memory_set_dirty_range(ram_addr,
229                                        TARGET_PAGE_SIZE * hpratio, clients);
230                 } while (c != 0);
231             }
232         }
233     }
234 }
235 #endif /* not _WIN32 */
236 
237 bool cpu_physical_memory_test_and_clear_dirty(ram_addr_t start,
238                                               ram_addr_t length,
239                                               unsigned client);
240 
241 static inline void cpu_physical_memory_clear_dirty_range(ram_addr_t start,
242                                                          ram_addr_t length)
243 {
244     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_MIGRATION);
245     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_VGA);
246     cpu_physical_memory_test_and_clear_dirty(start, length, DIRTY_MEMORY_CODE);
247 }
248 
249 
250 static inline
251 uint64_t cpu_physical_memory_sync_dirty_bitmap(unsigned long *dest,
252                                                ram_addr_t start,
253                                                ram_addr_t length)
254 {
255     ram_addr_t addr;
256     unsigned long page = BIT_WORD(start >> TARGET_PAGE_BITS);
257     uint64_t num_dirty = 0;
258 
259     /* start address is aligned at the start of a word? */
260     if (((page * BITS_PER_LONG) << TARGET_PAGE_BITS) == start) {
261         int k;
262         int nr = BITS_TO_LONGS(length >> TARGET_PAGE_BITS);
263         unsigned long *src = ram_list.dirty_memory[DIRTY_MEMORY_MIGRATION];
264 
265         for (k = page; k < page + nr; k++) {
266             if (src[k]) {
267                 unsigned long bits = atomic_xchg(&src[k], 0);
268                 unsigned long new_dirty;
269                 new_dirty = ~dest[k];
270                 dest[k] |= bits;
271                 new_dirty &= bits;
272                 num_dirty += ctpopl(new_dirty);
273             }
274         }
275     } else {
276         for (addr = 0; addr < length; addr += TARGET_PAGE_SIZE) {
277             if (cpu_physical_memory_test_and_clear_dirty(
278                         start + addr,
279                         TARGET_PAGE_SIZE,
280                         DIRTY_MEMORY_MIGRATION)) {
281                 long k = (start + addr) >> TARGET_PAGE_BITS;
282                 if (!test_and_set_bit(k, dest)) {
283                     num_dirty++;
284                 }
285             }
286         }
287     }
288 
289     return num_dirty;
290 }
291 
292 void migration_bitmap_extend(ram_addr_t old, ram_addr_t new);
293 #endif
294 #endif
295